Abstract

Nanostructured layers generated by plasma etching immediately after the evaporation process can exhibit an effective refractive index down to approximately 1.15. uracil, a nucleobase derived from a pyrimidine chemical structure, has been identified to form suitable bump structures in a self-organized way. It is assumed that the molecule’s ability to form aggregates plays an essential role in initiating the structure formation. A nanostructured uracil layer has been used as the final layer of an antireflection coating to demonstrate broadband and wide-angle antireflection performance.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A double nanostructure for wide-angle antireflection on optical polymers

U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser
Opt. Mater. Express 4(3) 568-574 (2014)

Formation of antireflective nanostructures on melamine and N,N´-di (1-naphthyl)-N,N´-diphenyl benzidine (NPB)

U. Schulz, C. Präfke, P. Munzert, C. Gödeker, and N. Kaiser
Opt. Mater. Express 1(1) 101-107 (2011)

Gradient index antireflection coatings on glass containing plasma-etched organic layers

Ulrike Schulz, Friedrich Rickelt, Henning Ludwig, Peter Munzert, and Norbert Kaiser
Opt. Mater. Express 5(6) 1259-1265 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Willey, “Predicting achievable design performance of broadband antireflection coatings,” Appl. Opt. 32(28), 5447–5451 (1993).
    [Crossref] [PubMed]
  2. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47(13), C124–C130 (2008).
    [Crossref] [PubMed]
  3. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002).
    [Crossref] [PubMed]
  4. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
    [Crossref]
  5. S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, and U. Schulz, “Antireflection coatings combining interference multilayers and a nanoporous MgF2 top layer prepared by glancing angle deposition,” Surf. Coat. Tech. 267, 40–44 (2015).
    [Crossref]
  6. U. Schulz, “Wideband antireflection coatings by combining interference multilayers with structured top layers,” Opt. Express 17(11), 8704–8708 (2009).
    [Crossref] [PubMed]
  7. S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
    [Crossref]
  8. R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev. 5, 1–19 (2011).
  9. K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
    [Crossref]
  10. A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
    [Crossref]
  11. U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt. 50(9), C31–C35 (2011).
    [Crossref] [PubMed]
  12. I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating anti-reflective nanostructures on polymers by initial layer deposition before plasma etching,” Plasma Process. Polym. 6(S1), S716–S721 (2009).
    [Crossref]
  13. U. Schulz, P. Munzert, F. Rickelt, and N. Kaiser, “Hybrid antireflective coating with plasma-etched nanostructure,” Thin Solid Films 532, 119–122 (2013).
    [Crossref]
  14. F. Krok, S. R. Saeed, M. Kolmer, and M. Szymonski, “Patterning of ionic insulator surfaces with low-energy ion beams,” in Nanofabrication by Ion-Beam Sputtering: Fundamentals and Applications, T. Som and D. Kanjilal, eds. (CRC Press, 2013), Chapter 4.
  15. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, “Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering,” Science 285(5433), 1551–1553 (1999).
    [Crossref] [PubMed]
  16. S. Rousset, B. Croset, Y. Girard, G. Prévot, V. Repain, and S. Rohart, “Self-organized epitaxial growth on spontaneously nano-patterned templates,” C. R. Phys. 6(1), 33–46 (2005).
    [Crossref]
  17. R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988).
    [Crossref]
  18. U. Schulz, P. Munzert, and N. Kaiser, “Plasma surface modification of PMMA for optical applications,” J. Adhes. Sci. Technol. 24(7), 1283–1289 (2010).
    [Crossref]
  19. B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, and W. Schnick, “Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies,” J. Am. Chem. Soc. 125(34), 10288–10300 (2003).
    [Crossref] [PubMed]
  20. M. E. Burkard, D. H. Turner, and I. Tinoco, Jr., “Structures of base pairs involving at least two hydrogen bonds” in The RNA World, 2nd edition (Cold Spring Harbor Laboratory Press, 1999), Appendix 1, p. 675.
  21. V. Allain, C. Bourgaux, and P. Couvreur, “Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices,” Nucleic Acids Res. 40(5), 1891–1903 (2012).
    [Crossref] [PubMed]
  22. J. Magulic, M. M. Beerbom, and R. Schlaf, “Investigation of adenine, uracil, and ribose phosphate thin films prepared by electrospray in vacuum deposition using photoemission spectroscopy,” Thin Solid Films 516(9), 2396–2400 (2008).
    [Crossref]
  23. W. Ostwald, “Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper,” Z. Phys. Chem. 34, 495–503 (1900).
  24. Th. Dretschkow and Th. Wandlowski, “In-situ scanning tunneling microscopy study of uracil on Au (100),” Electrochim. Acta 43(19-20), 19–29, 2991–3006 (1998).
    [Crossref]
  25. V. I. Danilov, T. van Mourik, and V. I. Poltev, “Modeling of the “hydration shell” of uracil and thymine in small water clusters by DFT and MP2 methods,” Chem. Phys. Lett. 429(1–3), 255–260 (2006).
    [Crossref]
  26. P. Banerjee, A. Pyne, S. Pal, C. K. Karan, and N. Sarkar, “Self-assembling behavior of pyrimidine analogues: unveiling the factors behind morphological diversity,” J. Colloid Interface Sci. 522, 63–73 (2018).
    [Crossref] [PubMed]

