Abstract

For directly characterizing photodarkening effects, we demonstrated long-term laser stability of a 5kW-level fiber amplifier based on a Yb-doped aluminophosphosilicate fiber with a 30µm-core and 600µm-clad. The molar ratio of Al3+/P5+ was designed to be 1.1 ± 0.05 for remarkable photodarkening suppression, suitable numerical aperture, and central dip mitigation of refractive index profile. A modified chemical vapor deposition system combined with an all-gas-phase chelate precursor doping technique was applied to fabricate this fiber, doped with 0.15mol% Yb2O3, 1.7mol% Al2O3, and 1.4mol% P2O5. Tested at a master oscillator power amplifier laser setup, the 18m-long 30/600 Yb-doped aluminophosphosilicate fiber allowed for 6.14kW aggregated pump power at 976nm, and then showed a 5.19kW laser output at 1064.4nm with a high optical-to-optical efficiency of 85.2%. Up to this power level, an output spectrum without any sign of stimulated Raman scattering and amplified spontaneous emission was obtained. The fiber amplifier setup was kept at a 5.16kW output for over 600 minutes without power degradation, justifying a remarkable suppression of photodarkening. The results indicated that the all-gas-phase chelate precursor doping technique is highly competitive for low-photodarkening Yb-doped aluminophosphosilicate fiber fabrication towards a 5kW-level commercial high-power laser.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality

Kun Peng, Huan Zhan, Li Ni, Xiaolong Wang, Yuying Wang, Cong Gao, Yuwei Li, Jianjun Wang, Feng Jing, and Aoxiang Lin
Appl. Opt. 55(35) 10133-10137 (2016)

Ultra-low-loss double-cladding laser fiber fabricated by optimized chelate gas phase deposition technique

Shengfei She, Weinan Li, Chang Chang, Zhe Li, Jinkun Zheng, Song Gao, Yan Zhang, Gang Li, Qi Gao, Wei Zhao, Baoyin Zhao, Haitao Guo, and Chaoqi Hou
Appl. Opt. 57(27) 7943-7949 (2018)

