Abstract

Multifunctional materials that integrate optical and electric properties into a single composite have tremendous research value and application prospects for future optoelectronic devices. Meanwhile, the enhancement of luminescent performances of active materials through modulation of the microstructure has triggered the development of high-performance photonic devices. In this work, the nanocrystal embedded composite was fabricated to investigate their luminescent properties with and without compositional change. The results show that both the introduction of an impurity and the application of an electric field results in the enhancement of photoluminescence in this hybrid system. The observed phenomena can be ascribed to the modification of the environment around Er3+ by different approaches. The samples prepared in this work have proven to possess luminescent and electric properties simultaneously, and the light amplification caused by the polarizing process offers a novel approach in glass systems to enhance infrared photoluminescence without compositional change, which will make this kind of material more competitive in the optoelectronics field.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Color-tunable upconversion emission and optical temperature sensing behaviour in Er-Yb-Mo codoped Bi7Ti4NbO21 multifunctional ferroelectric oxide

Hua Zou, Jun Li, Xusheng Wang, Dengfeng Peng, Yanxia Li, and Xi Yao
Opt. Mater. Express 4(8) 1545-1554 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(6), 423–431 (2012).
    [Crossref]
  2. G. Bai, M.-K. Tsang, and J. Hao, “Luminescent ions in advanced composite materials for multifunctional applications,” Adv. Funct. Mater. 26(35), 6330–6350 (2016).
    [Crossref]
  3. S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-Driven Wavelength-Tunable and Ultra-Broadband Infrared Luminescence in Single-Ion-Doped Transparent Hybrid Materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
    [Crossref]
  4. E. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. Zhou, and Q. Zhang, “Anomalous NIR luminescence in Mn2+-doped fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
    [Crossref]
  5. C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002).
    [Crossref] [PubMed]
  6. S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
    [Crossref] [PubMed]
  7. C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature 497(7447), 91–94 (2013).
    [Crossref] [PubMed]
  8. H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
    [Crossref]
  9. S. Zhou, Q. Guo, H. Inoue, Q. Ye, A. Masuno, B. Zheng, Y. Yu, and J. Qiu, “Topological engineering of glass for modulating chemical state of dopants,” Adv. Mater. 26(47), 7966–7972 (2014).
    [Crossref] [PubMed]
  10. F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27(17), 1700051 (2017).
    [Crossref]
  11. Z. Xia and R. S. Liu, “Tunable blue-green color emission and energy transfer of Ca2Al3O6F: Ce3+, Tb3+ phosphors for near-UV white LEDs,” J. Phys. Chem. C 116(29), 15604–15609 (2012).
    [Crossref]
  12. M. Ferriol, “Crystal growth and structure of pure and rare-earth doped barium sodium niobate (BNN),” Prog. Cryst. Growth Charact. Mater. 43(2–3), 221–244 (2001).
    [Crossref]
  13. M. E. Torres, A. A. Kaminskii, C. González-Silgo, J. G. Platas, D. Jaque, A. Ródenas, I. R. Martín, and V. Lavín, “Dielectric anomalies in Nd3+ doped Ba2NaNb5O15 laser crystal,” J. Alloys Compd. 451(1), 198–200 (2008).
    [Crossref]
  14. Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
    [Crossref]
  15. G. Bai, Y. Zhang, and J. Hao, “Chemical substitution-induced exceptional emitting-wavelength tuning in transition metal Ni2+-doped ferroelectric oxides with ultrabroadband near-infrared luminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4631 (2014).
    [Crossref]
  16. Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ Phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
    [Crossref] [PubMed]
  17. A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
    [Crossref] [PubMed]
  18. E. H. Kong, Y. J. Chang, H. J. Park, and H. M. Jang, “Bandgap tuning by using a lattice distortion induced by two symmetries that coexist in a quantum dot,” Small 10(7), 1300–1307 (2014).
    [Crossref] [PubMed]
  19. M. Ayoub, H. Futterlieb, J. Imbrock, and C. Denz, “3D Imaging of Ferroelectric Kinetics during Electrically Driven Switching,” Adv. Mater. 29(5), 5 (2017).
    [PubMed]
  20. B. Zhu, B. Qian, Y. Liu, C. Xu, C. Liu, Q. Chen, J. Zhou, X. Liu, and J. Qiu, “A volumetric full-color display realized by frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals,” NPG Asia Mater. 9(6), e394 (2017).
    [Crossref]
  21. S. M. Kostritskii, Y. N. Korkishko, V. A. Fedorov, and C. Sada, “Phonon-assisted energy transfer in Er-exchanged LiNbO3,” Phys. Status Solidi, C Conf. Crit. Rev. 1(11), 3158–3161 (2004).
    [Crossref]
  22. C. B. Carter and M. G. Norton, “Ceramic materials: science and engineering,” Biomater. Forum. 31(1), 25–25 (2009).
  23. J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
    [Crossref] [PubMed]
  24. P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
    [Crossref]
  25. A. Tarafder, K. Annapurna, R. Saikia Chaliha, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Structure, dielectric and optical properties of Nd3+-doped LiTaO3 transparent ferroelectric glass–ceramic nanocomposites,” J. Alloys Compd. 489(1), 281–288 (2010).
    [Crossref]
  26. A. Tarafder, K. Annapurna, R. S. Chaliha, B. Karmakar, V. S. Tiwari, and P. K. Gupta, “Effects of nano-LiTaO3 crystallization on the dielectric and optical properties in Er3+-doped Li2O-Ta2O5-SiO2-Al2O3 glasses,” Int. J. Appl. Ceram. Technol. 8(5), 1031–1041 (2011).
    [Crossref]
  27. R. S. Chaliha, K. Annapurna, A. Tarafder, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(1), 243–250 (2010).
    [Crossref] [PubMed]
  28. T. V. Gavrilović, D. J. Jovanović, V. M. Lojpur, V. Đorđević, and M. D. Dramićanin, “Enhancement of luminescence emission from GdVO4:Er3+/Yb3+ phosphor by Li+ co-doping,” J. Solid State Chem. 217(9), 92–98 (2014).
    [Crossref]
  29. W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
    [Crossref] [PubMed]
  30. Y. Gao, Y. Hu, P. Ren, D. Zhou, and J. Qiu, “Effect of Li+ ions on the enhancement upconversion and stokes emission of NaYF4:Tb, Yb co-doped in glass-ceramics,” J. Alloys Compd. 667, 297–301 (2016).
    [Crossref]
  31. B. D. Cullity, “Elements of X-ray diffraction,” Am. J. Phys.  25, 50 (1978).
  32. J. Sun, W. Zhang, H. Du, and Z. Yang, “Hydrothermal synthesis and the enhanced blue upconversion luminescence of NaYF4: Nd, Tm, Yb,” Infrared Phys. Technol. 53(5), 388–391 (2010).
    [Crossref]
  33. G. Y. Chen, H. C. Liu, H. J. Liang, and Z. G. Zhang, “Upconversion Emission Enhancement in Yb3+-Er3+-Codoped Y2O3 Nanocrystals by Tridoping with Li+ Ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
    [Crossref]
  34. Q. Cheng, J. Sui, and W. Cai, “Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions,” Nanoscale 4(3), 779–784 (2012).
    [Crossref] [PubMed]
  35. Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
    [Crossref]
  36. B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  37. M. J. Weber, “Probabilities for Radiative and Nonradiative decay of Pr3+ ion in LaAlO3,” Phys. Rev. 157(2), 262–272 (1967).
    [Crossref]
  38. S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
    [Crossref] [PubMed]
  39. S. Xiu, B. Shen, and J. Zhai, “The effects of MnO2 addition on the structure and dielectric properties of the strontium barium niobate glass-ceramics,” Mater. Res. Bull. 95, 349–353 (2017).
    [Crossref]