2018 (1)

P. Banerjee, A. Pyne, S. Pal, C. K. Karan, and N. Sarkar, “Self-assembling behavior of pyrimidine analogues: unveiling the factors behind morphological diversity,” J. Colloid Interface Sci. 522, 63–73 (2018).
[Crossref] [PubMed]

2015 (1)

S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, and U. Schulz, “Antireflection coatings combining interference multilayers and a nanoporous MgF2 top layer prepared by glancing angle deposition,” Surf. Coat. Tech. 267, 40–44 (2015).
[Crossref]

2013 (2)

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

U. Schulz, P. Munzert, F. Rickelt, and N. Kaiser, “Hybrid antireflective coating with plasma-etched nanostructure,” Thin Solid Films 532, 119–122 (2013).
[Crossref]

2012 (1)

V. Allain, C. Bourgaux, and P. Couvreur, “Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices,” Nucleic Acids Res. 40(5), 1891–1903 (2012).
[Crossref] [PubMed]

2011 (2)

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev. 5, 1–19 (2011).

U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt. 50(9), C31–C35 (2011).
[Crossref] [PubMed]

2010 (2)

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
[Crossref]

U. Schulz, P. Munzert, and N. Kaiser, “Plasma surface modification of PMMA for optical applications,” J. Adhes. Sci. Technol. 24(7), 1283–1289 (2010).
[Crossref]

2009 (2)

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating anti-reflective nanostructures on polymers by initial layer deposition before plasma etching,” Plasma Process. Polym. 6(S1), S716–S721 (2009).
[Crossref]

U. Schulz, “Wideband antireflection coatings by combining interference multilayers with structured top layers,” Opt. Express 17(11), 8704–8708 (2009).
[Crossref] [PubMed]

2008 (2)

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47(13), C124–C130 (2008).
[Crossref] [PubMed]

J. Magulic, M. M. Beerbom, and R. Schlaf, “Investigation of adenine, uracil, and ribose phosphate thin films prepared by electrospray in vacuum deposition using photoemission spectroscopy,” Thin Solid Films 516(9), 2396–2400 (2008).
[Crossref]

2007 (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

2006 (1)

V. I. Danilov, T. van Mourik, and V. I. Poltev, “Modeling of the “hydration shell” of uracil and thymine in small water clusters by DFT and MP2 methods,” Chem. Phys. Lett. 429(1–3), 255–260 (2006).
[Crossref]

2005 (2)

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[Crossref]

S. Rousset, B. Croset, Y. Girard, G. Prévot, V. Repain, and S. Rohart, “Self-organized epitaxial growth on spontaneously nano-patterned templates,” C. R. Phys. 6(1), 33–46 (2005).
[Crossref]