Ytterbium-doped fibers fabricated with atomic layer deposition method

Joan J. Montiel i Ponsoda, Lars Norin, Changgeng Ye, Markus Bosund, Mikko J. Söderlund, Ari Tervonen, and Seppo Honkanen
Opt. Express 20(22) 25085-25095 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. V. Gapontsev, V. Fomin, and A. Yusim, “Recent progress in scaling high power fiber lasers at IPG Photonics,” presented at the 22nd Annual Solid State and Diode Laser Technology Review, Newton, Massachusetts USA, June 29-July 2, (2009).
  2. M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
    [Crossref]
  3. H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, and M. Zervas, “Fibers and fiber-optic components for high-power fiber lasers,” in SPIE LASE (International Society for Optics and Photonics, 2011), p. 791414.
  4. S. Ikoma, H. K. Nguyen, M. Kashiwagi, K. Uchiyama, K. Shima, and D. Tanaka, “3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing,” Proc. SPIE 10083, 100830Y (2017).
    [Crossref]
  5. I. P. G. Photonics, “IPG Photonics successfully tests world’s first 10 kilowatt single-mode production laser,” http://www.ipgphotonics.com/newsproduct.htm (June 15, 2009).
  6. C. Ye, L. Petit, J. J. Koponen, I. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903512 (2014).
  7. K. E. Mattsson, S. N. Knudsen, B. Cadier, and T. Robin, “Photodarkening in ytterbium co-doped silica material,” in SPIE LASE (International Society for Optics and Photonics, 2008), p. 68731C.
  8. S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17(12), 9924–9932 (2009).
    [Crossref] [PubMed]
  9. F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
    [Crossref] [PubMed]
  10. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref] [PubMed]
  11. B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
    [Crossref]
  12. P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354(42-44), 4760–4764 (2008).
    [Crossref]
  13. T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
    [Crossref] [PubMed]
  14. P. Šušnjar, V. Agrež, and R. Petkovšek, “Photodarkening as a heat source in ytterbium doped fiber amplifiers,” Opt. Express 26(5), 6420–6426 (2018).
    [Crossref] [PubMed]
  15. J. Koponen, M. Söderlund, H. J. Hoffman, D. A. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47(9), 1247–1256 (2008).
    [Crossref] [PubMed]
  16. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
    [Crossref] [PubMed]
  17. S. Kim, Y. Hujimaki, H. Taniguchi, H. Kinoshita, and K. Sato, “Fabrication and characterization of a phosphosilicate YDF with high Yb absorbance and low background loss,” Proc. of SPIE 8961, 896118 (2014).
  18. M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008).
    [Crossref] [PubMed]
  19. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett. 34(8), 1285–1287 (2009).
    [Crossref] [PubMed]
  20. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and M. Jäger, “Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects,” Opt. Express 24(12), 13009–13022 (2016).
    [Crossref] [PubMed]
  21. S. Unger, A. Schwuchow, J. Dellith, and J. Kirchhof, “Codoped materials for high power fiber lasers-diffusion behavior and optical properties,” Proc. of SPIE 6469, 646913 (2007).
  22. K. E. Mattsson, “Low photo darkening single mode RMO fiber,” Opt. Express 17(20), 17855–17861 (2009).
    [Crossref] [PubMed]
  23. M. C. Paul, A. V. Kir, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Yb2O3 doped yttrium-alumino-silicate nano-particles based LMA optical fibers for high-power fiber lasers,” J. Lightwave Technol. 30(13), 2062–2068 (2012).
    [Crossref]
  24. C. Ye, J. J. Montiel i Ponsoda, A. Tervonen, and S. Honkanen, “Refractive index change in ytterbium-doped fibers induced by photodarkening and thermal bleaching,” Appl. Opt. 49(30), 5799–5805 (2010).
    [Crossref] [PubMed]
  25. H. Li, L. Zhang, R. Sidharthan, D. Ho, X. Wu, N. Venkatram, H. Sun, T. Huang, and S. Yoo, “Pump wavelength dependence of photodarkening in Yb-doped fibers,” J. Lightwave Technol. 35(13), 2535–2540 (2017).
    [Crossref]
  26. A. Halder, D. Lin, A. A. Umnikov, N. J. Ramírez-Martínez, M. Núñez-Velázquez, P. Barua, S. Alam, and J. K. Sahu, “Yb-doped Large-Mode-Area Al-P-Silicate Laser Fiber fabricated by MCVD,” in CLEO: Science and Innovations (Optical Society of America, 2018), Paper JTh2A. 77.
  27. M. Saha, S. D. Chowdhury, N. K. Shekhar, A. Pal, M. Pal, C. Guha, and R. Sen, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2015).
  28. R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phaser doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
    [Crossref]
  29. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during preform collapsing,” Proc. of SPIE 6873, 68731G (2008).
  30. T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, “Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminium doping,” in OFC/ NFOE Conference on CD-ROM (Opt. Society of America, Washington, DC, 2006), OThC5 (2006).
  31. J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S (2009).
  32. M. E. Likhachev, S. S. Aleshkina, A. V. Shubin, M. M. Bubnov, E. M. Dianov, D. S. Lipatov, and A. N. Guryanov, “Large-mode-area highly Yb-doped photodarkening-free Al2O3-P2O5-SiO2-based fiber,” in Proc. CLEO/Europe-EQEC 2011, Munich, Germany, May 22–26, 2011, Paper CJ.P.24.
  33. F. Guerroue, T. G. R. Masson, S. Prades, C. Ranger, T. Robin, and B. Cadier, “Photodarkening in Yb-doped fibers for fiber lasers,” Fiber Integr. Opt. 28(1), 60–64 (2009).
    [Crossref]
  34. A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
    [Crossref]
  35. S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
    [Crossref]
  36. Z. Wang, H. Zhan, L. Ni, K. Peng, X. Wang, J. Wang, F. Jing, and A. Lin, “Research progress of chelate precursor doping method to fabricate Yb-doped large-mode-area silica fibers for kW-level laser,” Laser Phys. 25(11), 115103 (2015).
    [Crossref]
  37. K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, C. Gao, Y. Li, J. Wang, F. Jing, and A. Lin, “Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality,” Appl. Opt. 55(35), 10133–10137 (2016).
    [Crossref] [PubMed]
  38. C. Gao, Z. Huang, Y. Wang, H. Zhan, L. Ni, K. Peng, Y. Li, Z. Jia, X. Wang, A. You, X. Xiang, J. Wang, F. Jing, H. Lin, and A. Lin, “Yb-doped aluminophosphosilicate laser fiber,” J. Lightwave Technol. 34(22), 5170–5174 (2016).
    [Crossref]
  39. Y. Wang, H. Zhan, K. Peng, C. Gao, Y. Li, L. Ni, X. Wang, S. Sun, S. Liu, L. Zhang, J. Yu, L. Jian, J. Wang, F. Jing, and A. Lin, “Highly-stable 20/400 Yb-doped large-mode-area fiber with 3kW laser output power,” in Asia and Communication photonics Conference (Optical Society of America, 2017), Guang Zhou, China, Paper M1A.3.
  40. Y. Wang, C. Gao, X. Tang, H. Zhan, K. Peng, L. Ni, S. Liu, Y. Li, C. Guo, X. Wang, L. Zhang, J. Yu, L. Jiang, H. Lin, J. Wang, F. Jing, H. Lin, and A. Lin, “30/900 Yb-doped aluminophosphosilicate fiber presenting 6.85 kW laser output pumped with commercial 976 nm laser diodes,” J. Lightwave Technol., in press (2018).
    [Crossref]
  41. S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).
  42. Y. Li, K. Peng, H. Zhan, S. Liu, L. Ni, Y. Wang, J. Yu, X. Wang, J. Wang, F. Jing, and A. Lin, “Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability,” Opt. Fiber Technol. 41, 7–11 (2017).
    [Crossref]
  43. J. Zheng, W. Zhao, B. Zhao, C. Hou, Z. Li, G. Li, Q. Gao, P. Ju, W. Gao, S. She, P. Wu, and W. Li, “4.62 kW excellent beam quality laser output with a low-loss Yb/Ce co-doped fiber fabricated by chelate gas phase deposition technique,” Opt. Mater. Express 7(4), 1259–1266 (2017).
    [Crossref]
  44. M. M. Bubnova, V. N. Vechkanov, A. N. Gur’yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhacheva, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45(4), 444–449 (2009).
    [Crossref]
  45. A. Lin, H. Zhan, K. Peng, X. Wang, L. Ni, Y. Wang, Y. Li, S. Liu, S. Sun, J. Jiang, X. Tang, Y. Liu, L. Jiang, J. Yu, J. Wang, and F. Jing, “8.74 kWPump-Gain Integrated Functional Laser Fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W2A.2.

2018 (3)

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

P. Šušnjar, V. Agrež, and R. Petkovšek, “Photodarkening as a heat source in ytterbium doped fiber amplifiers,” Opt. Express 26(5), 6420–6426 (2018).
[Crossref] [PubMed]

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

2017 (5)

2016 (3)

2015 (2)

M. Saha, S. D. Chowdhury, N. K. Shekhar, A. Pal, M. Pal, C. Guha, and R. Sen, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2015).

