Abstract

Metamaterials with tailored electromagnetic properties hold great promise for the manipulation of electromagnetic waves. Here, we propose an intriguing off-resonance meta-device to control the polarization states and dispersive features of the electromagnetic waves simultaneously. The proposed meta-device is composed of stacks of bilayer gear-like metallic patterns, which exhibit significant anisotropy due to the geometric asymmetry. The results show that the considered meta-device operates in a transmission mode and can achieve broadband and nondispersive cross-polarization transmission with a high polarization conversion ratio nearly 100% for both of the normal incident linear and circular polarization waves. Moreover, the broadband and efficient polarization conversion behavior of the meta-device can be maintained regardless of the incident angle for the circular polarization waves. These fascinating performances enable the meta-device to act as an excellent half-wave plate being greatly beneficial for polarization manipulation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region

Yueyi Yuan, Kuang Zhang, Xumin Ding, Badreddine Ratni, Shah Nawaz Burokur, and Qun Wu
Photon. Res. 7(1) 80-88 (2019)

Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces

Hui Feng Ma, Gui Zhen Wang, Gu Sheng Kong, and Tie Jun Cui
Opt. Mater. Express 4(8) 1717-1724 (2014)

Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial

Yiqun Xu, Quanchao Shi, Zheng Zhu, and Jinhui Shi
Opt. Express 22(21) 25679-25688 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  2. C. A. Valagiannopoulos, M. Mattheakis, S. N. Shirodkar, and E. Kaxiras, “Manipulating polarized light with a planar slab of black phosphorus,” J. Phys. Commun. 1(4), 045003 (2017).
    [Crossref]
  3. V. R. Tuz, M. Y. Vidil, and S. L. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance,” J. Opt. 12(9), 095102 (2010).
    [Crossref]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  5. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
    [Crossref]
  6. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  7. B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
    [Crossref]
  8. Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
    [Crossref]
  9. X. Zhang, H. Li, Z. Wei, and L. Qi, “Metamaterial for polarization-incident angle independent broadband perfect absorption in the terahertz range,” Opt. Mater. Express 7(9), 3294–3302 (2017).
    [Crossref]
  10. S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
    [Crossref] [PubMed]
  11. R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, “Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials,” Opt. Mater. Express 7(3), 977–988 (2017).
    [Crossref]
  12. K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large-area, mushroom-capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
    [Crossref]
  13. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [Crossref] [PubMed]
  14. F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
    [Crossref] [PubMed]
  15. Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5(1), 8434 (2015).
    [Crossref] [PubMed]
  16. K. Song, C. Ding, Z. Su, Y. Liu, C. Luo, X. Zhao, K. Bhattarai, and J. Zhou, “Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission,” J. Appl. Phys. 120(24), 245102 (2016).
    [Crossref]
  17. S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
    [Crossref]
  18. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
    [Crossref] [PubMed]
  19. C. A. Valagiannopoulos, “High selectivity and controllability of a parallel-plate component with a filled rectangular ridge,” Prog. Electromagnetics Res. 119, 497–511 (2011).
    [Crossref]
  20. J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
    [Crossref]
  21. K. Song, X. Zhao, Y. Liu, Q. Fu, and C. Luo, “A frequency-tunable 90°-polarization rotation device using composite chiral metamaterials,” Appl. Phys. Lett. 103(10), 101908 (2013).
    [Crossref]
  22. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref] [PubMed]
  23. J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
    [Crossref] [PubMed]
  24. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]
  25. J. Y. Chin, M. Lu, and T. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
    [Crossref]
  26. M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
    [Crossref]
  27. Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
    [Crossref]
  28. R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
    [Crossref]
  29. K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
    [Crossref] [PubMed]
  30. J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
    [Crossref] [PubMed]
  31. X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
    [Crossref]
  32. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  33. R. Ji, S. Wang, X. Liu, H. Guo, and W. Lu, “Hybrid helix metamaterials for giant and ultrawide circular dichroism,” ACS Photonics 3(12), 2368–2374 (2016).
    [Crossref]
  34. J. Wang, Z. Shen, and W. Wu, “Broadband and high-efficiency circular polarizer based on planar-helix chiral metamaterials,” Appl. Phys. Lett. 111(11), 113503 (2017).
    [Crossref]
  35. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
    [Crossref] [PubMed]
  36. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
    [Crossref]
  37. D. Y. Liu, M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, “Enhanced asymmetric transmission due to Fabry-Perot-like cavity,” Opt. Express 22(10), 11707–11712 (2014).
    [Crossref] [PubMed]
  38. K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
    [Crossref]
  39. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
    [Crossref] [PubMed]
  40. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
    [Crossref]
  41. H. Ma, G. Wang, G. Kong, and T. Cui, “Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces,” Opt. Mater. Express 4(8), 1717–1724 (2014).
    [Crossref]
  42. G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
    [Crossref]
  43. H. F. Ma, Y. Q. Liu, K. Luan, and T. J. Cui, “Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces,” Sci. Rep. 6(1), 39390 (2016).
    [Crossref] [PubMed]
  44. Y. Zheng, Y. Zhou, J. Gao, X. Cao, H. Yang, S. Li, L. Xu, J. Lan, and L. Jidi, “Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression,” Sci. Rep. 7(1), 16137 (2017).
    [Crossref] [PubMed]
  45. H. S. Park, T.-T. Kim, H.-D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Commun. 5(1), 5435 (2014).
    [Crossref] [PubMed]
  46. L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Mater. 27(9), 1176–1183 (2015).
  47. K. Song, Z. Su, M. Wang, S. Silva, K. Bhattarai, C. Ding, Y. Liu, C. Luo, X. Zhao, and J. Zhou, “Broadband angle- and permittivity-insensitive nondispersive optical activity based on planar chiral metamaterials,” Sci. Rep. 7(1), 10730 (2017).
    [Crossref] [PubMed]

