Abstract

In this paper, we design and investigate a binary elliptical nanoring resonator array on a gold conducting layer, which can generate two optical Fano-like resonant modes in the visible light range under normal incidence. The gold conducting layer underneath the nanoring resonator array strongly enhances the coupling and hybridization among different resonant modes. These two distinct Fano-like resonances originate from the interactions of dipolar antibonding and bonding modes, and dipolar bonding and propagating surface plasmon modes, respectively, which provide as high a refractive index sensitivity as 620 nm/RIU, and achieve high figures of merit, 78 and 154, separately in a refractive index range of 1.33~1.40. Compared to the circular nanoring array, the elliptical structure we demonstrate here can generate shaper resonant modes that can be used for high sensitivity measurement. The designed binary elliptical nanoring resonator array is very promising for dual-channel biosensing application.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable plasmonic resonances based on elliptical annular aperture arrays on conducting substrates for advanced biosensing

Yuzhang Liang, Wei Peng, Lixia Li, Siyu Qian, and Qiao Wang
Opt. Lett. 40(16) 3909-3912 (2015)

Plasmon hybridization in split ring nanosandwich for refractive index sensing– Numerical Investigation

Sara M. Kandil, Islam A. Eshrah, Inas S. El Babli, and Ashraf H. Badawi
Opt. Express 24(26) 30201-30214 (2016)

Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity

Wen-Hao Huang, Shun-Feng Li, Hai-Tao Xu, Zheng-Xun Xiang, Yong-Bing Long, and Hai-Dong Deng
Opt. Express 26(5) 6202-6213 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
    [Crossref]
  2. S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5 Pt 2), 057601 (2010).
    [Crossref] [PubMed]
  3. G. Y. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. H. Teng, “Annular aperture arrays based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
    [Crossref]
  4. Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
    [Crossref] [PubMed]
  5. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
    [Crossref] [PubMed]
  6. J. Dahdah, J. Hoblos, and F. I. Baida, “Nanocoaxial waveguide grating as quarter-wave plates in the visible range,” IEEE Photonics J. 4(1), 87–94 (2012).
    [Crossref]
  7. Y. Poujet, J. Salvi, and F. I. Baida, “90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays,” Opt. Lett. 32(20), 2942–2944 (2007).
    [Crossref] [PubMed]
  8. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  9. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [Crossref] [PubMed]
  10. S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
    [Crossref] [PubMed]
  11. S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
    [Crossref]
  12. W. Zhao and Y. Jiang, “Experimental demonstration of sharp Fano resonance within binary gold nanodisk array through lattice coupling effects,” Opt. Lett. 40(1), 93–96 (2015).
    [Crossref] [PubMed]
  13. Y. Moritake, Y. Kanamori, and K. Hane, “Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars,” Opt. Lett. 39(13), 4057–4060 (2014).
    [Crossref] [PubMed]
  14. A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
    [Crossref] [PubMed]
  15. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
    [Crossref] [PubMed]
  16. H. Liu, B. Li, L. Zheng, C. Xu, G. Zhang, X. Wu, and N. Xiang, “Multispectral plasmon-induced transparency in triangle and nanorod(s) hybrid nanostructures,” Opt. Lett. 38(6), 977–979 (2013).
    [Crossref] [PubMed]
  17. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  19. H. Liu, E. S. P. Leong, Z. Wang, G. Si, L. Zheng, Y. J. Liu, and C. Soci, “Multiple and multipolar Fano resonances in plasmonic nanoring pentamers,” Adv. Opt. Mater. 1(12), 978–983 (2013).
    [Crossref]
  20. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  21. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
    [Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (3)

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

H. Liu, B. Li, L. Zheng, C. Xu, G. Zhang, X. Wu, and N. Xiang, “Multispectral plasmon-induced transparency in triangle and nanorod(s) hybrid nanostructures,” Opt. Lett. 38(6), 977–979 (2013).
[Crossref] [PubMed]

H. Liu, E. S. P. Leong, Z. Wang, G. Si, L. Zheng, Y. J. Liu, and C. Soci, “Multiple and multipolar Fano resonances in plasmonic nanoring pentamers,” Adv. Opt. Mater. 1(12), 978–983 (2013).
[Crossref]

2012 (4)

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref] [PubMed]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

J. Dahdah, J. Hoblos, and F. I. Baida, “Nanocoaxial waveguide grating as quarter-wave plates in the visible range,” IEEE Photonics J. 4(1), 87–94 (2012).
[Crossref]

2011 (4)

G. Y. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. H. Teng, “Annular aperture arrays based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
[Crossref]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

2010 (3)

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5 Pt 2), 057601 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

2008 (2)

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]

2007 (1)

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abass, A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
[Crossref]

Altug, H.

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref] [PubMed]

Baida, F. I.