Z. Wang, H. Zhan, L. Ni, K. Peng, X. Wang, J. Wang, F. Jing, and A. Lin, “Research progress of chelate precursor doping method to fabricate Yb-doped large-mode-area silica fibers for kW-level laser,” Laser Phys. 25(11), 115103 (2015).
[Crossref]

2014 (5)

R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phaser doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
[Crossref]

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

S. Kim, Y. Hujimaki, H. Taniguchi, H. Kinoshita, and K. Sato, “Fabrication and characterization of a phosphosilicate YDF with high Yb absorbance and low background loss,” Proc. of SPIE 8961, 896118 (2014).

C. Ye, L. Petit, J. J. Koponen, I. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903512 (2014).

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

2012 (2)

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

M. C. Paul, A. V. Kir, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Yb2O3 doped yttrium-alumino-silicate nano-particles based LMA optical fibers for high-power fiber lasers,” J. Lightwave Technol. 30(13), 2062–2068 (2012).
[Crossref]

2011 (1)

2010 (2)

C. Ye, J. J. Montiel i Ponsoda, A. Tervonen, and S. Honkanen, “Refractive index change in ytterbium-doped fibers induced by photodarkening and thermal bleaching,” Appl. Opt. 49(30), 5799–5805 (2010).
[Crossref] [PubMed]

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
[Crossref]

2009 (6)

M. M. Bubnova, V. N. Vechkanov, A. N. Gur’yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhacheva, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45(4), 444–449 (2009).
[Crossref]

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S (2009).

F. Guerroue, T. G. R. Masson, S. Prades, C. Ranger, T. Robin, and B. Cadier, “Photodarkening in Yb-doped fibers for fiber lasers,” Fiber Integr. Opt. 28(1), 60–64 (2009).
[Crossref]

S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17(12), 9924–9932 (2009).
[Crossref] [PubMed]

M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett. 34(8), 1285–1287 (2009).
[Crossref] [PubMed]

K. E. Mattsson, “Low photo darkening single mode RMO fiber,” Opt. Express 17(20), 17855–17861 (2009).
[Crossref] [PubMed]

2008 (5)

2007 (1)

S. Unger, A. Schwuchow, J. Dellith, and J. Kirchhof, “Codoped materials for high power fiber lasers-diffusion behavior and optical properties,” Proc. of SPIE 6469, 646913 (2007).

Agrež, V.

Aichele, C.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

Barmenkov, Y. O.

Bartelt, H.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

Barua, P.

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354(42-44), 4760–4764 (2008).
[Crossref]

Beier, F.

Bhadra, S. K.

Boyland, A. J.

M. C. Paul, A. V. Kir, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Yb2O3 doped yttrium-alumino-silicate nano-particles based LMA optical fibers for high-power fiber lasers,” J. Lightwave Technol. 30(13), 2062–2068 (2012).
[Crossref]

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
[Crossref]

Bubnova, M. M.

M. M. Bubnova, V. N. Vechkanov, A. N. Gur’yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhacheva, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45(4), 444–449 (2009).
[Crossref]

Cadier, B.

F. Guerroue, T. G. R. Masson, S. Prades, C. Ranger, T. Robin, and B. Cadier, “Photodarkening in Yb-doped fibers for fiber lasers,” Fiber Integr. Opt. 28(1), 60–64 (2009).
[Crossref]

Chowdhury, S. D.

M. Saha, S. D. Chowdhury, N. K. Shekhar, A. Pal, M. Pal, C. Guha, and R. Sen, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2015).

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

Das, S.

Dellith, J.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

S. Unger, A. Schwuchow, J. Dellith, and J. Kirchhof, “Codoped materials for high power fiber lasers-diffusion behavior and optical properties,” Proc. of SPIE 6469, 646913 (2007).

Deschamps, T.

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

Dong, L.

Eberhardt, R.

Engholm, M.

Fu, L.

Galvanauskas, A.

C. Ye, L. Petit, J. J. Koponen, I. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903512 (2014).

Gao, C.

Gao, Q.

Gao, W.

Gonnet, C.

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

Guerroue, F.

F. Guerroue, T. G. R. Masson, S. Prades, C. Ranger, T. Robin, and B. Cadier, “Photodarkening in Yb-doped fibers for fiber lasers,” Fiber Integr. Opt. 28(1), 60–64 (2009).
[Crossref]

Guha, C.

M. Saha, S. D. Chowdhury, N. K. Shekhar, A. Pal, M. Pal, C. Guha, and R. Sen, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2015).

Gur’yanov, A. N.

M. M. Bubnova, V. N. Vechkanov, A. N. Gur’yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhacheva, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45(4), 444–449 (2009).
[Crossref]

Haarlammert, N.

Hein, S.

Ho, D.

Hoffman, H. J.

Honkanen, S.

Hotoleanu, M.

Hou, C.

Hu, I.

C. Ye, L. Petit, J. J. Koponen, I. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903512 (2014).

Huang, T.

Huang, Z.

Hujimaki, Y.

S. Kim, Y. Hujimaki, H. Taniguchi, H. Kinoshita, and K. Sato, “Fabrication and characterization of a phosphosilicate YDF with high Yb absorbance and low background loss,” Proc. of SPIE 8961, 896118 (2014).

Hupel, C.

Ikoma, S.

S. Ikoma, H. K. Nguyen, M. Kashiwagi, K. Uchiyama, K. Shima, and D. Tanaka, “3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing,” Proc. SPIE 10083, 100830Y (2017).
[Crossref]

Ikushima, A. J.

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354(42-44), 4760–4764 (2008).
[Crossref]

Jäger, M.

Jauregui, C.

Jelger, P.

Jetschke, S.

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and M. Jäger, “Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects,” Opt. Express 24(12), 13009–13022 (2016).
[Crossref] [PubMed]

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S (2009).

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during preform collapsing,” Proc. of SPIE 6873, 68731G (2008).

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

Jia, Z.