2017 (6)

C. A. Valagiannopoulos, M. Mattheakis, S. N. Shirodkar, and E. Kaxiras, “Manipulating polarized light with a planar slab of black phosphorus,” J. Phys. Commun. 1(4), 045003 (2017).
[Crossref]

X. Zhang, H. Li, Z. Wei, and L. Qi, “Metamaterial for polarization-incident angle independent broadband perfect absorption in the terahertz range,” Opt. Mater. Express 7(9), 3294–3302 (2017).
[Crossref]

R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, “Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials,” Opt. Mater. Express 7(3), 977–988 (2017).
[Crossref]

J. Wang, Z. Shen, and W. Wu, “Broadband and high-efficiency circular polarizer based on planar-helix chiral metamaterials,” Appl. Phys. Lett. 111(11), 113503 (2017).
[Crossref]

Y. Zheng, Y. Zhou, J. Gao, X. Cao, H. Yang, S. Li, L. Xu, J. Lan, and L. Jidi, “Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression,” Sci. Rep. 7(1), 16137 (2017).
[Crossref] [PubMed]

K. Song, Z. Su, M. Wang, S. Silva, K. Bhattarai, C. Ding, Y. Liu, C. Luo, X. Zhao, and J. Zhou, “Broadband angle- and permittivity-insensitive nondispersive optical activity based on planar chiral metamaterials,” Sci. Rep. 7(1), 10730 (2017).
[Crossref] [PubMed]

2016 (7)

G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
[Crossref]

H. F. Ma, Y. Q. Liu, K. Luan, and T. J. Cui, “Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces,” Sci. Rep. 6(1), 39390 (2016).
[Crossref] [PubMed]

R. Ji, S. Wang, X. Liu, H. Guo, and W. Lu, “Hybrid helix metamaterials for giant and ultrawide circular dichroism,” ACS Photonics 3(12), 2368–2374 (2016).
[Crossref]

X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
[Crossref]

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref] [PubMed]

K. Song, C. Ding, Z. Su, Y. Liu, C. Luo, X. Zhao, K. Bhattarai, and J. Zhou, “Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission,” J. Appl. Phys. 120(24), 245102 (2016).
[Crossref]

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

2015 (6)

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5(1), 8434 (2015).
[Crossref] [PubMed]

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large-area, mushroom-capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Mater. 27(9), 1176–1183 (2015).