2018 (1)

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

2017 (5)

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27(17), 1700051 (2017).
[Crossref]

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

M. Ayoub, H. Futterlieb, J. Imbrock, and C. Denz, “3D Imaging of Ferroelectric Kinetics during Electrically Driven Switching,” Adv. Mater. 29(5), 5 (2017).
[PubMed]

B. Zhu, B. Qian, Y. Liu, C. Xu, C. Liu, Q. Chen, J. Zhou, X. Liu, and J. Qiu, “A volumetric full-color display realized by frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals,” NPG Asia Mater. 9(6), e394 (2017).
[Crossref]

S. Xiu, B. Shen, and J. Zhai, “The effects of MnO2 addition on the structure and dielectric properties of the strontium barium niobate glass-ceramics,” Mater. Res. Bull. 95, 349–353 (2017).
[Crossref]

2016 (2)

Y. Gao, Y. Hu, P. Ren, D. Zhou, and J. Qiu, “Effect of Li+ ions on the enhancement upconversion and stokes emission of NaYF4:Tb, Yb co-doped in glass-ceramics,” J. Alloys Compd. 667, 297–301 (2016).
[Crossref]

G. Bai, M.-K. Tsang, and J. Hao, “Luminescent ions in advanced composite materials for multifunctional applications,” Adv. Funct. Mater. 26(35), 6330–6350 (2016).
[Crossref]

2015 (1)

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ Phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

2014 (5)

G. Bai, Y. Zhang, and J. Hao, “Chemical substitution-induced exceptional emitting-wavelength tuning in transition metal Ni2+-doped ferroelectric oxides with ultrabroadband near-infrared luminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4631 (2014).
[Crossref]

E. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. Zhou, and Q. Zhang, “Anomalous NIR luminescence in Mn2+-doped fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

S. Zhou, Q. Guo, H. Inoue, Q. Ye, A. Masuno, B. Zheng, Y. Yu, and J. Qiu, “Topological engineering of glass for modulating chemical state of dopants,” Adv. Mater. 26(47), 7966–7972 (2014).
[Crossref] [PubMed]

T. V. Gavrilović, D. J. Jovanović, V. M. Lojpur, V. Đorđević, and M. D. Dramićanin, “Enhancement of luminescence emission from GdVO4:Er3+/Yb3+ phosphor by Li+ co-doping,” J. Solid State Chem. 217(9), 92–98 (2014).
[Crossref]

E. H. Kong, Y. J. Chang, H. J. Park, and H. M. Jang, “Bandgap tuning by using a lattice distortion induced by two symmetries that coexist in a quantum dot,” Small 10(7), 1300–1307 (2014).
[Crossref] [PubMed]

2013 (1)

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature 497(7447), 91–94 (2013).
[Crossref] [PubMed]

2012 (4)

Z. Xia and R. S. Liu, “Tunable blue-green color emission and energy transfer of Ca2Al3O6F: Ce3+, Tb3+ phosphors for near-UV white LEDs,” J. Phys. Chem. C 116(29), 15604–15609 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(6), 423–431 (2012).
[Crossref]

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Q. Cheng, J. Sui, and W. Cai, “Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions,” Nanoscale 4(3), 779–784 (2012).
[Crossref] [PubMed]

2011 (2)

A. Tarafder, K. Annapurna, R. S. Chaliha, B. Karmakar, V. S. Tiwari, and P. K. Gupta, “Effects of nano-LiTaO3 crystallization on the dielectric and optical properties in Er3+-doped Li2O-Ta2O5-SiO2-Al2O3 glasses,” Int. J. Appl. Ceram. Technol. 8(5), 1031–1041 (2011).
[Crossref]

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

2010 (3)

R. S. Chaliha, K. Annapurna, A. Tarafder, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(1), 243–250 (2010).
[Crossref] [PubMed]

A. Tarafder, K. Annapurna, R. Saikia Chaliha, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Structure, dielectric and optical properties of Nd3+-doped LiTaO3 transparent ferroelectric glass–ceramic nanocomposites,” J. Alloys Compd. 489(1), 281–288 (2010).
[Crossref]

J. Sun, W. Zhang, H. Du, and Z. Yang, “Hydrothermal synthesis and the enhanced blue upconversion luminescence of NaYF4: Nd, Tm, Yb,” Infrared Phys. Technol. 53(5), 388–391 (2010).
[Crossref]

2009 (2)

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-Driven Wavelength-Tunable and Ultra-Broadband Infrared Luminescence in Single-Ion-Doped Transparent Hybrid Materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
[Crossref] [PubMed]

2008 (3)

M. E. Torres, A. A. Kaminskii, C. González-Silgo, J. G. Platas, D. Jaque, A. Ródenas, I. R. Martín, and V. Lavín, “Dielectric anomalies in Nd3+ doped Ba2NaNb5O15 laser crystal,” J. Alloys Compd. 451(1), 198–200 (2008).
[Crossref]

G. Y. Chen, H. C. Liu, H. J. Liang, and Z. G. Zhang, “Upconversion Emission Enhancement in Yb3+-Er3+-Codoped Y2O3 Nanocrystals by Tridoping with Li+ Ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

2005 (1)

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

2004 (2)

S. M. Kostritskii, Y. N. Korkishko, V. A. Fedorov, and C. Sada, “Phonon-assisted energy transfer in Er-exchanged LiNbO3,” Phys. Status Solidi, C Conf. Crit. Rev. 1(11), 3158–3161 (2004).
[Crossref]

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

2002 (1)

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002).
[Crossref] [PubMed]

2001 (1)

M. Ferriol, “Crystal growth and structure of pure and rare-earth doped barium sodium niobate (BNN),” Prog. Cryst. Growth Charact. Mater. 43(2–3), 221–244 (2001).
[Crossref]

1992 (1)

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

1978 (1)

B. D. Cullity, “Elements of X-ray diffraction,” Am. J. Phys.  25, 50 (1978).

1967 (1)

M. J. Weber, “Probabilities for Radiative and Nonradiative decay of Pr3+ ion in LaAlO3,” Phys. Rev. 157(2), 262–272 (1967).
[Crossref]

1962 (1)

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Annapurna, K.