2003 (1)

B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, and W. Schnick, “Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies,” J. Am. Chem. Soc. 125(34), 10288–10300 (2003).
[Crossref] [PubMed]

2002 (1)

1999 (1)

S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, “Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering,” Science 285(5433), 1551–1553 (1999).
[Crossref] [PubMed]

1998 (1)

Th. Dretschkow and Th. Wandlowski, “In-situ scanning tunneling microscopy study of uracil on Au (100),” Electrochim. Acta 43(19-20), 19–29, 2991–3006 (1998).
[Crossref]

1993 (1)

1988 (1)

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988).
[Crossref]

1900 (1)

W. Ostwald, “Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper,” Z. Phys. Chem. 34, 495–503 (1900).

Acree, M.

Allain, V.

V. Allain, C. Bourgaux, and P. Couvreur, “Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices,” Nucleic Acids Res. 40(5), 1891–1903 (2012).
[Crossref] [PubMed]

Amotchkina, T. V.

Askar, K.

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

Banerjee, P.

P. Banerjee, A. Pyne, S. Pal, C. K. Karan, and N. Sarkar, “Self-assembling behavior of pyrimidine analogues: unveiling the factors behind morphological diversity,” J. Colloid Interface Sci. 522, 63–73 (2018).
[Crossref] [PubMed]

Beerbom, M. M.

J. Magulic, M. M. Beerbom, and R. Schlaf, “Investigation of adenine, uracil, and ribose phosphate thin films prepared by electrospray in vacuum deposition using photoemission spectroscopy,” Thin Solid Films 516(9), 2396–2400 (2008).
[Crossref]

Bourgaux, C.

V. Allain, C. Bourgaux, and P. Couvreur, “Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices,” Nucleic Acids Res. 40(5), 1891–1903 (2012).
[Crossref] [PubMed]

Bradley, R. M.

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988).
[Crossref]

Brunner, R.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev. 5, 1–19 (2011).

Bruynooghe, S.

S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, and U. Schulz, “Antireflection coatings combining interference multilayers and a nanoporous MgF2 top layer prepared by glancing angle deposition,” Surf. Coat. Tech. 267, 40–44 (2015).
[Crossref]

Chattopadhyay, S.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
[Crossref]

Chen, K.-H.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
[Crossref]

Chen, L.-C.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
[Crossref]

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Choia, B.

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

Couvreur, P.

V. Allain, C. Bourgaux, and P. Couvreur, “Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices,” Nucleic Acids Res. 40(5), 1891–1903 (2012).
[Crossref] [PubMed]

Croset, B.

S. Rousset, B. Croset, Y. Girard, G. Prévot, V. Repain, and S. Rohart, “Self-organized epitaxial growth on spontaneously nano-patterned templates,” C. R. Phys. 6(1), 33–46 (2005).
[Crossref]

Danilov, V. I.

V. I. Danilov, T. van Mourik, and V. I. Poltev, “Modeling of the “hydration shell” of uracil and thymine in small water clusters by DFT and MP2 methods,” Chem. Phys. Lett. 429(1–3), 255–260 (2006).
[Crossref]

Dekorsy, T.

S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, “Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering,” Science 285(5433), 1551–1553 (1999).
[Crossref] [PubMed]

Dobrowolski, J. A.

Dretschkow, Th.

Th. Dretschkow and Th. Wandlowski, “In-situ scanning tunneling microscopy study of uracil on Au (100),” Electrochim. Acta 43(19-20), 19–29, 2991–3006 (1998).
[Crossref]

Facsko, S.

S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, “Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering,” Science 285(5433), 1551–1553 (1999).
[Crossref] [PubMed]

Fanga, Y.

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

Ganguly, A.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
[Crossref]

Girard, Y.

S. Rousset, B. Croset, Y. Girard, G. Prévot, V. Repain, and S. Rohart, “Self-organized epitaxial growth on spontaneously nano-patterned templates,” C. R. Phys. 6(1), 33–46 (2005).
[Crossref]

Gödeker, C.