2014 (5)

H. S. Park, T.-T. Kim, H.-D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Commun. 5(1), 5435 (2014).
[Crossref] [PubMed]

D. Y. Liu, M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, “Enhanced asymmetric transmission due to Fabry-Perot-like cavity,” Opt. Express 22(10), 11707–11712 (2014).
[Crossref] [PubMed]

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

H. Ma, G. Wang, G. Kong, and T. Cui, “Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces,” Opt. Mater. Express 4(8), 1717–1724 (2014).
[Crossref]

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

2013 (4)

K. Song, X. Zhao, Y. Liu, Q. Fu, and C. Luo, “A frequency-tunable 90°-polarization rotation device using composite chiral metamaterials,” Appl. Phys. Lett. 103(10), 101908 (2013).
[Crossref]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
[Crossref] [PubMed]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

2012 (5)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref] [PubMed]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

2011 (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

C. A. Valagiannopoulos, “High selectivity and controllability of a parallel-plate component with a filled rectangular ridge,” Prog. Electromagnetics Res. 119, 497–511 (2011).
[Crossref]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

2010 (3)

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

V. R. Tuz, M. Y. Vidil, and S. L. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance,” J. Opt. 12(9), 095102 (2010).
[Crossref]

2009 (3)

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

2008 (1)

J. Y. Chin, M. Lu, and T. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

2007 (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

2006 (1)

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Aieta, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Alù, A.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref] [PubMed]

Azad, A. K.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref] [PubMed]

Bhattarai, K.

K. Song, Z. Su, M. Wang, S. Silva, K. Bhattarai, C. Ding, Y. Liu, C. Luo, X. Zhao, and J. Zhou, “Broadband angle- and permittivity-insensitive nondispersive optical activity based on planar chiral metamaterials,” Sci. Rep. 7(1), 10730 (2017).
[Crossref] [PubMed]

K. Song, C. Ding, Z. Su, Y. Liu, C. Luo, X. Zhao, K. Bhattarai, and J. Zhou, “Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission,” J. Appl. Phys. 120(24), 245102 (2016).
[Crossref]

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large-area, mushroom-capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Cao, W.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Cao, X.

Y. Zheng, Y. Zhou, J. Gao, X. Cao, H. Yang, S. Li, L. Xu, J. Lan, and L. Jidi, “Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression,” Sci. Rep. 7(1), 16137 (2017).
[Crossref] [PubMed]

Capasso, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chen, H.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Chen, H.-T.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Chen, P.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Chin, J. Y.

J. Y. Chin, M. Lu, and T. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Chowdhury, D. R.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Chum, C. C.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref] [PubMed]

Cong, L.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Mater. 27(9), 1176–1183 (2015).

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Cui, T.

Cui, T. J.

H. F. Ma, Y. Q. Liu, K. Luan, and T. J. Cui, “Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces,” Sci. Rep. 6(1), 39390 (2016).
[Crossref] [PubMed]

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Dai, S.

X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Deng, J.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref] [PubMed]

Ding, C.

K. Song, Z. Su, M. Wang, S. Silva, K. Bhattarai, C. Ding, Y. Liu, C. Luo, X. Zhao, and J. Zhou, “Broadband angle- and permittivity-insensitive nondispersive optical activity based on planar chiral metamaterials,” Sci. Rep. 7(1), 10730 (2017).
[Crossref] [PubMed]

K. Song, C. Ding, Z. Su, Y. Liu, C. Luo, X. Zhao, K. Bhattarai, and J. Zhou, “Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission,” J. Appl. Phys. 120(24), 245102 (2016).
[Crossref]

Ding, L.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref] [PubMed]

Dong, G.

G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
[Crossref]

Dong, J.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

Dong, J. F.

Dyke, A.

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

Fedotov, V. A.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

Feng, Y.

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

Fu, Q.

K. Song, X. Zhao, Y. Liu, Q. Fu, and C. Luo, “A frequency-tunable 90°-polarization rotation device using composite chiral metamaterials,” Appl. Phys. Lett. 103(10), 101908 (2013).
[Crossref]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Gao, J.

Y. Zheng, Y. Zhou, J. Gao, X. Cao, H. Yang, S. Li, L. Xu, J. Lan, and L. Jidi, “Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression,” Sci. Rep. 7(1), 16137 (2017).
[Crossref] [PubMed]

Genevet, P.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gu, J.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Guan, C. Y.

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Gui, X.

Guo, H.

R. Ji, S. Wang, X. Liu, H. Guo, and W. Lu, “Hybrid helix metamaterials for giant and ultrawide circular dichroism,” ACS Photonics 3(12), 2368–2374 (2016).
[Crossref]

Guo, Y.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5(1), 8434 (2015).
[Crossref] [PubMed]

Han, J.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Mater. 27(9), 1176–1183 (2015).