A. Tarafder, K. Annapurna, R. S. Chaliha, B. Karmakar, V. S. Tiwari, and P. K. Gupta, “Effects of nano-LiTaO3 crystallization on the dielectric and optical properties in Er3+-doped Li2O-Ta2O5-SiO2-Al2O3 glasses,” Int. J. Appl. Ceram. Technol. 8(5), 1031–1041 (2011).
[Crossref]

A. Tarafder, K. Annapurna, R. Saikia Chaliha, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Structure, dielectric and optical properties of Nd3+-doped LiTaO3 transparent ferroelectric glass–ceramic nanocomposites,” J. Alloys Compd. 489(1), 281–288 (2010).
[Crossref]

R. S. Chaliha, K. Annapurna, A. Tarafder, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(1), 243–250 (2010).
[Crossref] [PubMed]

Ayoub, M.

M. Ayoub, H. Futterlieb, J. Imbrock, and C. Denz, “3D Imaging of Ferroelectric Kinetics during Electrically Driven Switching,” Adv. Mater. 29(5), 5 (2017).
[PubMed]

Ayukawa, T.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

Bai, G.

G. Bai, M.-K. Tsang, and J. Hao, “Luminescent ions in advanced composite materials for multifunctional applications,” Adv. Funct. Mater. 26(35), 6330–6350 (2016).
[Crossref]

G. Bai, Y. Zhang, and J. Hao, “Chemical substitution-induced exceptional emitting-wavelength tuning in transition metal Ni2+-doped ferroelectric oxides with ultrabroadband near-infrared luminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4631 (2014).
[Crossref]

Bawendi, M. G.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Cai, W.

Q. Cheng, J. Sui, and W. Cai, “Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions,” Nanoscale 4(3), 779–784 (2012).
[Crossref] [PubMed]

Capasso, F.

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002).
[Crossref] [PubMed]

Chaliha, R. S.

A. Tarafder, K. Annapurna, R. S. Chaliha, B. Karmakar, V. S. Tiwari, and P. K. Gupta, “Effects of nano-LiTaO3 crystallization on the dielectric and optical properties in Er3+-doped Li2O-Ta2O5-SiO2-Al2O3 glasses,” Int. J. Appl. Ceram. Technol. 8(5), 1031–1041 (2011).
[Crossref]

R. S. Chaliha, K. Annapurna, A. Tarafder, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(1), 243–250 (2010).
[Crossref] [PubMed]

Chang, Y. J.

E. H. Kong, Y. J. Chang, H. J. Park, and H. M. Jang, “Bandgap tuning by using a lattice distortion induced by two symmetries that coexist in a quantum dot,” Small 10(7), 1300–1307 (2014).
[Crossref] [PubMed]

Chen, G. Y.

G. Y. Chen, H. C. Liu, H. J. Liang, and Z. G. Zhang, “Upconversion Emission Enhancement in Yb3+-Er3+-Codoped Y2O3 Nanocrystals by Tridoping with Li+ Ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

Chen, H.

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

Chen, Q.

B. Zhu, B. Qian, Y. Liu, C. Xu, C. Liu, Q. Chen, J. Zhou, X. Liu, and J. Qiu, “A volumetric full-color display realized by frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals,” NPG Asia Mater. 9(6), e394 (2017).
[Crossref]

Chen, Z.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Cheng, Q.

Q. Cheng, J. Sui, and W. Cai, “Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions,” Nanoscale 4(3), 779–784 (2012).
[Crossref] [PubMed]

Cho, A. Y.

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002).
[Crossref] [PubMed]

Cohn, L. H.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Colombelli, R.

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002).
[Crossref] [PubMed]

Cui, W.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Cullity, B. D.

B. D. Cullity, “Elements of X-ray diffraction,” Am. J. Phys.  25, 50 (1978).

de Boo, G. G.

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature 497(7447), 91–94 (2013).
[Crossref] [PubMed]

De Grand, A. M.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Denz, C.

M. Ayoub, H. Futterlieb, J. Imbrock, and C. Denz, “3D Imaging of Ferroelectric Kinetics during Electrically Driven Switching,” Adv. Mater. 29(5), 5 (2017).
[PubMed]

Ding, S.

E. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. Zhou, and Q. Zhang, “Anomalous NIR luminescence in Mn2+-doped fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

Dong, G.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Dor, D. M.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Ðordevic, V.

T. V. Gavrilović, D. J. Jovanović, V. M. Lojpur, V. Đorđević, and M. D. Dramićanin, “Enhancement of luminescence emission from GdVO4:Er3+/Yb3+ phosphor by Li+ co-doping,” J. Solid State Chem. 217(9), 92–98 (2014).
[Crossref]

Dramicanin, M. D.

T. V. Gavrilović, D. J. Jovanović, V. M. Lojpur, V. Đorđević, and M. D. Dramićanin, “Enhancement of luminescence emission from GdVO4:Er3+/Yb3+ phosphor by Li+ co-doping,” J. Solid State Chem. 217(9), 92–98 (2014).
[Crossref]

Du, H.

J. Sun, W. Zhang, H. Du, and Z. Yang, “Hydrothermal synthesis and the enhanced blue upconversion luminescence of NaYF4: Nd, Tm, Yb,” Infrared Phys. Technol. 53(5), 388–391 (2010).
[Crossref]

Fan, F.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Fang, L.

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

Fedorov, V. A.

S. M. Kostritskii, Y. N. Korkishko, V. A. Fedorov, and C. Sada, “Phonon-assisted energy transfer in Er-exchanged LiNbO3,” Phys. Status Solidi, C Conf. Crit. Rev. 1(11), 3158–3161 (2004).
[Crossref]

Feng, X.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Ferriol, M.

M. Ferriol, “Crystal growth and structure of pure and rare-earth doped barium sodium niobate (BNN),” Prog. Cryst. Growth Charact. Mater. 43(2–3), 221–244 (2001).
[Crossref]

Frangioni, J. V.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Futterlieb, H.

M. Ayoub, H. Futterlieb, J. Imbrock, and C. Denz, “3D Imaging of Ferroelectric Kinetics during Electrically Driven Switching,” Adv. Mater. 29(5), 5 (2017).
[PubMed]

Gao, Y.