Gozubenlia, N.

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

Harper, J. M. E.

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988).
[Crossref]

Hartnagel, H. L.

S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, “Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering,” Science 285(5433), 1551–1553 (1999).
[Crossref] [PubMed]

Huang, Y.-F.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
[Crossref]

Irran, E.

B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, and W. Schnick, “Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies,” J. Am. Chem. Soc. 125(34), 10288–10300 (2003).
[Crossref] [PubMed]

Jen, Y.-J.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
[Crossref]

Jiang, B.

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

Jiang, P.

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

Jürgens, B.

B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, and W. Schnick, “Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies,” J. Am. Chem. Soc. 125(34), 10288–10300 (2003).
[Crossref] [PubMed]

Kaiser, N.

U. Schulz, P. Munzert, F. Rickelt, and N. Kaiser, “Hybrid antireflective coating with plasma-etched nanostructure,” Thin Solid Films 532, 119–122 (2013).
[Crossref]

U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt. 50(9), C31–C35 (2011).
[Crossref] [PubMed]

U. Schulz, P. Munzert, and N. Kaiser, “Plasma surface modification of PMMA for optical applications,” J. Adhes. Sci. Technol. 24(7), 1283–1289 (2010).
[Crossref]

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating anti-reflective nanostructures on polymers by initial layer deposition before plasma etching,” Plasma Process. Polym. 6(S1), S716–S721 (2009).
[Crossref]

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[Crossref]

Kaless, A.

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[Crossref]

Karan, C. K.

P. Banerjee, A. Pyne, S. Pal, C. K. Karan, and N. Sarkar, “Self-assembling behavior of pyrimidine analogues: unveiling the factors behind morphological diversity,” J. Colloid Interface Sci. 522, 63–73 (2018).
[Crossref] [PubMed]

Kim, J. K.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Koch, T.

S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, and U. Schulz, “Antireflection coatings combining interference multilayers and a nanoporous MgF2 top layer prepared by glancing angle deposition,” Surf. Coat. Tech. 267, 40–44 (2015).
[Crossref]

Koerdt, C.

S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, “Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering,” Science 285(5433), 1551–1553 (1999).
[Crossref] [PubMed]

Kroll, P.

B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, and W. Schnick, “Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies,” J. Am. Chem. Soc. 125(34), 10288–10300 (2003).
[Crossref] [PubMed]

Kurz, H.

S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, “Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering,” Science 285(5433), 1551–1553 (1999).
[Crossref] [PubMed]

Lin, S.-Y.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Ma, P.

Magulic, J.

J. Magulic, M. M. Beerbom, and R. Schlaf, “Investigation of adenine, uracil, and ribose phosphate thin films prepared by electrospray in vacuum deposition using photoemission spectroscopy,” Thin Solid Films 516(9), 2396–2400 (2008).
[Crossref]

Morhard, C.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev. 5, 1–19 (2011).

Müller, H.

B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, and W. Schnick, “Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies,” J. Am. Chem. Soc. 125(34), 10288–10300 (2003).
[Crossref] [PubMed]

Munzert, P.

U. Schulz, P. Munzert, F. Rickelt, and N. Kaiser, “Hybrid antireflective coating with plasma-etched nanostructure,” Thin Solid Films 532, 119–122 (2013).
[Crossref]

U. Schulz, P. Munzert, and N. Kaiser, “Plasma surface modification of PMMA for optical applications,” J. Adhes. Sci. Technol. 24(7), 1283–1289 (2010).
[Crossref]

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating anti-reflective nanostructures on polymers by initial layer deposition before plasma etching,” Plasma Process. Polym. 6(S1), S716–S721 (2009).
[Crossref]

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[Crossref]

Ostwald, W.

W. Ostwald, “Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper,” Z. Phys. Chem. 34, 495–503 (1900).

Pacholski, C.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev. 5, 1–19 (2011).

Pal, S.