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Hao, Y.

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

Haq, S.

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

He, S.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Hong, M.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref] [PubMed]

Hong, Z.

Hu, Y.

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Huang, C.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Huang, Y.

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

Jeon, J.

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large-area, mushroom-capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Ji, R.

R. Ji, S. Wang, X. Liu, H. Guo, and W. Lu, “Hybrid helix metamaterials for giant and ultrawide circular dichroism,” ACS Photonics 3(12), 2368–2374 (2016).
[Crossref]

Jiang, S.

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Jidi, L.

Y. Zheng, Y. Zhou, J. Gao, X. Cao, H. Yang, S. Li, L. Xu, J. Lan, and L. Jidi, “Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression,” Sci. Rep. 7(1), 16137 (2017).
[Crossref] [PubMed]

Jing, X.

Kafesaki, M.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

Kats, M. A.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kaxiras, E.

C. A. Valagiannopoulos, M. Mattheakis, S. N. Shirodkar, and E. Kaxiras, “Manipulating polarized light with a planar slab of black phosphorus,” J. Phys. Commun. 1(4), 045003 (2017).
[Crossref]

Kim, H.-D.

H. S. Park, T.-T. Kim, H.-D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Commun. 5(1), 5435 (2014).
[Crossref] [PubMed]

Kim, J. O.

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large-area, mushroom-capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Kim, K.

H. S. Park, T.-T. Kim, H.-D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Commun. 5(1), 5435 (2014).
[Crossref] [PubMed]

Kim, T.-T.

H. S. Park, T.-T. Kim, H.-D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Commun. 5(1), 5435 (2014).
[Crossref] [PubMed]

Kley, E. B.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Kong, G.

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Koschny, T.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[Crossref]

Ku, Z.

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large-area, mushroom-capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Lan, J.

Y. Zheng, Y. Zhou, J. Gao, X. Cao, H. Yang, S. Li, L. Xu, J. Lan, and L. Jidi, “Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression,” Sci. Rep. 7(1), 16137 (2017).
[Crossref] [PubMed]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Lee, S. J.

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large-area, mushroom-capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Li, H.

Li, J.

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

Li, M. H.

Li, S.

Y. Zheng, Y. Zhou, J. Gao, X. Cao, H. Yang, S. Li, L. Xu, J. Lan, and L. Jidi, “Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression,” Sci. Rep. 7(1), 16137 (2017).
[Crossref] [PubMed]

Li, Y.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref] [PubMed]

Li, Y. X.

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Liu, D. Y.

Liu, X.

R. Ji, S. Wang, X. Liu, H. Guo, and W. Lu, “Hybrid helix metamaterials for giant and ultrawide circular dichroism,” ACS Photonics 3(12), 2368–2374 (2016).
[Crossref]

Liu, Y.

K. Song, Z. Su, M. Wang, S. Silva, K. Bhattarai, C. Ding, Y. Liu, C. Luo, X. Zhao, and J. Zhou, “Broadband angle- and permittivity-insensitive nondispersive optical activity based on planar chiral metamaterials,” Sci. Rep. 7(1), 10730 (2017).
[Crossref] [PubMed]

K. Song, C. Ding, Z. Su, Y. Liu, C. Luo, X. Zhao, K. Bhattarai, and J. Zhou, “Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission,” J. Appl. Phys. 120(24), 245102 (2016).
[Crossref]

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
[Crossref] [PubMed]

K. Song, X. Zhao, Y. Liu, Q. Fu, and C. Luo, “A frequency-tunable 90°-polarization rotation device using composite chiral metamaterials,” Appl. Phys. Lett. 103(10), 101908 (2013).
[Crossref]

Liu, Y. Q.

H. F. Ma, Y. Q. Liu, K. Luan, and T. J. Cui, “Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces,” Sci. Rep. 6(1), 39390 (2016).
[Crossref] [PubMed]

Lu, M.

J. Y. Chin, M. Lu, and T. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Lu, W.

R. Ji, S. Wang, X. Liu, H. Guo, and W. Lu, “Hybrid helix metamaterials for giant and ultrawide circular dichroism,” ACS Photonics 3(12), 2368–2374 (2016).
[Crossref]

Luan, K.