Y. Gao, Y. Hu, P. Ren, D. Zhou, and J. Qiu, “Effect of Li+ ions on the enhancement upconversion and stokes emission of NaYF4:Tb, Yb co-doped in glass-ceramics,” J. Alloys Compd. 667, 297–301 (2016).
[Crossref]

Gavrilovic, T. V.

T. V. Gavrilović, D. J. Jovanović, V. M. Lojpur, V. Đorđević, and M. D. Dramićanin, “Enhancement of luminescence emission from GdVO4:Er3+/Yb3+ phosphor by Li+ co-doping,” J. Solid State Chem. 217(9), 92–98 (2014).
[Crossref]

Gmachl, C.

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002).
[Crossref] [PubMed]

González-Silgo, C.

M. E. Torres, A. A. Kaminskii, C. González-Silgo, J. G. Platas, D. Jaque, A. Ródenas, I. R. Martín, and V. Lavín, “Dielectric anomalies in Nd3+ doped Ba2NaNb5O15 laser crystal,” J. Alloys Compd. 451(1), 198–200 (2008).
[Crossref]

Gu, Z.

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Guo, Q.

S. Zhou, Q. Guo, H. Inoue, Q. Ye, A. Masuno, B. Zheng, Y. Yu, and J. Qiu, “Topological engineering of glass for modulating chemical state of dopants,” Adv. Mater. 26(47), 7966–7972 (2014).
[Crossref] [PubMed]

Gupta, P. K.

A. Tarafder, K. Annapurna, R. S. Chaliha, B. Karmakar, V. S. Tiwari, and P. K. Gupta, “Effects of nano-LiTaO3 crystallization on the dielectric and optical properties in Er3+-doped Li2O-Ta2O5-SiO2-Al2O3 glasses,” Int. J. Appl. Ceram. Technol. 8(5), 1031–1041 (2011).
[Crossref]

R. S. Chaliha, K. Annapurna, A. Tarafder, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(1), 243–250 (2010).
[Crossref] [PubMed]

A. Tarafder, K. Annapurna, R. Saikia Chaliha, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Structure, dielectric and optical properties of Nd3+-doped LiTaO3 transparent ferroelectric glass–ceramic nanocomposites,” J. Alloys Compd. 489(1), 281–288 (2010).
[Crossref]

Hanada, T.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Hao, J.

G. Bai, M.-K. Tsang, and J. Hao, “Luminescent ions in advanced composite materials for multifunctional applications,” Adv. Funct. Mater. 26(35), 6330–6350 (2016).
[Crossref]

G. Bai, Y. Zhang, and J. Hao, “Chemical substitution-induced exceptional emitting-wavelength tuning in transition metal Ni2+-doped ferroelectric oxides with ultrabroadband near-infrared luminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4631 (2014).
[Crossref]

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-Driven Wavelength-Tunable and Ultra-Broadband Infrared Luminescence in Single-Ion-Doped Transparent Hybrid Materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

Hu, Y.

Y. Gao, Y. Hu, P. Ren, D. Zhou, and J. Qiu, “Effect of Li+ ions on the enhancement upconversion and stokes emission of NaYF4:Tb, Yb co-doped in glass-ceramics,” J. Alloys Compd. 667, 297–301 (2016).
[Crossref]

Imbrock, J.

M. Ayoub, H. Futterlieb, J. Imbrock, and C. Denz, “3D Imaging of Ferroelectric Kinetics during Electrically Driven Switching,” Adv. Mater. 29(5), 5 (2017).
[PubMed]

Inoue, H.

S. Zhou, Q. Guo, H. Inoue, Q. Ye, A. Masuno, B. Zheng, Y. Yu, and J. Qiu, “Topological engineering of glass for modulating chemical state of dopants,” Adv. Mater. 26(47), 7966–7972 (2014).
[Crossref] [PubMed]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(6), 423–431 (2012).
[Crossref]

Jang, H. M.

E. H. Kong, Y. J. Chang, H. J. Park, and H. M. Jang, “Bandgap tuning by using a lattice distortion induced by two symmetries that coexist in a quantum dot,” Small 10(7), 1300–1307 (2014).
[Crossref] [PubMed]

Jaque, D.

M. E. Torres, A. A. Kaminskii, C. González-Silgo, J. G. Platas, D. Jaque, A. Ródenas, I. R. Martín, and V. Lavín, “Dielectric anomalies in Nd3+ doped Ba2NaNb5O15 laser crystal,” J. Alloys Compd. 451(1), 198–200 (2008).
[Crossref]

Jiang, C.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Jiang, N.

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-Driven Wavelength-Tunable and Ultra-Broadband Infrared Luminescence in Single-Ion-Doped Transparent Hybrid Materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

Jin, S.

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Jovanovic, D. J.

T. V. Gavrilović, D. J. Jovanović, V. M. Lojpur, V. Đorđević, and M. D. Dramićanin, “Enhancement of luminescence emission from GdVO4:Er3+/Yb3+ phosphor by Li+ co-doping,” J. Solid State Chem. 217(9), 92–98 (2014).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Kaminskii, A. A.

M. E. Torres, A. A. Kaminskii, C. González-Silgo, J. G. Platas, D. Jaque, A. Ródenas, I. R. Martín, and V. Lavín, “Dielectric anomalies in Nd3+ doped Ba2NaNb5O15 laser crystal,” J. Alloys Compd. 451(1), 198–200 (2008).
[Crossref]

Kang, S.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Karmakar, B.

A. Tarafder, K. Annapurna, R. S. Chaliha, B. Karmakar, V. S. Tiwari, and P. K. Gupta, “Effects of nano-LiTaO3 crystallization on the dielectric and optical properties in Er3+-doped Li2O-Ta2O5-SiO2-Al2O3 glasses,” Int. J. Appl. Ceram. Technol. 8(5), 1031–1041 (2011).
[Crossref]

A. Tarafder, K. Annapurna, R. Saikia Chaliha, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Structure, dielectric and optical properties of Nd3+-doped LiTaO3 transparent ferroelectric glass–ceramic nanocomposites,” J. Alloys Compd. 489(1), 281–288 (2010).
[Crossref]

R. S. Chaliha, K. Annapurna, A. Tarafder, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(1), 243–250 (2010).
[Crossref] [PubMed]

Kim, S.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Koizumi, A.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

Komori, T.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

Kong, E. H.

E. H. Kong, Y. J. Chang, H. J. Park, and H. M. Jang, “Bandgap tuning by using a lattice distortion induced by two symmetries that coexist in a quantum dot,” Small 10(7), 1300–1307 (2014).
[Crossref] [PubMed]

Korkishko, Y. N.

S. M. Kostritskii, Y. N. Korkishko, V. A. Fedorov, and C. Sada, “Phonon-assisted energy transfer in Er-exchanged LiNbO3,” Phys. Status Solidi, C Conf. Crit. Rev. 1(11), 3158–3161 (2004).
[Crossref]

Kostritskii, S. M.