P. Banerjee, A. Pyne, S. Pal, C. K. Karan, and N. Sarkar, “Self-assembling behavior of pyrimidine analogues: unveiling the factors behind morphological diversity,” J. Colloid Interface Sci. 522, 63–73 (2018).
[Crossref] [PubMed]

Phillips, B. M.

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

Poitras, D.

Poltev, V. I.

V. I. Danilov, T. van Mourik, and V. I. Poltev, “Modeling of the “hydration shell” of uracil and thymine in small water clusters by DFT and MP2 methods,” Chem. Phys. Lett. 429(1–3), 255–260 (2006).
[Crossref]

Präfke, C.

Prévot, G.

S. Rousset, B. Croset, Y. Girard, G. Prévot, V. Repain, and S. Rohart, “Self-organized epitaxial growth on spontaneously nano-patterned templates,” C. R. Phys. 6(1), 33–46 (2005).
[Crossref]

Pyne, A.

P. Banerjee, A. Pyne, S. Pal, C. K. Karan, and N. Sarkar, “Self-assembling behavior of pyrimidine analogues: unveiling the factors behind morphological diversity,” J. Colloid Interface Sci. 522, 63–73 (2018).
[Crossref] [PubMed]

Repain, V.

S. Rousset, B. Croset, Y. Girard, G. Prévot, V. Repain, and S. Rohart, “Self-organized epitaxial growth on spontaneously nano-patterned templates,” C. R. Phys. 6(1), 33–46 (2005).
[Crossref]

Rickelt, F.

U. Schulz, P. Munzert, F. Rickelt, and N. Kaiser, “Hybrid antireflective coating with plasma-etched nanostructure,” Thin Solid Films 532, 119–122 (2013).
[Crossref]

Rohart, S.

S. Rousset, B. Croset, Y. Girard, G. Prévot, V. Repain, and S. Rohart, “Self-organized epitaxial growth on spontaneously nano-patterned templates,” C. R. Phys. 6(1), 33–46 (2005).
[Crossref]

Rousset, S.

S. Rousset, B. Croset, Y. Girard, G. Prévot, V. Repain, and S. Rohart, “Self-organized epitaxial growth on spontaneously nano-patterned templates,” C. R. Phys. 6(1), 33–46 (2005).
[Crossref]

Sandfuchs, O.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev. 5, 1–19 (2011).

Sarkar, N.

P. Banerjee, A. Pyne, S. Pal, C. K. Karan, and N. Sarkar, “Self-assembling behavior of pyrimidine analogues: unveiling the factors behind morphological diversity,” J. Colloid Interface Sci. 522, 63–73 (2018).
[Crossref] [PubMed]

Schlaf, R.

J. Magulic, M. M. Beerbom, and R. Schlaf, “Investigation of adenine, uracil, and ribose phosphate thin films prepared by electrospray in vacuum deposition using photoemission spectroscopy,” Thin Solid Films 516(9), 2396–2400 (2008).
[Crossref]

Schnick, W.

B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, and W. Schnick, “Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies,” J. Am. Chem. Soc. 125(34), 10288–10300 (2003).
[Crossref] [PubMed]

Schubert, E. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Schubert, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Schulz, U.

S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, and U. Schulz, “Antireflection coatings combining interference multilayers and a nanoporous MgF2 top layer prepared by glancing angle deposition,” Surf. Coat. Tech. 267, 40–44 (2015).
[Crossref]

U. Schulz, P. Munzert, F. Rickelt, and N. Kaiser, “Hybrid antireflective coating with plasma-etched nanostructure,” Thin Solid Films 532, 119–122 (2013).
[Crossref]

U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt. 50(9), C31–C35 (2011).
[Crossref] [PubMed]

U. Schulz, P. Munzert, and N. Kaiser, “Plasma surface modification of PMMA for optical applications,” J. Adhes. Sci. Technol. 24(7), 1283–1289 (2010).
[Crossref]

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating anti-reflective nanostructures on polymers by initial layer deposition before plasma etching,” Plasma Process. Polym. 6(S1), S716–S721 (2009).
[Crossref]

U. Schulz, “Wideband antireflection coatings by combining interference multilayers with structured top layers,” Opt. Express 17(11), 8704–8708 (2009).
[Crossref] [PubMed]

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[Crossref]

Senker, J.