Jiang, J.

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

Jiang, L.

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

Jing, F.

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

Y. Li, K. Peng, H. Zhan, S. Liu, L. Ni, Y. Wang, J. Yu, X. Wang, J. Wang, F. Jing, and A. Lin, “Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability,” Opt. Fiber Technol. 41, 7–11 (2017).
[Crossref]

C. Gao, Z. Huang, Y. Wang, H. Zhan, L. Ni, K. Peng, Y. Li, Z. Jia, X. Wang, A. You, X. Xiang, J. Wang, F. Jing, H. Lin, and A. Lin, “Yb-doped aluminophosphosilicate laser fiber,” J. Lightwave Technol. 34(22), 5170–5174 (2016).
[Crossref]

K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, C. Gao, Y. Li, J. Wang, F. Jing, and A. Lin, “Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality,” Appl. Opt. 55(35), 10133–10137 (2016).
[Crossref] [PubMed]

Z. Wang, H. Zhan, L. Ni, K. Peng, X. Wang, J. Wang, F. Jing, and A. Lin, “Research progress of chelate precursor doping method to fabricate Yb-doped large-mode-area silica fibers for kW-level laser,” Laser Phys. 25(11), 115103 (2015).
[Crossref]

Ju, P.

Kashiwagi, M.

S. Ikoma, H. K. Nguyen, M. Kashiwagi, K. Uchiyama, K. Shima, and D. Tanaka, “3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing,” Proc. SPIE 10083, 100830Y (2017).
[Crossref]

Kim, S.

S. Kim, Y. Hujimaki, H. Taniguchi, H. Kinoshita, and K. Sato, “Fabrication and characterization of a phosphosilicate YDF with high Yb absorbance and low background loss,” Proc. of SPIE 8961, 896118 (2014).

Kinoshita, H.

S. Kim, Y. Hujimaki, H. Taniguchi, H. Kinoshita, and K. Sato, “Fabrication and characterization of a phosphosilicate YDF with high Yb absorbance and low background loss,” Proc. of SPIE 8961, 896118 (2014).

Kir, A. V.

Kirchhof, J.

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S (2009).

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during preform collapsing,” Proc. of SPIE 6873, 68731G (2008).

S. Unger, A. Schwuchow, J. Dellith, and J. Kirchhof, “Codoped materials for high power fiber lasers-diffusion behavior and optical properties,” Proc. of SPIE 6469, 646913 (2007).

Kliner, D. A.

Kobelke, J.

R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phaser doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
[Crossref]

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

Koplow, J. P.

Koponen, J.

Koponen, J. J.

C. Ye, L. Petit, J. J. Koponen, I. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903512 (2014).

Kuhn, S.

Laurell, F.

Leich, M.

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and M. Jäger, “Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects,” Opt. Express 24(12), 13009–13022 (2016).
[Crossref] [PubMed]

R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phaser doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
[Crossref]

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S (2009).

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during preform collapsing,” Proc. of SPIE 6873, 68731G (2008).

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

Li, G.

Li, H.

Li, W.

Li, Y.

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

Y. Li, K. Peng, H. Zhan, S. Liu, L. Ni, Y. Wang, J. Yu, X. Wang, J. Wang, F. Jing, and A. Lin, “Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability,” Opt. Fiber Technol. 41, 7–11 (2017).
[Crossref]

C. Gao, Z. Huang, Y. Wang, H. Zhan, L. Ni, K. Peng, Y. Li, Z. Jia, X. Wang, A. You, X. Xiang, J. Wang, F. Jing, H. Lin, and A. Lin, “Yb-doped aluminophosphosilicate laser fiber,” J. Lightwave Technol. 34(22), 5170–5174 (2016).
[Crossref]

K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, C. Gao, Y. Li, J. Wang, F. Jing, and A. Lin, “Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality,” Appl. Opt. 55(35), 10133–10137 (2016).
[Crossref] [PubMed]

Li, Z.

Liem, A.

Likhacheva, M. E.

M. M. Bubnova, V. N. Vechkanov, A. N. Gur’yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhacheva, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45(4), 444–449 (2009).
[Crossref]

Limpert, J.

Lin, A.

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

Y. Li, K. Peng, H. Zhan, S. Liu, L. Ni, Y. Wang, J. Yu, X. Wang, J. Wang, F. Jing, and A. Lin, “Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability,” Opt. Fiber Technol. 41, 7–11 (2017).
[Crossref]

C. Gao, Z. Huang, Y. Wang, H. Zhan, L. Ni, K. Peng, Y. Li, Z. Jia, X. Wang, A. You, X. Xiang, J. Wang, F. Jing, H. Lin, and A. Lin, “Yb-doped aluminophosphosilicate laser fiber,” J. Lightwave Technol. 34(22), 5170–5174 (2016).
[Crossref]

K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, C. Gao, Y. Li, J. Wang, F. Jing, and A. Lin, “Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality,” Appl. Opt. 55(35), 10133–10137 (2016).
[Crossref] [PubMed]

Z. Wang, H. Zhan, L. Ni, K. Peng, X. Wang, J. Wang, F. Jing, and A. Lin, “Research progress of chelate precursor doping method to fabricate Yb-doped large-mode-area silica fibers for kW-level laser,” Laser Phys. 25(11), 115103 (2015).
[Crossref]

Lin, H.

Lindner, F.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

Lipatov, D. S.

M. M. Bubnova, V. N. Vechkanov, A. N. Gur’yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhacheva, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45(4), 444–449 (2009).
[Crossref]

Liu, G.

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

Liu, S.

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

Y. Li, K. Peng, H. Zhan, S. Liu, L. Ni, Y. Wang, J. Yu, X. Wang, J. Wang, F. Jing, and A. Lin, “Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability,” Opt. Fiber Technol. 41, 7–11 (2017).
[Crossref]

Lu, P.