S. M. Kostritskii, Y. N. Korkishko, V. A. Fedorov, and C. Sada, “Phonon-assisted energy transfer in Er-exchanged LiNbO3,” Phys. Status Solidi, C Conf. Crit. Rev. 1(11), 3158–3161 (2004).
[Crossref]

Laurence, R. G.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Lavín, V.

M. E. Torres, A. A. Kaminskii, C. González-Silgo, J. G. Platas, D. Jaque, A. Ródenas, I. R. Martín, and V. Lavín, “Dielectric anomalies in Nd3+ doped Ba2NaNb5O15 laser crystal,” J. Alloys Compd. 451(1), 198–200 (2008).
[Crossref]

Lee, J.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Li, F.

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27(17), 1700051 (2017).
[Crossref]

Li, Y.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Liang, H. J.

G. Y. Chen, H. C. Liu, H. J. Liang, and Z. G. Zhang, “Upconversion Emission Enhancement in Yb3+-Er3+-Codoped Y2O3 Nanocrystals by Tridoping with Li+ Ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

Lim, Y. T.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Liu, C.

B. Zhu, B. Qian, Y. Liu, C. Xu, C. Liu, Q. Chen, J. Zhou, X. Liu, and J. Qiu, “A volumetric full-color display realized by frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals,” NPG Asia Mater. 9(6), e394 (2017).
[Crossref]

Liu, H. C.

G. Y. Chen, H. C. Liu, H. J. Liang, and Z. G. Zhang, “Upconversion Emission Enhancement in Yb3+-Er3+-Codoped Y2O3 Nanocrystals by Tridoping with Li+ Ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

Liu, Q.

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27(17), 1700051 (2017).
[Crossref]

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ Phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Liu, R. S.

Z. Xia and R. S. Liu, “Tunable blue-green color emission and energy transfer of Ca2Al3O6F: Ce3+, Tb3+ phosphors for near-UV white LEDs,” J. Phys. Chem. C 116(29), 15604–15609 (2012).
[Crossref]

Liu, X.

B. Zhu, B. Qian, Y. Liu, C. Xu, C. Liu, Q. Chen, J. Zhou, X. Liu, and J. Qiu, “A volumetric full-color display realized by frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals,” NPG Asia Mater. 9(6), e394 (2017).
[Crossref]

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Liu, Y.

B. Zhu, B. Qian, Y. Liu, C. Xu, C. Liu, Q. Chen, J. Zhou, X. Liu, and J. Qiu, “A volumetric full-color display realized by frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals,” NPG Asia Mater. 9(6), e394 (2017).
[Crossref]

Liu, Z.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Lojpur, V. M.

T. V. Gavrilović, D. J. Jovanović, V. M. Lojpur, V. Đorđević, and M. D. Dramićanin, “Enhancement of luminescence emission from GdVO4:Er3+/Yb3+ phosphor by Li+ co-doping,” J. Solid State Chem. 217(9), 92–98 (2014).
[Crossref]

Ma, C.

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ Phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Martín, I. R.

M. E. Torres, A. A. Kaminskii, C. González-Silgo, J. G. Platas, D. Jaque, A. Ródenas, I. R. Martín, and V. Lavín, “Dielectric anomalies in Nd3+ doped Ba2NaNb5O15 laser crystal,” J. Alloys Compd. 451(1), 198–200 (2008).
[Crossref]

Masuno, A.

S. Zhou, Q. Guo, H. Inoue, Q. Ye, A. Masuno, B. Zheng, Y. Yu, and J. Qiu, “Topological engineering of glass for modulating chemical state of dopants,” Adv. Mater. 26(47), 7966–7972 (2014).
[Crossref] [PubMed]

McCallum, J. C.

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature 497(7447), 91–94 (2013).
[Crossref] [PubMed]

Mihaljevic, T.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Mohs, A. M.

A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
[Crossref] [PubMed]

Molokeev, M. S.

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ Phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Morinaga, M.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

Nakayama, A.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Nie, S.

A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
[Crossref] [PubMed]

Ning, C. Z.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Ohyagi, T.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Pan, C.

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27(17), 1700051 (2017).
[Crossref]

Park, H. J.

E. H. Kong, Y. J. Chang, H. J. Park, and H. M. Jang, “Bandgap tuning by using a lattice distortion induced by two symmetries that coexist in a quantum dot,” Small 10(7), 1300–1307 (2014).
[Crossref] [PubMed]

Parker, J. A.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Platas, J. G.

M. E. Torres, A. A. Kaminskii, C. González-Silgo, J. G. Platas, D. Jaque, A. Ródenas, I. R. Martín, and V. Lavín, “Dielectric anomalies in Nd3+ doped Ba2NaNb5O15 laser crystal,” J. Alloys Compd. 451(1), 198–200 (2008).
[Crossref]

Poeppelmeier, K. R.

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ Phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Qian, B.

B. Zhu, B. Qian, Y. Liu, C. Xu, C. Liu, Q. Chen, J. Zhou, X. Liu, and J. Qiu, “A volumetric full-color display realized by frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals,” NPG Asia Mater. 9(6), e394 (2017).
[Crossref]

Qiu, J.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

B. Zhu, B. Qian, Y. Liu, C. Xu, C. Liu, Q. Chen, J. Zhou, X. Liu, and J. Qiu, “A volumetric full-color display realized by frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals,” NPG Asia Mater. 9(6), e394 (2017).
[Crossref]

Y. Gao, Y. Hu, P. Ren, D. Zhou, and J. Qiu, “Effect of Li+ ions on the enhancement upconversion and stokes emission of NaYF4:Tb, Yb co-doped in glass-ceramics,” J. Alloys Compd. 667, 297–301 (2016).
[Crossref]

S. Zhou, Q. Guo, H. Inoue, Q. Ye, A. Masuno, B. Zheng, Y. Yu, and J. Qiu, “Topological engineering of glass for modulating chemical state of dopants,” Adv. Mater. 26(47), 7966–7972 (2014).
[Crossref] [PubMed]

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-Driven Wavelength-Tunable and Ultra-Broadband Infrared Luminescence in Single-Ion-Doped Transparent Hybrid Materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

Rancic, M.

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature 497(7447), 91–94 (2013).
[Crossref] [PubMed]

Ren, P.

Y. Gao, Y. Hu, P. Ren, D. Zhou, and J. Qiu, “Effect of Li+ ions on the enhancement upconversion and stokes emission of NaYF4:Tb, Yb co-doped in glass-ceramics,” J. Alloys Compd. 667, 297–301 (2016).
[Crossref]

Ren, W.

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Rickert, K.

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ Phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Ródenas, A.