B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, and W. Schnick, “Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies,” J. Am. Chem. Soc. 125(34), 10288–10300 (2003).
[Crossref] [PubMed]

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Spatz, J.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev. 5, 1–19 (2011).

Sundermann, M.

S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, and U. Schulz, “Antireflection coatings combining interference multilayers and a nanoporous MgF2 top layer prepared by glancing angle deposition,” Surf. Coat. Tech. 267, 40–44 (2015).
[Crossref]

Tikhonravov, A. V.

Tonova, D.

S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, and U. Schulz, “Antireflection coatings combining interference multilayers and a nanoporous MgF2 top layer prepared by glancing angle deposition,” Surf. Coat. Tech. 267, 40–44 (2015).
[Crossref]

Trappe, C.

S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, “Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering,” Science 285(5433), 1551–1553 (1999).
[Crossref] [PubMed]

Trubetskov, M. K.

Tünnermann, A.

U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt. 50(9), C31–C35 (2011).
[Crossref] [PubMed]

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating anti-reflective nanostructures on polymers by initial layer deposition before plasma etching,” Plasma Process. Polym. 6(S1), S716–S721 (2009).
[Crossref]

Vakil, H.

van Mourik, T.

V. I. Danilov, T. van Mourik, and V. I. Poltev, “Modeling of the “hydration shell” of uracil and thymine in small water clusters by DFT and MP2 methods,” Chem. Phys. Lett. 429(1–3), 255–260 (2006).
[Crossref]

Vogt, A.

S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, “Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering,” Science 285(5433), 1551–1553 (1999).
[Crossref] [PubMed]

Wandlowski, Th.

Th. Dretschkow and Th. Wandlowski, “In-situ scanning tunneling microscopy study of uracil on Au (100),” Electrochim. Acta 43(19-20), 19–29, 2991–3006 (1998).
[Crossref]

Wendling, I.

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating anti-reflective nanostructures on polymers by initial layer deposition before plasma etching,” Plasma Process. Polym. 6(S1), S716–S721 (2009).
[Crossref]

Willey, R. R.

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Appl. Opt. (4)

C. R. Phys. (1)

S. Rousset, B. Croset, Y. Girard, G. Prévot, V. Repain, and S. Rohart, “Self-organized epitaxial growth on spontaneously nano-patterned templates,” C. R. Phys. 6(1), 33–46 (2005).
[Crossref]

Chem. Phys. Lett. (1)

V. I. Danilov, T. van Mourik, and V. I. Poltev, “Modeling of the “hydration shell” of uracil and thymine in small water clusters by DFT and MP2 methods,” Chem. Phys. Lett. 429(1–3), 255–260 (2006).
[Crossref]

Colloids Surf. A Physicochem. Eng. Asp. (1)

K. Askar, B. M. Phillips, Y. Fanga, B. Choia, N. Gozubenlia, P. Jiang, and B. Jiang, “Self-assembled self-cleaning broadband anti-reflection coatings,” Colloids Surf. A Physicochem. Eng. Asp. 439, 84–100 (2013).
[Crossref]

Electrochim. Acta (1)

Th. Dretschkow and Th. Wandlowski, “In-situ scanning tunneling microscopy study of uracil on Au (100),” Electrochim. Acta 43(19-20), 19–29, 2991–3006 (1998).
[Crossref]

J. Adhes. Sci. Technol. (1)

U. Schulz, P. Munzert, and N. Kaiser, “Plasma surface modification of PMMA for optical applications,” J. Adhes. Sci. Technol. 24(7), 1283–1289 (2010).
[Crossref]

J. Am. Chem. Soc. (1)

B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, and W. Schnick, “Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies,” J. Am. Chem. Soc. 125(34), 10288–10300 (2003).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

P. Banerjee, A. Pyne, S. Pal, C. K. Karan, and N. Sarkar, “Self-assembling behavior of pyrimidine analogues: unveiling the factors behind morphological diversity,” J. Colloid Interface Sci. 522, 63–73 (2018).
[Crossref] [PubMed]

J. Vac. Sci. Technol. A (1)

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988).
[Crossref]

Laser Photonics Rev. (1)

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev. 5, 1–19 (2011).