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

Lu, Q.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Ma, P.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Masson, T. G. R.

F. Guerroue, T. G. R. Masson, S. Prades, C. Ranger, T. Robin, and B. Cadier, “Photodarkening in Yb-doped fibers for fiber lasers,” Fiber Integr. Opt. 28(1), 60–64 (2009).
[Crossref]

Mattsson, K. E.

McKay, H. A.

Montiel i Ponsoda, J. J.

Nguyen, H. K.

S. Ikoma, H. K. Nguyen, M. Kashiwagi, K. Uchiyama, K. Shima, and D. Tanaka, “3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing,” Proc. SPIE 10083, 100830Y (2017).
[Crossref]

Ni, L.

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

Y. Li, K. Peng, H. Zhan, S. Liu, L. Ni, Y. Wang, J. Yu, X. Wang, J. Wang, F. Jing, and A. Lin, “Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability,” Opt. Fiber Technol. 41, 7–11 (2017).
[Crossref]

K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, C. Gao, Y. Li, J. Wang, F. Jing, and A. Lin, “Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality,” Appl. Opt. 55(35), 10133–10137 (2016).
[Crossref] [PubMed]

C. Gao, Z. Huang, Y. Wang, H. Zhan, L. Ni, K. Peng, Y. Li, Z. Jia, X. Wang, A. You, X. Xiang, J. Wang, F. Jing, H. Lin, and A. Lin, “Yb-doped aluminophosphosilicate laser fiber,” J. Lightwave Technol. 34(22), 5170–5174 (2016).
[Crossref]

Z. Wang, H. Zhan, L. Ni, K. Peng, X. Wang, J. Wang, F. Jing, and A. Lin, “Research progress of chelate precursor doping method to fabricate Yb-doped large-mode-area silica fibers for kW-level laser,” Laser Phys. 25(11), 115103 (2015).
[Crossref]

Nold, J.

Norin, L.

Ollier, N.

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

Pal, A.

M. Saha, S. D. Chowdhury, N. K. Shekhar, A. Pal, M. Pal, C. Guha, and R. Sen, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2015).

R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phaser doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
[Crossref]

Pal, M.

M. Saha, S. D. Chowdhury, N. K. Shekhar, A. Pal, M. Pal, C. Guha, and R. Sen, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2015).

R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phaser doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
[Crossref]

M. C. Paul, A. V. Kir, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Yb2O3 doped yttrium-alumino-silicate nano-particles based LMA optical fibers for high-power fiber lasers,” J. Lightwave Technol. 30(13), 2062–2068 (2012).
[Crossref]

Paul, M. C.

Payne, D. N.

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
[Crossref]

Peng, K.

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

Y. Li, K. Peng, H. Zhan, S. Liu, L. Ni, Y. Wang, J. Yu, X. Wang, J. Wang, F. Jing, and A. Lin, “Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability,” Opt. Fiber Technol. 41, 7–11 (2017).
[Crossref]

C. Gao, Z. Huang, Y. Wang, H. Zhan, L. Ni, K. Peng, Y. Li, Z. Jia, X. Wang, A. You, X. Xiang, J. Wang, F. Jing, H. Lin, and A. Lin, “Yb-doped aluminophosphosilicate laser fiber,” J. Lightwave Technol. 34(22), 5170–5174 (2016).
[Crossref]

K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, C. Gao, Y. Li, J. Wang, F. Jing, and A. Lin, “Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality,” Appl. Opt. 55(35), 10133–10137 (2016).
[Crossref] [PubMed]

Z. Wang, H. Zhan, L. Ni, K. Peng, X. Wang, J. Wang, F. Jing, and A. Lin, “Research progress of chelate precursor doping method to fabricate Yb-doped large-mode-area silica fibers for kW-level laser,” Laser Phys. 25(11), 115103 (2015).
[Crossref]

Peng, X.

Petit, L.

C. Ye, L. Petit, J. J. Koponen, I. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903512 (2014).

Petkovšek, R.

Prades, S.

F. Guerroue, T. G. R. Masson, S. Prades, C. Ranger, T. Robin, and B. Cadier, “Photodarkening in Yb-doped fibers for fiber lasers,” Fiber Integr. Opt. 28(1), 60–64 (2009).
[Crossref]

Proske, F.

Ranger, C.

F. Guerroue, T. G. R. Masson, S. Prades, C. Ranger, T. Robin, and B. Cadier, “Photodarkening in Yb-doped fibers for fiber lasers,” Fiber Integr. Opt. 28(1), 60–64 (2009).
[Crossref]

Reichel, V.

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S (2009).

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during preform collapsing,” Proc. of SPIE 6873, 68731G (2008).

Robin, T.

F. Guerroue, T. G. R. Masson, S. Prades, C. Ranger, T. Robin, and B. Cadier, “Photodarkening in Yb-doped fibers for fiber lasers,” Fiber Integr. Opt. 28(1), 60–64 (2009).
[Crossref]

Saha, M.

M. Saha, S. D. Chowdhury, N. K. Shekhar, A. Pal, M. Pal, C. Guha, and R. Sen, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2015).

R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phaser doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
[Crossref]

Sahu, J. K.

M. C. Paul, A. V. Kir, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Yb2O3 doped yttrium-alumino-silicate nano-particles based LMA optical fibers for high-power fiber lasers,” J. Lightwave Technol. 30(13), 2062–2068 (2012).
[Crossref]

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
[Crossref]

Saito, K.

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354(42-44), 4760–4764 (2008).
[Crossref]

Sato, K.

S. Kim, Y. Hujimaki, H. Taniguchi, H. Kinoshita, and K. Sato, “Fabrication and characterization of a phosphosilicate YDF with high Yb absorbance and low background loss,” Proc. of SPIE 8961, 896118 (2014).