H. F. Ma, Y. Q. Liu, K. Luan, and T. J. Cui, “Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces,” Sci. Rep. 6(1), 39390 (2016).
[Crossref] [PubMed]

Luo, C.

K. Song, Z. Su, M. Wang, S. Silva, K. Bhattarai, C. Ding, Y. Liu, C. Luo, X. Zhao, and J. Zhou, “Broadband angle- and permittivity-insensitive nondispersive optical activity based on planar chiral metamaterials,” Sci. Rep. 7(1), 10730 (2017).
[Crossref] [PubMed]

K. Song, C. Ding, Z. Su, Y. Liu, C. Luo, X. Zhao, K. Bhattarai, and J. Zhou, “Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission,” J. Appl. Phys. 120(24), 245102 (2016).
[Crossref]

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
[Crossref] [PubMed]

K. Song, X. Zhao, Y. Liu, Q. Fu, and C. Luo, “A frequency-tunable 90°-polarization rotation device using composite chiral metamaterials,” Appl. Phys. Lett. 103(10), 101908 (2013).
[Crossref]

Luo, X.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5(1), 8434 (2015).
[Crossref] [PubMed]

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Ma, G.

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Ma, H.

Ma, H. F.

H. F. Ma, Y. Q. Liu, K. Luan, and T. J. Cui, “Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces,” Sci. Rep. 6(1), 39390 (2016).
[Crossref] [PubMed]

Ma, X.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5(1), 8434 (2015).
[Crossref] [PubMed]

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Mattheakis, M.

C. A. Valagiannopoulos, M. Mattheakis, S. N. Shirodkar, and E. Kaxiras, “Manipulating polarized light with a planar slab of black phosphorus,” J. Phys. Commun. 1(4), 045003 (2017).
[Crossref]

Mei, S.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref] [PubMed]

Meng, Y.

X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
[Crossref]

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Min, B.

H. S. Park, T.-T. Kim, H.-D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Commun. 5(1), 5435 (2014).
[Crossref] [PubMed]

Monticone, F.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref] [PubMed]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Mutlu, M.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Nam, S.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Nie, G. Y.

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

O’Hara, J. F.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Ozbay, E.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Park, H. S.

H. S. Park, T.-T. Kim, H.-D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Commun. 5(1), 5435 (2014).
[Crossref] [PubMed]

Park, Y.-S.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Peng, R.

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Prosvirnin, S. L.

V. R. Tuz, M. Y. Vidil, and S. L. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance,” J. Opt. 12(9), 095102 (2010).
[Crossref]

Pu, M.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5(1), 8434 (2015).
[Crossref] [PubMed]

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Qi, L.

Qin, F.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref] [PubMed]

Qiu, C. W.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref] [PubMed]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Rho, J.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schwanecke, A. S.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shen, Z.

J. Wang, Z. Shen, and W. Wu, “Broadband and high-efficiency circular polarizer based on planar-helix chiral metamaterials,” Appl. Phys. Lett. 111(11), 113503 (2017).
[Crossref]

Shi, H.

G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
[Crossref]

Shi, J. H.

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Shi, Q. C.

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Shirodkar, S. N.

C. A. Valagiannopoulos, M. Mattheakis, S. N. Shirodkar, and E. Kaxiras, “Manipulating polarized light with a planar slab of black phosphorus,” J. Phys. Commun. 1(4), 045003 (2017).
[Crossref]

Silva, S.

K. Song, Z. Su, M. Wang, S. Silva, K. Bhattarai, C. Ding, Y. Liu, C. Luo, X. Zhao, and J. Zhou, “Broadband angle- and permittivity-insensitive nondispersive optical activity based on planar chiral metamaterials,” Sci. Rep. 7(1), 10730 (2017).
[Crossref] [PubMed]

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large-area, mushroom-capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Singh, R.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Mater. 27(9), 1176–1183 (2015).

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Song, K.