M. E. Torres, A. A. Kaminskii, C. González-Silgo, J. G. Platas, D. Jaque, A. Ródenas, I. R. Martín, and V. Lavín, “Dielectric anomalies in Nd3+ doped Ba2NaNb5O15 laser crystal,” J. Alloys Compd. 451(1), 198–200 (2008).
[Crossref]

Rogge, S.

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature 497(7447), 91–94 (2013).
[Crossref] [PubMed]

Sada, C.

S. M. Kostritskii, Y. N. Korkishko, V. A. Fedorov, and C. Sada, “Phonon-assisted energy transfer in Er-exchanged LiNbO3,” Phys. Status Solidi, C Conf. Crit. Rev. 1(11), 3158–3161 (2004).
[Crossref]

Saikia Chaliha, R.

A. Tarafder, K. Annapurna, R. Saikia Chaliha, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Structure, dielectric and optical properties of Nd3+-doped LiTaO3 transparent ferroelectric glass–ceramic nanocomposites,” J. Alloys Compd. 489(1), 281–288 (2010).
[Crossref]

Sellars, M. J.

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature 497(7447), 91–94 (2013).
[Crossref] [PubMed]

Shen, B.

S. Xiu, B. Shen, and J. Zhai, “The effects of MnO2 addition on the structure and dielectric properties of the strontium barium niobate glass-ceramics,” Mater. Res. Bull. 95, 349–353 (2017).
[Crossref]

Shen, J.

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

Shen, M.

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

Sivco, D. L.

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002).
[Crossref] [PubMed]

Smith, A. M.

A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
[Crossref] [PubMed]

Soga, N.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Soltesz, E. G.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Song, E.

E. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. Zhou, and Q. Zhang, “Anomalous NIR luminescence in Mn2+-doped fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

Stavrias, N.

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature 497(7447), 91–94 (2013).
[Crossref] [PubMed]

Sui, J.

Q. Cheng, J. Sui, and W. Cai, “Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions,” Nanoscale 4(3), 779–784 (2012).
[Crossref] [PubMed]

Sun, H.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Sun, J.

J. Sun, W. Zhang, H. Du, and Z. Yang, “Hydrothermal synthesis and the enhanced blue upconversion luminescence of NaYF4: Nd, Tm, Yb,” Infrared Phys. Technol. 53(5), 388–391 (2010).
[Crossref]

Takeda, Y.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

Tanabe, S.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Tarafder, A.

A. Tarafder, K. Annapurna, R. S. Chaliha, B. Karmakar, V. S. Tiwari, and P. K. Gupta, “Effects of nano-LiTaO3 crystallization on the dielectric and optical properties in Er3+-doped Li2O-Ta2O5-SiO2-Al2O3 glasses,” Int. J. Appl. Ceram. Technol. 8(5), 1031–1041 (2011).
[Crossref]

A. Tarafder, K. Annapurna, R. Saikia Chaliha, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Structure, dielectric and optical properties of Nd3+-doped LiTaO3 transparent ferroelectric glass–ceramic nanocomposites,” J. Alloys Compd. 489(1), 281–288 (2010).
[Crossref]

R. S. Chaliha, K. Annapurna, A. Tarafder, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(1), 243–250 (2010).
[Crossref] [PubMed]

Tian, G.

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Tiwari, V. S.

A. Tarafder, K. Annapurna, R. S. Chaliha, B. Karmakar, V. S. Tiwari, and P. K. Gupta, “Effects of nano-LiTaO3 crystallization on the dielectric and optical properties in Er3+-doped Li2O-Ta2O5-SiO2-Al2O3 glasses,” Int. J. Appl. Ceram. Technol. 8(5), 1031–1041 (2011).
[Crossref]

A. Tarafder, K. Annapurna, R. Saikia Chaliha, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Structure, dielectric and optical properties of Nd3+-doped LiTaO3 transparent ferroelectric glass–ceramic nanocomposites,” J. Alloys Compd. 489(1), 281–288 (2010).
[Crossref]

R. S. Chaliha, K. Annapurna, A. Tarafder, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(1), 243–250 (2010).
[Crossref] [PubMed]

Torres, M. E.

M. E. Torres, A. A. Kaminskii, C. González-Silgo, J. G. Platas, D. Jaque, A. Ródenas, I. R. Martín, and V. Lavín, “Dielectric anomalies in Nd3+ doped Ba2NaNb5O15 laser crystal,” J. Alloys Compd. 451(1), 198–200 (2008).
[Crossref]

Tsang, M.-K.

G. Bai, M.-K. Tsang, and J. Hao, “Luminescent ions in advanced composite materials for multifunctional applications,” Adv. Funct. Mater. 26(35), 6330–6350 (2016).
[Crossref]

Wang, T.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Wang, W.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Wang, X.

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27(17), 1700051 (2017).
[Crossref]

Weber, M. J.

M. J. Weber, “Probabilities for Radiative and Nonradiative decay of Pr3+ ion in LaAlO3,” Phys. Rev. 157(2), 262–272 (1967).
[Crossref]

Wei, X.

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

Wu, B.

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-Driven Wavelength-Tunable and Ultra-Broadband Infrared Luminescence in Single-Ion-Doped Transparent Hybrid Materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

Wu, M.

E. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. Zhou, and Q. Zhang, “Anomalous NIR luminescence in Mn2+-doped fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

Wu, X.

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

Xia, Z.

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27(17), 1700051 (2017).
[Crossref]

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ Phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Z. Xia and R. S. Liu, “Tunable blue-green color emission and energy transfer of Ca2Al3O6F: Ce3+, Tb3+ phosphors for near-UV white LEDs,” J. Phys. Chem. C 116(29), 15604–15609 (2012).
[Crossref]

Xiao, F.

E. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. Zhou, and Q. Zhang, “Anomalous NIR luminescence in Mn2+-doped fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

Xing, G.

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Xiu, S.

S. Xiu, B. Shen, and J. Zhai, “The effects of MnO2 addition on the structure and dielectric properties of the strontium barium niobate glass-ceramics,” Mater. Res. Bull. 95, 349–353 (2017).
[Crossref]

Xu, C.

B. Zhu, B. Qian, Y. Liu, C. Xu, C. Liu, Q. Chen, J. Zhou, X. Liu, and J. Qiu, “A volumetric full-color display realized by frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals,” NPG Asia Mater. 9(6), e394 (2017).
[Crossref]

Yan, L.

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Yang, Z.

J. Sun, W. Zhang, H. Du, and Z. Yang, “Hydrothermal synthesis and the enhanced blue upconversion luminescence of NaYF4: Nd, Tm, Yb,” Infrared Phys. Technol. 53(5), 388–391 (2010).
[Crossref]

Ye, Q.