J. Dahdah, J. Hoblos, and F. I. Baida, “Nanocoaxial waveguide grating as quarter-wave plates in the visible range,” IEEE Photonics J. 4(1), 87–94 (2012).
[Crossref]

Y. Poujet, J. Salvi, and F. I. Baida, “90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays,” Opt. Lett. 32(20), 2942–2944 (2007).
[Crossref] [PubMed]

Bardou, N.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Cetin, A. E.

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Collin, S.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Dahdah, J.

J. Dahdah, J. Hoblos, and F. I. Baida, “Nanocoaxial waveguide grating as quarter-wave plates in the visible range,” IEEE Photonics J. 4(1), 87–94 (2012).
[Crossref]

Danner, A. J.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

G. Y. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. H. Teng, “Annular aperture arrays based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Fainman, Y.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Gallinet, B.

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Haïdar, R.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Hane, K.

Hao, F.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Hoblos, J.

J. Dahdah, J. Hoblos, and F. I. Baida, “Nanocoaxial waveguide grating as quarter-wave plates in the visible range,” IEEE Photonics J. 4(1), 87–94 (2012).
[Crossref]

Huang, C. P.

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5 Pt 2), 057601 (2010).
[Crossref] [PubMed]

Huang, T. J.

G. Y. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. H. Teng, “Annular aperture arrays based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Janssen, O. T. A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
[Crossref]

Jiang, R.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Jiang, Y.

Jin, C.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kanamori, Y.

Katz, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Khajavikhan, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Lee, J. H.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Leong, E. S. P.

H. Liu, E. S. P. Leong, Z. Wang, G. Si, L. Zheng, Y. J. Liu, and C. Soci, “Multiple and multipolar Fano resonances in plasmonic nanoring pentamers,” Adv. Opt. Mater. 1(12), 978–983 (2013).
[Crossref]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, B.

Li, J. Q.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]

Liu, H.

H. Liu, B. Li, L. Zheng, C. Xu, G. Zhang, X. Wu, and N. Xiang, “Multispectral plasmon-induced transparency in triangle and nanorod(s) hybrid nanostructures,” Opt. Lett. 38(6), 977–979 (2013).
[Crossref] [PubMed]

H. Liu, E. S. P. Leong, Z. Wang, G. Si, L. Zheng, Y. J. Liu, and C. Soci, “Multiple and multipolar Fano resonances in plasmonic nanoring pentamers,” Adv. Opt. Mater. 1(12), 978–983 (2013).
[Crossref]

G. Y. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. H. Teng, “Annular aperture arrays based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Liu, M.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Liu, S. Q.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]

Liu, T.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Liu, Y. J.

H. Liu, E. S. P. Leong, Z. Wang, G. Si, L. Zheng, Y. J. Liu, and C. Soci, “Multiple and multipolar Fano resonances in plasmonic nanoring pentamers,” Adv. Opt. Mater. 1(12), 978–983 (2013).
[Crossref]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Lomakin, V.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Maes, B.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Martin, O. J. F.

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Mizrahi, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Moritake, Y.

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Pelouard, J.-L.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Poujet, Y.

Rivas, J. G.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
[Crossref]

Rodriguez, S. R. K.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
[Crossref]

Rommeluère, S.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Salvi, J.

Shen, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Si, G.

H. Liu, E. S. P. Leong, Z. Wang, G. Si, L. Zheng, Y. J. Liu, and C. Soci, “Multiple and multipolar Fano resonances in plasmonic nanoring pentamers,” Adv. Opt. Mater. 1(12), 978–983 (2013).
[Crossref]

Si, G. Y.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

G. Y. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. H. Teng, “Annular aperture arrays based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Simic, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Slutsky, B.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Soci, C.

H. Liu, E. S. P. Leong, Z. Wang, G. Si, L. Zheng, Y. J. Liu, and C. Soci, “Multiple and multipolar Fano resonances in plasmonic nanoring pentamers,” Adv. Opt. Mater. 1(12), 978–983 (2013).
[Crossref]

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Tao, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Teng, J. H.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

G. Y. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. H. Teng, “Annular aperture arrays based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Teo, S.

G. Y. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. H. Teng, “Annular aperture arrays based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Van Dorpe, P.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Vecchi, G.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
[Crossref]

Vincent, G.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Wang, G. D.

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5 Pt 2), 057601 (2010).
[Crossref] [PubMed]

Wang, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Wang, Q. J.

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5 Pt 2), 057601 (2010).
[Crossref] [PubMed]

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]

Wang, X.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Wang, Y. M.

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5 Pt 2), 057601 (2010).
[Crossref] [PubMed]

Wang, Z.

H. Liu, E. S. P. Leong, Z. Wang, G. Si, L. Zheng, Y. J. Liu, and C. Soci, “Multiple and multipolar Fano resonances in plasmonic nanoring pentamers,” Adv. Opt. Mater. 1(12), 978–983 (2013).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wu, S.