K. Song, Z. Su, M. Wang, S. Silva, K. Bhattarai, C. Ding, Y. Liu, C. Luo, X. Zhao, and J. Zhou, “Broadband angle- and permittivity-insensitive nondispersive optical activity based on planar chiral metamaterials,” Sci. Rep. 7(1), 10730 (2017).
[Crossref] [PubMed]

K. Song, C. Ding, Z. Su, Y. Liu, C. Luo, X. Zhao, K. Bhattarai, and J. Zhou, “Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission,” J. Appl. Phys. 120(24), 245102 (2016).
[Crossref]

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
[Crossref] [PubMed]

K. Song, X. Zhao, Y. Liu, Q. Fu, and C. Luo, “A frequency-tunable 90°-polarization rotation device using composite chiral metamaterials,” Appl. Phys. Lett. 103(10), 101908 (2013).
[Crossref]

Soukoulis, C. M.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[Crossref]

Su, Z.

K. Song, Z. Su, M. Wang, S. Silva, K. Bhattarai, C. Ding, Y. Liu, C. Luo, X. Zhao, and J. Zhou, “Broadband angle- and permittivity-insensitive nondispersive optical activity based on planar chiral metamaterials,” Sci. Rep. 7(1), 10730 (2017).
[Crossref] [PubMed]

K. Song, C. Ding, Z. Su, Y. Liu, C. Luo, X. Zhao, K. Bhattarai, and J. Zhou, “Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission,” J. Appl. Phys. 120(24), 245102 (2016).
[Crossref]

Sun, C.

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Taylor, A. J.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Teng, J.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref] [PubMed]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Tian, J.

X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
[Crossref]

Tian, Y.

Tian, Z.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Tuz, V. R.

V. R. Tuz, M. Y. Vidil, and S. L. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance,” J. Opt. 12(9), 095102 (2010).
[Crossref]

Urbas, A.

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large-area, mushroom-capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Valagiannopoulos, C. A.

C. A. Valagiannopoulos, M. Mattheakis, S. N. Shirodkar, and E. Kaxiras, “Manipulating polarized light with a planar slab of black phosphorus,” J. Phys. Commun. 1(4), 045003 (2017).
[Crossref]

C. A. Valagiannopoulos, “High selectivity and controllability of a parallel-plate component with a filled rectangular ridge,” Prog. Electromagnetics Res. 119, 497–511 (2011).
[Crossref]

Vidil, M. Y.

V. R. Tuz, M. Y. Vidil, and S. L. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance,” J. Opt. 12(9), 095102 (2010).
[Crossref]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, B.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[Crossref]

Wang, C.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5(1), 8434 (2015).
[Crossref] [PubMed]

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Wang, G.

Wang, J.

J. Wang, Z. Shen, and W. Wu, “Broadband and high-efficiency circular polarizer based on planar-helix chiral metamaterials,” Appl. Phys. Lett. 111(11), 113503 (2017).
[Crossref]

Wang, L.

X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
[Crossref]

Wang, M.

K. Song, Z. Su, M. Wang, S. Silva, K. Bhattarai, C. Ding, Y. Liu, C. Luo, X. Zhao, and J. Zhou, “Broadband angle- and permittivity-insensitive nondispersive optical activity based on planar chiral metamaterials,” Sci. Rep. 7(1), 10730 (2017).
[Crossref] [PubMed]

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Wang, S.

R. Ji, S. Wang, X. Liu, H. Guo, and W. Lu, “Hybrid helix metamaterials for giant and ultrawide circular dichroism,” ACS Photonics 3(12), 2368–2374 (2016).
[Crossref]

Wang, Y.

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5(1), 8434 (2015).
[Crossref] [PubMed]

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wei, X.

G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
[Crossref]

Wei, Z.

Wen, G.

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

Wen, W.

X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
[Crossref]

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wu, W.

J. Wang, Z. Shen, and W. Wu, “Broadband and high-efficiency circular polarizer based on planar-helix chiral metamaterials,” Appl. Phys. Lett. 111(11), 113503 (2017).
[Crossref]

Wu, X.

X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
[Crossref]

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5(1), 8434 (2015).
[Crossref] [PubMed]

Xia, R.

Xia, S.

G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
[Crossref]

Xiong, X.

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Xu, L.

Y. Zheng, Y. Zhou, J. Gao, X. Cao, H. Yang, S. Li, L. Xu, J. Lan, and L. Jidi, “Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression,” Sci. Rep. 7(1), 16137 (2017).
[Crossref] [PubMed]

Xu, N.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Mater. 27(9), 1176–1183 (2015).

Xu, Z.

G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
[Crossref]

Yan, L.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5(1), 8434 (2015).
[Crossref] [PubMed]

Yang, H.