Sattler, B.

Schreiber, T.

Schuster, K.

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

Schwuchow, A.

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and M. Jäger, “Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects,” Opt. Express 24(12), 13009–13022 (2016).
[Crossref] [PubMed]

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S (2009).

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during preform collapsing,” Proc. of SPIE 6873, 68731G (2008).

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

S. Unger, A. Schwuchow, J. Dellith, and J. Kirchhof, “Codoped materials for high power fiber lasers-diffusion behavior and optical properties,” Proc. of SPIE 6469, 646913 (2007).

Sekiya, E. H.

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354(42-44), 4760–4764 (2008).
[Crossref]

Sen, R.

M. Saha, S. D. Chowdhury, N. K. Shekhar, A. Pal, M. Pal, C. Guha, and R. Sen, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2015).

R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phaser doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
[Crossref]

She, S.

Shekhar, N. K.

M. Saha, S. D. Chowdhury, N. K. Shekhar, A. Pal, M. Pal, C. Guha, and R. Sen, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2015).

Shi, C.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Shima, K.

S. Ikoma, H. K. Nguyen, M. Kashiwagi, K. Uchiyama, K. Shima, and D. Tanaka, “3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing,” Proc. SPIE 10083, 100830Y (2017).
[Crossref]

Sidharthan, R.

Smith, A. V.

Smith, J. J.

Söderlund, M.

Standish, R. J.

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
[Crossref]

Su, R.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Sun, H.

Sun, S.

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

Šušnjar, P.

Suzuki, S.

Tanaka, D.

S. Ikoma, H. K. Nguyen, M. Kashiwagi, K. Uchiyama, K. Shima, and D. Tanaka, “3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing,” Proc. SPIE 10083, 100830Y (2017).
[Crossref]

Taniguchi, H.

S. Kim, Y. Hujimaki, H. Taniguchi, H. Kinoshita, and K. Sato, “Fabrication and characterization of a phosphosilicate YDF with high Yb absorbance and low background loss,” Proc. of SPIE 8961, 896118 (2014).

Tao, R.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Tervonen, A.

Tünnermann, A.

Uchiyama, K.

S. Ikoma, H. K. Nguyen, M. Kashiwagi, K. Uchiyama, K. Shima, and D. Tanaka, “3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing,” Proc. SPIE 10083, 100830Y (2017).
[Crossref]

Unger, S.

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and M. Jäger, “Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects,” Opt. Express 24(12), 13009–13022 (2016).
[Crossref] [PubMed]

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S (2009).

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during preform collapsing,” Proc. of SPIE 6873, 68731G (2008).

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

S. Unger, A. Schwuchow, J. Dellith, and J. Kirchhof, “Codoped materials for high power fiber lasers-diffusion behavior and optical properties,” Proc. of SPIE 6469, 646913 (2007).

Vechkanov, V. N.

M. M. Bubnova, V. N. Vechkanov, A. N. Gur’yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhacheva, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45(4), 444–449 (2009).
[Crossref]

Venkatram, N.

Vezin, H.

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

Wang, J.

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

Y. Li, K. Peng, H. Zhan, S. Liu, L. Ni, Y. Wang, J. Yu, X. Wang, J. Wang, F. Jing, and A. Lin, “Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability,” Opt. Fiber Technol. 41, 7–11 (2017).
[Crossref]

C. Gao, Z. Huang, Y. Wang, H. Zhan, L. Ni, K. Peng, Y. Li, Z. Jia, X. Wang, A. You, X. Xiang, J. Wang, F. Jing, H. Lin, and A. Lin, “Yb-doped aluminophosphosilicate laser fiber,” J. Lightwave Technol. 34(22), 5170–5174 (2016).
[Crossref]

K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, C. Gao, Y. Li, J. Wang, F. Jing, and A. Lin, “Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality,” Appl. Opt. 55(35), 10133–10137 (2016).
[Crossref] [PubMed]

Z. Wang, H. Zhan, L. Ni, K. Peng, X. Wang, J. Wang, F. Jing, and A. Lin, “Research progress of chelate precursor doping method to fabricate Yb-doped large-mode-area silica fibers for kW-level laser,” Laser Phys. 25(11), 115103 (2015).
[Crossref]

Wang, X.

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Y. Li, K. Peng, H. Zhan, S. Liu, L. Ni, Y. Wang, J. Yu, X. Wang, J. Wang, F. Jing, and A. Lin, “Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability,” Opt. Fiber Technol. 41, 7–11 (2017).
[Crossref]

C. Gao, Z. Huang, Y. Wang, H. Zhan, L. Ni, K. Peng, Y. Li, Z. Jia, X. Wang, A. You, X. Xiang, J. Wang, F. Jing, H. Lin, and A. Lin, “Yb-doped aluminophosphosilicate laser fiber,” J. Lightwave Technol. 34(22), 5170–5174 (2016).
[Crossref]

K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, C. Gao, Y. Li, J. Wang, F. Jing, and A. Lin, “Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality,” Appl. Opt. 55(35), 10133–10137 (2016).
[Crossref] [PubMed]

Z. Wang, H. Zhan, L. Ni, K. Peng, X. Wang, J. Wang, F. Jing, and A. Lin, “Research progress of chelate precursor doping method to fabricate Yb-doped large-mode-area silica fibers for kW-level laser,” Laser Phys. 25(11), 115103 (2015).
[Crossref]

Wang, Y.