Mater. Sci. Eng. Rep. (1)

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010).
[Crossref]

Nat. Photonics (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Nucleic Acids Res. (1)

V. Allain, C. Bourgaux, and P. Couvreur, “Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices,” Nucleic Acids Res. 40(5), 1891–1903 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Plasma Process. Polym. (1)

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating anti-reflective nanostructures on polymers by initial layer deposition before plasma etching,” Plasma Process. Polym. 6(S1), S716–S721 (2009).
[Crossref]

Science (1)

S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, “Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering,” Science 285(5433), 1551–1553 (1999).
[Crossref] [PubMed]

Surf. Coat. Tech. (2)

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[Crossref]

S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, and U. Schulz, “Antireflection coatings combining interference multilayers and a nanoporous MgF2 top layer prepared by glancing angle deposition,” Surf. Coat. Tech. 267, 40–44 (2015).
[Crossref]

Thin Solid Films (2)

U. Schulz, P. Munzert, F. Rickelt, and N. Kaiser, “Hybrid antireflective coating with plasma-etched nanostructure,” Thin Solid Films 532, 119–122 (2013).
[Crossref]

J. Magulic, M. M. Beerbom, and R. Schlaf, “Investigation of adenine, uracil, and ribose phosphate thin films prepared by electrospray in vacuum deposition using photoemission spectroscopy,” Thin Solid Films 516(9), 2396–2400 (2008).
[Crossref]

Z. Phys. Chem. (1)

W. Ostwald, “Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper,” Z. Phys. Chem. 34, 495–503 (1900).

Other (2)

M. E. Burkard, D. H. Turner, and I. Tinoco, Jr., “Structures of base pairs involving at least two hydrogen bonds” in The RNA World, 2nd edition (Cold Spring Harbor Laboratory Press, 1999), Appendix 1, p. 675.

F. Krok, S. R. Saeed, M. Kolmer, and M. Szymonski, “Patterning of ionic insulator surfaces with low-energy ion beams,” in Nanofabrication by Ion-Beam Sputtering: Fundamentals and Applications, T. Som and D. Kanjilal, eds. (CRC Press, 2013), Chapter 4.

Supplementary Material (1)

NameDescription
» Visualization 1       Structural evolution of evaporated uracil thin-film during plasma etching

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Uracil chemical structure obtained from thymine by hydrolysis (a) and one of the possible uracil dimer structures (b) where two molecules are bonded via hydrogen bonds.
Fig. 2
Fig. 2 Top-view SEM images of uracil thin film as deposited (a), after 24 h (b) and 26 (c) days’ storage at room temperature and normal humidity, and after 24 h storage at 85 °C and 85% relative humidity (d); initial film thickness: 240 nm.
Fig. 3
Fig. 3 Optical properties of Uracil thin film in terms of real (n) and imaginary (k) parts of complex refractive index (left) and total losses (100-R-T) of a layer with 20 nm thickness as deposited and after 24h storage at room temperature (right).
Fig. 4
Fig. 4 SEM images of uracil thin film after different etching times (APS plasma source, 110V Bias, Ar/O2) (see Visualization 1).
Fig. 5
Fig. 5 Transmission spectra of uracil-layer (including rear side reflectance) measured in situ during etching. Black dotted curve: calculated spectrum for a layer with a refractive index of 1.17, thickness 140 nm.
Fig. 6
Fig. 6 Properties of hybrid AR coating on zeonex substrate consisting of silica, magnesium fluoride and uracil: (a) calculated (blue line) and measured (dashed black line) reflectance spectra without rear side reflectance; (b) calculated reflectance for selected wavelengths at oblique light incidence in the visible spectral range; (c) SEM cross section.

Metrics