Y. Zheng, Y. Zhou, J. Gao, X. Cao, H. Yang, S. Li, L. Xu, J. Lan, and L. Jidi, “Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression,” Sci. Rep. 7(1), 16137 (2017).
[Crossref] [PubMed]

Yang, L.

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

Yao, L. F.

Ye, Y.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Yin, X.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Yu, N.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhai, X. M.

Zhang, A.

G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
[Crossref]

Zhang, L.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref] [PubMed]

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

Zhang, S.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Zhang, W.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Mater. 27(9), 1176–1183 (2015).

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Zhang, X.

X. Zhang, H. Li, Z. Wei, and L. Qi, “Metamaterial for polarization-incident angle independent broadband perfect absorption in the terahertz range,” Opt. Mater. Express 7(9), 3294–3302 (2017).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

Zhao, R.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

Zhao, X.

K. Song, Z. Su, M. Wang, S. Silva, K. Bhattarai, C. Ding, Y. Liu, C. Luo, X. Zhao, and J. Zhou, “Broadband angle- and permittivity-insensitive nondispersive optical activity based on planar chiral metamaterials,” Sci. Rep. 7(1), 10730 (2017).
[Crossref] [PubMed]

K. Song, C. Ding, Z. Su, Y. Liu, C. Luo, X. Zhao, K. Bhattarai, and J. Zhou, “Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission,” J. Appl. Phys. 120(24), 245102 (2016).
[Crossref]

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
[Crossref] [PubMed]

K. Song, X. Zhao, Y. Liu, Q. Fu, and C. Luo, “A frequency-tunable 90°-polarization rotation device using composite chiral metamaterials,” Appl. Phys. Lett. 103(10), 101908 (2013).
[Crossref]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref] [PubMed]

Zhao, Z.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5(1), 8434 (2015).
[Crossref] [PubMed]

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Zheludev, N. I.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

Zheng, Y.

Y. Zheng, Y. Zhou, J. Gao, X. Cao, H. Yang, S. Li, L. Xu, J. Lan, and L. Jidi, “Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression,” Sci. Rep. 7(1), 16137 (2017).
[Crossref] [PubMed]

Zhou, J.

K. Song, Z. Su, M. Wang, S. Silva, K. Bhattarai, C. Ding, Y. Liu, C. Luo, X. Zhao, and J. Zhou, “Broadband angle- and permittivity-insensitive nondispersive optical activity based on planar chiral metamaterials,” Sci. Rep. 7(1), 10730 (2017).
[Crossref] [PubMed]

K. Song, C. Ding, Z. Su, Y. Liu, C. Luo, X. Zhao, K. Bhattarai, and J. Zhou, “Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission,” J. Appl. Phys. 120(24), 245102 (2016).
[Crossref]

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large-area, mushroom-capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

Zhou, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhou, Y.

Y. Zheng, Y. Zhou, J. Gao, X. Cao, H. Yang, S. Li, L. Xu, J. Lan, and L. Jidi, “Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression,” Sci. Rep. 7(1), 16137 (2017).
[Crossref] [PubMed]

Zhu, W.

ACS Photonics (1)

R. Ji, S. Wang, X. Liu, H. Guo, and W. Lu, “Hybrid helix metamaterials for giant and ultrawide circular dichroism,” ACS Photonics 3(12), 2368–2374 (2016).
[Crossref]

Adv. Mater. (1)

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Mater. 27(9), 1176–1183 (2015).

Adv. Opt. Mater. (1)

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large-area, mushroom-capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Appl. Phys. Lett. (9)

K. Song, X. Zhao, Y. Liu, Q. Fu, and C. Luo, “A frequency-tunable 90°-polarization rotation device using composite chiral metamaterials,” Appl. Phys. Lett. 103(10), 101908 (2013).
[Crossref]

J. Y. Chin, M. Lu, and T. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

J. Wang, Z. Shen, and W. Wu, “Broadband and high-efficiency circular polarizer based on planar-helix chiral metamaterials,” Appl. Phys. Lett. 111(11), 113503 (2017).
[Crossref]

X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108(18), 183502 (2016).
[Crossref]

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

J. Appl. Phys. (1)

K. Song, C. Ding, Z. Su, Y. Liu, C. Luo, X. Zhao, K. Bhattarai, and J. Zhou, “Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission,” J. Appl. Phys. 120(24), 245102 (2016).
[Crossref]