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5 Pt 2), 057601 (2010).
[Crossref] [PubMed]

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]

Wu, X.

Xiang, N.

H. Liu, B. Li, L. Zheng, C. Xu, G. Zhang, X. Wu, and N. Xiang, “Multispectral plasmon-induced transparency in triangle and nanorod(s) hybrid nanostructures,” Opt. Lett. 38(6), 977–979 (2013).
[Crossref] [PubMed]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Xiao, G.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Xu, C.

Yin, X. G.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]

Zhang, G.

Zhang, M.

G. Y. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. H. Teng, “Annular aperture arrays based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Zhao, W.

Zhao, Y.

G. Y. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. H. Teng, “Annular aperture arrays based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zheng, L.

H. Liu, E. S. P. Leong, Z. Wang, G. Si, L. Zheng, Y. J. Liu, and C. Soci, “Multiple and multipolar Fano resonances in plasmonic nanoring pentamers,” Adv. Opt. Mater. 1(12), 978–983 (2013).
[Crossref]

H. Liu, B. Li, L. Zheng, C. Xu, G. Zhang, X. Wu, and N. Xiang, “Multispectral plasmon-induced transparency in triangle and nanorod(s) hybrid nanostructures,” Opt. Lett. 38(6), 977–979 (2013).
[Crossref] [PubMed]

Zhou, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Zhou, L.

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5 Pt 2), 057601 (2010).
[Crossref] [PubMed]

Zhou, Z. K.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Zhu, D.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]

Zhu, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Zhu, Y. Y.

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5 Pt 2), 057601 (2010).
[Crossref] [PubMed]

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]

ACS Nano (2)

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

H. Liu, E. S. P. Leong, Z. Wang, G. Si, L. Zheng, Y. J. Liu, and C. Soci, “Multiple and multipolar Fano resonances in plasmonic nanoring pentamers,” Adv. Opt. Mater. 1(12), 978–983 (2013).
[Crossref]

Appl. Phys. Lett. (2)

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]

G. Y. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. H. Teng, “Annular aperture arrays based color filter,” Appl. Phys. Lett. 99(3), 033105 (2011).
[Crossref]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

IEEE Photonics J. (1)

J. Dahdah, J. Hoblos, and F. I. Baida, “Nanocoaxial waveguide grating as quarter-wave plates in the visible range,” IEEE Photonics J. 4(1), 87–94 (2012).
[Crossref]

Nano Lett. (1)

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nature (2)

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Lett. (4)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5 Pt 2), 057601 (2010).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. G. Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The designed structure and its optical features. (a) Three-dimensional view and geometrical parameters. (b) The unit cell of structure. (c) Reflectance spectra of BENA for the difference ΔR = 30 nm (blue line) and ΔR = 0 nm (pink line). (d) Reflectance spectra of binary circular nanoring array (pink line) and binary elliptical nanoring array (blue line) for the difference ΔR = 30 nm.
Fig. 2
Fig. 2 The effect of various structure parameters on resonant dips in the designed structure. (a) Reflectance spectra for various ΔR with fixed A1 = 280 nm, A2 = 180 nm, B1 = 160 nm, and B2 = 100 nm. (b) Reflectance spectra for different outer semi-major axis A1 and inner semi-major axis A2 with fixed B1 = 160 nm, B2 = 100 nm, and ΔR = 30 nm. The reflectance spectra are offset 0.5 for better visibility.
Fig. 3
Fig. 3 Electric field Ez and charge distributions in the symmetric hexagonal array (ΔR = 0 nm) for (a) dip C and (b) dip E.
Fig. 4
Fig. 4 Electric field Ez distributions in the binary array with ΔR = 30 nm for (a) dip C, (b) dip D, and (c) dip F.
Fig. 5
Fig. 5 Electric field Ez distributions in the binary array with ΔR = 50 nm for (a) dip C, (b) dip D, (c) dip E, and (c) dip F.
Fig. 6
Fig. 6 (a) Comparison of FDTD simulation and analytical model of Fano-like resonance in the binary structure with ΔR = 50 nm. (b) Optical properties at different incident angles in the binary structure with ΔR = 30 nm. (c) Electromagnetic field taken as a slice through the center of binary structure with ΔR = 30 nm at the wavelength 690 nm.
Fig. 7
Fig. 7 (a) Reflectance spectra for the sample with different RIs on the upper side of structure. (b) Linear response of wavelength positions of two Fano-like resonances (dips C and F) on RIs. (c) Calculated FOM for two Fano-like resonant modes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2π λ n s sinθ- 2π P ( i 2 + j 2 ) =- 2π λ ε m ε d ε m + ε d
R=1 ( ω 2 ω a 2 2 W a ω a +q) 2 +b ( ω 2 ω a 2 2 W a ω a +q) 2 +1 × a 2 ( ω 2 ω s 2 2 W s ω s ) 2 +1

Metrics