S. Zhou, Q. Guo, H. Inoue, Q. Ye, A. Masuno, B. Zheng, Y. Yu, and J. Qiu, “Topological engineering of glass for modulating chemical state of dopants,” Adv. Mater. 26(47), 7966–7972 (2014).
[Crossref] [PubMed]

Ye, S.

E. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. Zhou, and Q. Zhang, “Anomalous NIR luminescence in Mn2+-doped fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

Yin, C.

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature 497(7447), 91–94 (2013).
[Crossref] [PubMed]

Yin, L.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Yin, W.

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Yu, G.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Yu, Y.

S. Zhou, Q. Guo, H. Inoue, Q. Ye, A. Masuno, B. Zheng, Y. Yu, and J. Qiu, “Topological engineering of glass for modulating chemical state of dopants,” Adv. Mater. 26(47), 7966–7972 (2014).
[Crossref] [PubMed]

Yukawa, H.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

Zhai, J.

S. Xiu, B. Shen, and J. Zhai, “The effects of MnO2 addition on the structure and dielectric properties of the strontium barium niobate glass-ceramics,” Mater. Res. Bull. 95, 349–353 (2017).
[Crossref]

Zhang, H.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

Zhang, P.

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

Zhang, Q.

E. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. Zhou, and Q. Zhang, “Anomalous NIR luminescence in Mn2+-doped fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

Zhang, W.

J. Sun, W. Zhang, H. Du, and Z. Yang, “Hydrothermal synthesis and the enhanced blue upconversion luminescence of NaYF4: Nd, Tm, Yb,” Infrared Phys. Technol. 53(5), 388–391 (2010).
[Crossref]

Zhang, Y.

G. Bai, Y. Zhang, and J. Hao, “Chemical substitution-induced exceptional emitting-wavelength tuning in transition metal Ni2+-doped ferroelectric oxides with ultrabroadband near-infrared luminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4631 (2014).
[Crossref]

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

Zhang, Z. G.

G. Y. Chen, H. C. Liu, H. J. Liang, and Z. G. Zhang, “Upconversion Emission Enhancement in Yb3+-Er3+-Codoped Y2O3 Nanocrystals by Tridoping with Li+ Ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

Zhao, L.

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Zhao, S.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Zhao, Y.

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Zheng, B.

S. Zhou, Q. Guo, H. Inoue, Q. Ye, A. Masuno, B. Zheng, Y. Yu, and J. Qiu, “Topological engineering of glass for modulating chemical state of dopants,” Adv. Mater. 26(47), 7966–7972 (2014).
[Crossref] [PubMed]

Zheng, F.

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

Zheng, Y.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Zhou, D.

Y. Gao, Y. Hu, P. Ren, D. Zhou, and J. Qiu, “Effect of Li+ ions on the enhancement upconversion and stokes emission of NaYF4:Tb, Yb co-doped in glass-ceramics,” J. Alloys Compd. 667, 297–301 (2016).
[Crossref]

Zhou, J.

B. Zhu, B. Qian, Y. Liu, C. Xu, C. Liu, Q. Chen, J. Zhou, X. Liu, and J. Qiu, “A volumetric full-color display realized by frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals,” NPG Asia Mater. 9(6), e394 (2017).
[Crossref]

Zhou, L.

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Zhou, S.

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

S. Zhou, Q. Guo, H. Inoue, Q. Ye, A. Masuno, B. Zheng, Y. Yu, and J. Qiu, “Topological engineering of glass for modulating chemical state of dopants,” Adv. Mater. 26(47), 7966–7972 (2014).
[Crossref] [PubMed]

E. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. Zhou, and Q. Zhang, “Anomalous NIR luminescence in Mn2+-doped fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-Driven Wavelength-Tunable and Ultra-Broadband Infrared Luminescence in Single-Ion-Doped Transparent Hybrid Materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

Zhou, Z.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

Zhu, B.

B. Zhu, B. Qian, Y. Liu, C. Xu, C. Liu, Q. Chen, J. Zhou, X. Liu, and J. Qiu, “A volumetric full-color display realized by frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals,” NPG Asia Mater. 9(6), e394 (2017).
[Crossref]

Adv. Funct. Mater. (3)

G. Bai, M.-K. Tsang, and J. Hao, “Luminescent ions in advanced composite materials for multifunctional applications,” Adv. Funct. Mater. 26(35), 6330–6350 (2016).
[Crossref]

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-Driven Wavelength-Tunable and Ultra-Broadband Infrared Luminescence in Single-Ion-Doped Transparent Hybrid Materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27(17), 1700051 (2017).
[Crossref]

Adv. Mater. (2)

S. Zhou, Q. Guo, H. Inoue, Q. Ye, A. Masuno, B. Zheng, Y. Yu, and J. Qiu, “Topological engineering of glass for modulating chemical state of dopants,” Adv. Mater. 26(47), 7966–7972 (2014).
[Crossref] [PubMed]

M. Ayoub, H. Futterlieb, J. Imbrock, and C. Denz, “3D Imaging of Ferroelectric Kinetics during Electrically Driven Switching,” Adv. Mater. 29(5), 5 (2017).
[PubMed]

Adv. Opt. Mater. (2)

Z. Chen, W. Wang, S. Kang, W. Cui, H. Zhang, G. Yu, T. Wang, G. Dong, C. Jiang, S. Zhou, and J. Qiu, “Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation,” Adv. Opt. Mater. 6(4), 1700787 (2018).
[Crossref]

E. Song, S. Ding, M. Wu, S. Ye, F. Xiao, S. Zhou, and Q. Zhang, “Anomalous NIR luminescence in Mn2+-doped fluoride perovskite nanocrystals,” Adv. Opt. Mater. 2(7), 670–678 (2014).
[Crossref]

Am. J. Phys (1)

B. D. Cullity, “Elements of X-ray diffraction,” Am. J. Phys.  25, 50 (1978).

Angew. Chem. Int. Ed. Engl. (1)

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

Chemistry (1)

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Infrared Phys. Technol. (1)

J. Sun, W. Zhang, H. Du, and Z. Yang, “Hydrothermal synthesis and the enhanced blue upconversion luminescence of NaYF4: Nd, Tm, Yb,” Infrared Phys. Technol. 53(5), 388–391 (2010).
[Crossref]

Int. J. Appl. Ceram. Technol. (1)

A. Tarafder, K. Annapurna, R. S. Chaliha, B. Karmakar, V. S. Tiwari, and P. K. Gupta, “Effects of nano-LiTaO3 crystallization on the dielectric and optical properties in Er3+-doped Li2O-Ta2O5-SiO2-Al2O3 glasses,” Int. J. Appl. Ceram. Technol. 8(5), 1031–1041 (2011).
[Crossref]