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

Y. Li, K. Peng, H. Zhan, S. Liu, L. Ni, Y. Wang, J. Yu, X. Wang, J. Wang, F. Jing, and A. Lin, “Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability,” Opt. Fiber Technol. 41, 7–11 (2017).
[Crossref]

K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, C. Gao, Y. Li, J. Wang, F. Jing, and A. Lin, “Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality,” Appl. Opt. 55(35), 10133–10137 (2016).
[Crossref] [PubMed]

C. Gao, Z. Huang, Y. Wang, H. Zhan, L. Ni, K. Peng, Y. Li, Z. Jia, X. Wang, A. You, X. Xiang, J. Wang, F. Jing, H. Lin, and A. Lin, “Yb-doped aluminophosphosilicate laser fiber,” J. Lightwave Technol. 34(22), 5170–5174 (2016).
[Crossref]

Wang, Z.

Z. Wang, H. Zhan, L. Ni, K. Peng, X. Wang, J. Wang, F. Jing, and A. Lin, “Research progress of chelate precursor doping method to fabricate Yb-doped large-mode-area silica fibers for kW-level laser,” Laser Phys. 25(11), 115103 (2015).
[Crossref]

Webb, A. S.

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
[Crossref]

Wu, P.

Wu, X.

Xiang, X.

Xu, X.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Yang, B.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Yashkov, M. V.

M. M. Bubnova, V. N. Vechkanov, A. N. Gur’yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhacheva, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45(4), 444–449 (2009).
[Crossref]

Ye, C.

C. Ye, L. Petit, J. J. Koponen, I. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903512 (2014).

C. Ye, J. J. Montiel i Ponsoda, A. Tervonen, and S. Honkanen, “Refractive index change in ytterbium-doped fibers induced by photodarkening and thermal bleaching,” Appl. Opt. 49(30), 5799–5805 (2010).
[Crossref] [PubMed]

Yoo, S.

You, A.

Yu, J.

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

Y. Li, K. Peng, H. Zhan, S. Liu, L. Ni, Y. Wang, J. Yu, X. Wang, J. Wang, F. Jing, and A. Lin, “Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability,” Opt. Fiber Technol. 41, 7–11 (2017).
[Crossref]

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

Zhan, H.

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

Y. Li, K. Peng, H. Zhan, S. Liu, L. Ni, Y. Wang, J. Yu, X. Wang, J. Wang, F. Jing, and A. Lin, “Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability,” Opt. Fiber Technol. 41, 7–11 (2017).
[Crossref]

C. Gao, Z. Huang, Y. Wang, H. Zhan, L. Ni, K. Peng, Y. Li, Z. Jia, X. Wang, A. You, X. Xiang, J. Wang, F. Jing, H. Lin, and A. Lin, “Yb-doped aluminophosphosilicate laser fiber,” J. Lightwave Technol. 34(22), 5170–5174 (2016).
[Crossref]

K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, C. Gao, Y. Li, J. Wang, F. Jing, and A. Lin, “Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality,” Appl. Opt. 55(35), 10133–10137 (2016).
[Crossref] [PubMed]

Z. Wang, H. Zhan, L. Ni, K. Peng, X. Wang, J. Wang, F. Jing, and A. Lin, “Research progress of chelate precursor doping method to fabricate Yb-doped large-mode-area silica fibers for kW-level laser,” Laser Phys. 25(11), 115103 (2015).
[Crossref]

Zhang, H.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Zhang, L.

Zhao, B.

Zhao, W.

Zheng, J.

Zhou, P.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Zotov, K. V.

M. M. Bubnova, V. N. Vechkanov, A. N. Gur’yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhacheva, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45(4), 444–449 (2009).
[Crossref]

Appl. Opt. (3)

Fiber Integr. Opt. (1)

F. Guerroue, T. G. R. Masson, S. Prades, C. Ranger, T. Robin, and B. Cadier, “Photodarkening in Yb-doped fibers for fiber lasers,” Fiber Integr. Opt. 28(1), 60–64 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

C. Ye, L. Petit, J. J. Koponen, I. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903512 (2014).

IEEE Photonics Technol. Lett. (1)

M. Saha, S. D. Chowdhury, N. K. Shekhar, A. Pal, M. Pal, C. Guha, and R. Sen, “Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications,” IEEE Photonics Technol. Lett. 28(9), 1022–1025 (2015).

Inorg. Mater. (1)

M. M. Bubnova, V. N. Vechkanov, A. N. Gur’yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhacheva, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45(4), 444–449 (2009).
[Crossref]

J. Chem. Phys. (1)

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (2)

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356(18-19), 848–851 (2010).
[Crossref]

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354(42-44), 4760–4764 (2008).
[Crossref]

J. Opt. (1)

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Laser Phys. (2)

S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, “A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology,” Laser Phys. 24(3), 035103 (2014).
[Crossref]

Z. Wang, H. Zhan, L. Ni, K. Peng, X. Wang, J. Wang, F. Jing, and A. Lin, “Research progress of chelate precursor doping method to fabricate Yb-doped large-mode-area silica fibers for kW-level laser,” Laser Phys. 25(11), 115103 (2015).
[Crossref]

Laser Phys. Lett. (1)

R. Sen, M. Saha, A. Pal, M. Pal, M. Leich, and J. Kobelke, “High power laser fiber fabricated through vapor phaser doping of Ytterbium,” Laser Phys. Lett. 11(8), 085105 (2014).
[Crossref]

Opt. Express (8)

K. E. Mattsson, “Low photo darkening single mode RMO fiber,” Opt. Express 17(20), 17855–17861 (2009).
[Crossref] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and M. Jäger, “Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects,” Opt. Express 24(12), 13009–13022 (2016).
[Crossref] [PubMed]

P. Šušnjar, V. Agrež, and R. Petkovšek, “Photodarkening as a heat source in ytterbium doped fiber amplifiers,” Opt. Express 26(5), 6420–6426 (2018).
[Crossref] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008).
[Crossref] [PubMed]

S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17(12), 9924–9932 (2009).
[Crossref] [PubMed]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

Y. Li, K. Peng, H. Zhan, S. Liu, L. Ni, Y. Wang, J. Yu, X. Wang, J. Wang, F. Jing, and A. Lin, “Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability,” Opt. Fiber Technol. 41, 7–11 (2017).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Proc. of SPIE (3)

S. Kim, Y. Hujimaki, H. Taniguchi, H. Kinoshita, and K. Sato, “Fabrication and characterization of a phosphosilicate YDF with high Yb absorbance and low background loss,” Proc. of SPIE 8961, 896118 (2014).