J. Opt. (1)

V. R. Tuz, M. Y. Vidil, and S. L. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance,” J. Opt. 12(9), 095102 (2010).
[Crossref]

J. Phys. Commun. (1)

C. A. Valagiannopoulos, M. Mattheakis, S. N. Shirodkar, and E. Kaxiras, “Manipulating polarized light with a planar slab of black phosphorus,” J. Phys. Commun. 1(4), 045003 (2017).
[Crossref]

J. Phys. D Appl. Phys. (1)

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Nano Lett. (1)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Nat. Commun. (3)

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

H. S. Park, T.-T. Kim, H.-D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Commun. 5(1), 5435 (2014).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (3)

Phys. Rev. B (4)

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Phys. Rev. Lett. (3)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Prog. Electromagnetics Res. (1)

C. A. Valagiannopoulos, “High selectivity and controllability of a parallel-plate component with a filled rectangular ridge,” Prog. Electromagnetics Res. 119, 497–511 (2011).
[Crossref]

Sci. Adv. (1)

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref] [PubMed]

Sci. Rep. (6)

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5(1), 8434 (2015).
[Crossref] [PubMed]

J. Zhao, L. Zhang, J. Li, Y. Feng, A. Dyke, S. Haq, and Y. Hao, “A wide-angle multi-octave broadband waveplate based on field transformation approach,” Sci. Rep. 5(1), 17532 (2015).
[Crossref] [PubMed]

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

H. F. Ma, Y. Q. Liu, K. Luan, and T. J. Cui, “Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces,” Sci. Rep. 6(1), 39390 (2016).
[Crossref] [PubMed]

Y. Zheng, Y. Zhou, J. Gao, X. Cao, H. Yang, S. Li, L. Xu, J. Lan, and L. Jidi, “Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression,” Sci. Rep. 7(1), 16137 (2017).
[Crossref] [PubMed]

K. Song, Z. Su, M. Wang, S. Silva, K. Bhattarai, C. Ding, Y. Liu, C. Luo, X. Zhao, and J. Zhou, “Broadband angle- and permittivity-insensitive nondispersive optical activity based on planar chiral metamaterials,” Sci. Rep. 7(1), 10730 (2017).
[Crossref] [PubMed]

Science (4)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Other (1)

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of the unit cell of the proposed meta-device. And the u- and v-axis are the two principal axis of the meta-device, respectively. (b) Photograph of the assembled meta-device. The meta-device is composed of 40 layers of the slats each including 15 gear-like metallic patterns.
Fig. 2
Fig. 2 Simulation and experimental results of the meta-device for the linearly and circularly polarized incident waves. (a), (b), and (c) Transmission spectra. (d), (e), and (f) PCR. (g), (h), and (i) Differentials of cross-polarization transmission coefficients to frequencies.
Fig. 3
Fig. 3 (a) Simulated and (b) experimental DOCP of the meta-device.
Fig. 4
Fig. 4 Simulation results of the meta-device evolving with the incident angle. (a) Circular cross-polarization transmission spectra. (b) Transmission energy conversion ratio.
Fig. 5
Fig. 5 The influences of different structural parameters on the cross-polarization transmission spectra of the proposed meta-device at normal incidence. (a) Angle θ. (b) Radius r. (c) Line-width w. In the simulations, when the certain structural parameter was changed, the other ones were kept unchanged.
Fig. 6
Fig. 6 Simulation and experimental results of the meta-device at the case of u- and v-polarizations incidence. (a) and (b) Transmission spectra. (c) and (d) Transmission phases of u- and v-polarizations and the relative phase difference.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T c i r c = ( T R C P R C P           T R C P L C P   T L C P R C P       T L C P L C P ) = 1 2 ( T x x + T y y + i ( T x y T y x )           T x x T y y i ( T x y + T y x ) T x x T y y + i ( T x y + T y x )           T x x + T y y i ( T x y T y x ) ) .
T c i r c = ( T R C P R C P           T R C P L C P   T L C P R C P       T L C P L C P ) = ( T x x           i T y x i T y x           T x x ) ,
| T R C P R C P | = | T L C P L C P | = | T x x | ,
| T R C P L C P | = | T L C P R C P | = | T y x | .

Metrics