J. Alloys Compd. (3)

A. Tarafder, K. Annapurna, R. Saikia Chaliha, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Structure, dielectric and optical properties of Nd3+-doped LiTaO3 transparent ferroelectric glass–ceramic nanocomposites,” J. Alloys Compd. 489(1), 281–288 (2010).
[Crossref]

M. E. Torres, A. A. Kaminskii, C. González-Silgo, J. G. Platas, D. Jaque, A. Ródenas, I. R. Martín, and V. Lavín, “Dielectric anomalies in Nd3+ doped Ba2NaNb5O15 laser crystal,” J. Alloys Compd. 451(1), 198–200 (2008).
[Crossref]

Y. Gao, Y. Hu, P. Ren, D. Zhou, and J. Qiu, “Effect of Li+ ions on the enhancement upconversion and stokes emission of NaYF4:Tb, Yb co-doped in glass-ceramics,” J. Alloys Compd. 667, 297–301 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ Phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

G. Bai, Y. Zhang, and J. Hao, “Chemical substitution-induced exceptional emitting-wavelength tuning in transition metal Ni2+-doped ferroelectric oxides with ultrabroadband near-infrared luminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4631 (2014).
[Crossref]

J. Phys. Chem. C (2)

Z. Xia and R. S. Liu, “Tunable blue-green color emission and energy transfer of Ca2Al3O6F: Ce3+, Tb3+ phosphors for near-UV white LEDs,” J. Phys. Chem. C 116(29), 15604–15609 (2012).
[Crossref]

G. Y. Chen, H. C. Liu, H. J. Liang, and Z. G. Zhang, “Upconversion Emission Enhancement in Yb3+-Er3+-Codoped Y2O3 Nanocrystals by Tridoping with Li+ Ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

J. Solid State Chem. (1)

T. V. Gavrilović, D. J. Jovanović, V. M. Lojpur, V. Đorđević, and M. D. Dramićanin, “Enhancement of luminescence emission from GdVO4:Er3+/Yb3+ phosphor by Li+ co-doping,” J. Solid State Chem. 217(9), 92–98 (2014).
[Crossref]

Mater. Res. Bull. (1)

S. Xiu, B. Shen, and J. Zhai, “The effects of MnO2 addition on the structure and dielectric properties of the strontium barium niobate glass-ceramics,” Mater. Res. Bull. 95, 349–353 (2017).
[Crossref]

Nanoscale (1)

Q. Cheng, J. Sui, and W. Cai, “Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions,” Nanoscale 4(3), 779–784 (2012).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(6), 423–431 (2012).
[Crossref]

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Nature (2)

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature 497(7447), 91–94 (2013).
[Crossref] [PubMed]

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002).
[Crossref] [PubMed]

NPG Asia Mater. (1)

B. Zhu, B. Qian, Y. Liu, C. Xu, C. Liu, Q. Chen, J. Zhou, X. Liu, and J. Qiu, “A volumetric full-color display realized by frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals,” NPG Asia Mater. 9(6), e394 (2017).
[Crossref]

Phys. Rev. (2)

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

M. J. Weber, “Probabilities for Radiative and Nonradiative decay of Pr3+ ion in LaAlO3,” Phys. Rev. 157(2), 262–272 (1967).
[Crossref]

Phys. Rev. B Condens. Matter (1)

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Phys. Status Solidi, C Conf. Crit. Rev. (1)

S. M. Kostritskii, Y. N. Korkishko, V. A. Fedorov, and C. Sada, “Phonon-assisted energy transfer in Er-exchanged LiNbO3,” Phys. Status Solidi, C Conf. Crit. Rev. 1(11), 3158–3161 (2004).
[Crossref]

Prog. Cryst. Growth Charact. Mater. (1)

M. Ferriol, “Crystal growth and structure of pure and rare-earth doped barium sodium niobate (BNN),” Prog. Cryst. Growth Charact. Mater. 43(2–3), 221–244 (2001).
[Crossref]

Small (1)

E. H. Kong, Y. J. Chang, H. J. Park, and H. M. Jang, “Bandgap tuning by using a lattice distortion induced by two symmetries that coexist in a quantum dot,” Small 10(7), 1300–1307 (2014).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

R. S. Chaliha, K. Annapurna, A. Tarafder, V. S. Tiwari, P. K. Gupta, and B. Karmakar, “Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(1), 243–250 (2010).
[Crossref] [PubMed]

Other (1)

C. B. Carter and M. G. Norton, “Ceramic materials: science and engineering,” Biomater. Forum. 31(1), 25–25 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) X-ray diffraction patterns of SBNL samples crystallized at 710°C. (b) The magnified Ba0.27Sr0.75Nb2O5.78 XRD peak around 32°. (c) The magnified LiNbO3 XRD peak around 17°. (d) TEM micrograph of SBNL-3. (e) High resolution transmission electron microscope (HRTEM) image of SBNL-3. (f) 3D cell model of SBN from top view (c axis).
Fig. 2
Fig. 2 (a) Upconversion emission spectra of Er3+. (b) Infrared emission spectra of Er3+ (1.55 μm). (c) The measured infrared decay curves of Er3+: 4I13/24I15/2. Inset depicts its fitted decay curves. (d) The energy transfer diagram of Er3+ ions.
Fig. 3
Fig. 3 (a)-(c) Approximately top view projection drawings of SBN obtained from SBN model cell. (a) Unit cell structure of SBN. (b) Unit cell structure of SBN after the substitution of Er3+ for Sr2+. (c) Unit cell structure of SBN after the embedding of Li+.
Fig. 4
Fig. 4 (a) The measured infrared emission spectra of SBNL0 sample applied with different electric field. (b) The measured infrared decay curves of SBNL3 (Er3+: 4I13/24I15/2) under different electric field. Inset depicts its fitted decay curves.
Fig. 5
Fig. 5 (a)-(b) Approximately top view projection drawings of SBN obtained from SBN model cell. (a) Unit cell structure of SBN0before polarization. (b) Unit cell structure of SBN0 after polarization.
Fig. 6
Fig. 6 (a) The whole and (b) The first quarter of Polarization-electric field (P-E) hysteresis loops of the SBNL samples. (c) Temperature dependent dielectric constant and dielectric loss of the SBNL samples. (d) Li+ concentration dependent dielectric constant and dielectric loss of the SBNL samples at room temperature.

Tables (1)

Tables Icon

Table 1 Calculated average diameters of the crystallites

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d= 0.89λ βcosθ
I(t)=I(0)+ A 1 exp( t τ )
L i 2 O SBN 2L i 1 ' + V Sr '' + O o or L i 2 O SBN 2L i 1 ' + V Ba '' + O o
A ed = 64 π 4 e 2 3h(2J+1) λ 3 × n ( n 2 +2) 2 9 × S ed
S ed = t=2,4,6 Ω| 4 f n [ S,L ]J U (t) 4 f n [ S ',L ' ]J ' | 2

Metrics