S. Unger, A. Schwuchow, J. Dellith, and J. Kirchhof, “Codoped materials for high power fiber lasers-diffusion behavior and optical properties,” Proc. of SPIE 6469, 646913 (2007).

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during preform collapsing,” Proc. of SPIE 6873, 68731G (2008).

Proc. SPIE (3)

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb doped silica based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE 7195, 71950S (2009).

S. Ikoma, H. K. Nguyen, M. Kashiwagi, K. Uchiyama, K. Shima, and D. Tanaka, “3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing,” Proc. SPIE 10083, 100830Y (2017).
[Crossref]

S. Sun, H. Zhan, Y. Li, S. Liu, J. Jiang, K. Peng, Y. Wang, L. Ni, X. Wang, L. Jiang, J. Yu, G. Liu, P. Lu, J. Wang, F. Jing, and A. Lin, “kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber,” Proc. SPIE 10710, 107103F (2018).

Other (10)

Y. Wang, H. Zhan, K. Peng, C. Gao, Y. Li, L. Ni, X. Wang, S. Sun, S. Liu, L. Zhang, J. Yu, L. Jian, J. Wang, F. Jing, and A. Lin, “Highly-stable 20/400 Yb-doped large-mode-area fiber with 3kW laser output power,” in Asia and Communication photonics Conference (Optical Society of America, 2017), Guang Zhou, China, Paper M1A.3.

Y. Wang, C. Gao, X. Tang, H. Zhan, K. Peng, L. Ni, S. Liu, Y. Li, C. Guo, X. Wang, L. Zhang, J. Yu, L. Jiang, H. Lin, J. Wang, F. Jing, H. Lin, and A. Lin, “30/900 Yb-doped aluminophosphosilicate fiber presenting 6.85 kW laser output pumped with commercial 976 nm laser diodes,” J. Lightwave Technol., in press (2018).
[Crossref]

A. Lin, H. Zhan, K. Peng, X. Wang, L. Ni, Y. Wang, Y. Li, S. Liu, S. Sun, J. Jiang, X. Tang, Y. Liu, L. Jiang, J. Yu, J. Wang, and F. Jing, “8.74 kWPump-Gain Integrated Functional Laser Fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W2A.2.

I. P. G. Photonics, “IPG Photonics successfully tests world’s first 10 kilowatt single-mode production laser,” http://www.ipgphotonics.com/newsproduct.htm (June 15, 2009).

H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, and M. Zervas, “Fibers and fiber-optic components for high-power fiber lasers,” in SPIE LASE (International Society for Optics and Photonics, 2011), p. 791414.

K. E. Mattsson, S. N. Knudsen, B. Cadier, and T. Robin, “Photodarkening in ytterbium co-doped silica material,” in SPIE LASE (International Society for Optics and Photonics, 2008), p. 68731C.

C. V. Gapontsev, V. Fomin, and A. Yusim, “Recent progress in scaling high power fiber lasers at IPG Photonics,” presented at the 22nd Annual Solid State and Diode Laser Technology Review, Newton, Massachusetts USA, June 29-July 2, (2009).

M. E. Likhachev, S. S. Aleshkina, A. V. Shubin, M. M. Bubnov, E. M. Dianov, D. S. Lipatov, and A. N. Guryanov, “Large-mode-area highly Yb-doped photodarkening-free Al2O3-P2O5-SiO2-based fiber,” in Proc. CLEO/Europe-EQEC 2011, Munich, Germany, May 22–26, 2011, Paper CJ.P.24.

A. Halder, D. Lin, A. A. Umnikov, N. J. Ramírez-Martínez, M. Núñez-Velázquez, P. Barua, S. Alam, and J. K. Sahu, “Yb-doped Large-Mode-Area Al-P-Silicate Laser Fiber fabricated by MCVD,” in CLEO: Science and Innovations (Optical Society of America, 2018), Paper JTh2A. 77.

T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, “Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminium doping,” in OFC/ NFOE Conference on CD-ROM (Opt. Society of America, Washington, DC, 2006), OThC5 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of MOPA laser set-up. (LDs: laser diodes; FBG: fiber Bragg grating; CLS: cladding light stripper; QBH: quartz block holder; PM: power meter)
Fig. 2
Fig. 2 (a) Cross-section and (b) measured RIP of 30/600 Yb-APS fiber.
Fig. 3
Fig. 3 Radial dopant concentration: (a) Yb3+ and (b) Al3+ and P5+; (c) Al/P and (Al + P)/Yb ratio as a function of radius; (d) the calculated RIP of 30/600 Yb-APS fiber.
Fig. 4
Fig. 4 EPMA area analysis of Al (a), P (b), Si (c) and Yb (d) elements.
Fig. 5
Fig. 5 Absorption spectrum of 30/600 Yb-APS fiber.
Fig. 6
Fig. 6 Fiber laser experimental results: (a) output power and slope efficiency, (b) laser output spectrum. The inset is laser output spectrum (in dBm).
Fig. 7
Fig. 7 Power stability test of laser systems setup at 5.16kW.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δn 10 4 =67 c Yb 2 O 3 +21.5( c Al 2 O 3 c P 2 O 5 )1.7 c P 2 O 5 ,

Metrics