Abstract

There is growing interest in refractory metal thin films for a range of emerging nanophotonic applications, including high temperature plasmonic structures and infrared superconducting single photon detectors. We present a detailed comparison of optical properties for key representative materials in this class (NbN, NbTiN, TiN and MoSi) with texture varying from crystalline to amorphous. NbN, NbTiN and MoSi have been grown in an ultra-high vacuum sputter deposition system on silicon substrates at room temperature. Two different techniques (sputtering and atomic layer deposition) have been employed to deposit TiN. We have carried out variable angle ellipsometric measurements of optical properties from ultraviolet to mid-infrared wavelengths. We compare with high resolution transmission electron microscopy analysis of microstructure. Sputter-deposited TiN and MoSi have shown the highest optical absorption in the infrared wavelengths relative to NbN, NbTiN and ALD-deposited TiN. We have also modelled the performance of a semi-infinite metal air interface as a plasmonic structure with the above mentioned refractory metal based thin films as the plasmonic components. This study has implications for the design of next-generation superconducting nanowire single photon detectors and plasmonic nanostructure-based devices.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
High aspect ratio titanium nitride trench structures as plasmonic biosensor

E. Shkondin, T. Repän, O. Takayama, and A. V. Lavrinenko
Opt. Mater. Express 7(11) 4171-4182 (2017)

Effective third-order nonlinearities in metallic refractory titanium nitride thin films

Nathaniel Kinsey, Akbar Ali Syed, Devon Courtwright, Clayton DeVault, Carl E. Bonner, Vladimir I. Gavrilenko, Vladimir M. Shalaev, David J. Hagan, Eric W. Van Stryland, and Alexandra Boltasseva
Opt. Mater. Express 5(11) 2395-2403 (2015)

Widely transparent electrodes based on ultrathin metals

D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri
Opt. Lett. 34(3) 325-327 (2009)

References

  • View by:
  • |
  • |
  • |

  1. T. E. Tietz and J. W. Wilson, Behavior and Properties of Refractory Metals (Stanford University Press, 1965).
  2. M. Bauccio, ASM Metals Reference Book (ASM International, 1993).
  3. E. Lassner and W.-D. Schubert, Tungsten : Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Kluwer Academic/Plenum Publishers, 1999).
  4. D. Cristea, I. Ghiuță, and D. Munteanu, “Tantalum based materials for implants and prosthesis applications,” Bull. Transilv. Univ. Braşov 857(2), (2015).
  5. M. E. Packer and M. J. Murray, “A floating zone furnace for melting refractory metals and metal-like compounds,” J. Phys. Educ. 5(3), 246 (1972).
  6. R. E. Smallwood, ASTM Committee B-10 on Reactive and Refractory Metals and Alloys, and L. Symposium on Refractory Metals and Their Industrial Applications, Refractory Metals and Their Industrial Applications: A Symposium (ASTM, 1984).
  7. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref] [PubMed]
  8. A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
    [Crossref]
  9. A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials Development for High Efficiency Superconducting Nanowire Single-Photon Detectors,” MRS Proc. 1807, 1–6 (2015).
    [Crossref]
  10. D. Bosworth, S.-L. Sahonta, R. H. Hadfield, and Z. H. Barber, “Amorphous molybdenum silicon superconducting thin films,” AIP Adv. 5(8), 087106 (2015).
    [Crossref]
  11. D. M. O’Carroll, “Nanophotonics and plasmonics for solar energy harvesting and conversion,” J. Photonics Energy 5(1), 057001 (2015).
    [Crossref]
  12. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  13. A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6(1), 38647 (2016).
    [Crossref] [PubMed]
  14. P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(12), 3128–3154 (2015).
    [Crossref]
  15. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref] [PubMed]
  16. J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
    [Crossref]
  17. J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
    [Crossref] [PubMed]
  18. R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).
    [Crossref]
  19. J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
    [Crossref]
  20. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
    [Crossref]
  21. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
    [Crossref]
  22. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
    [Crossref] [PubMed]
  23. F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, and F. Lévy, “High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process,” Opt. Express 16(5), 3191–3196 (2008).
    [Crossref] [PubMed]
  24. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108(5), 1175–1204 (1957).
    [Crossref]
  25. M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
    [Crossref]
  26. J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
    [Crossref] [PubMed]
  27. R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
    [Crossref] [PubMed]
  28. W. M. Haynes, CRC Handbook of Chemistry and Physics : A Ready-Reference Book of Chemical and Physical Data, 92nd ed. (CRC Press, 2011).
  29. M. E. Straumanis and S. Zyszczynski, “Lattice parameters, thermal expansion coefficients and densities of Nb, and of solid solutions Nb–O and Nb–N–O and their defect structure,” J. Appl. Cryst. 3(1), 1–6 (1970).
    [Crossref]
  30. C. M. Perlov and C. Y. Fong, “Calculation of the superconducting transition temperature in niobium,” Phys. Rev. B 29(3), 1243–1249 (1984).
    [Crossref]
  31. P. Ettmayer, R. Kieffer, and F. Hattinger, “Determination of melting points of metal nitrides under nitrogen pressure,” Metall 28(12), 1151–1156 (1974).
  32. G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
    [Crossref] [PubMed]
  33. R. G. Ross and W. Hume-Rothery, “High temperature X-ray metallography: I. A new debye-scherrer camera for use at very high temperatures II. A new parafocusing camera III. Applications to the study of chromium, hafnium, molybdenum, rhodium, ruthenium and tungsten,” J. Less Common Met. 5(3), 258–270 (1963).
    [Crossref]
  34. I. G. D ’yakov and A. D. Shvets, “Investigation of superconducting properties of molybdenum,” Sov. Phys. 22(49), 1091–1093 (1966).
  35. A. Misra, J. J. Petrovic, and T. E. Mitchell, “Microstructures and mechanical properties of a Mo3Si-Mo5Si3 composite,” Scr. Mater. 40(2), 191–196 (1998).
    [Crossref]
  36. R. R. Pawar and V. T. Deshpande, “The anisotropy of the thermal expansion of α-titanium,” Acta Crystallogr. A 24(2), 316–317 (1968).
    [Crossref]
  37. M. C. Steele and R. A. Hein, “Superconductivity of Titanium,” Phys. Rev. 92(2), 243–247 (1953).
    [Crossref]
  38. H. O. Pierson, Handbook of Refractory Carbides and Nitrides : Properties, Characteristics, Processing, and Applications (Noyes Publications, 1996).
  39. M. Marlo and V. Milman, “Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals,” Phys. Rev. B 62(4), 2899–2907 (2000).
    [Crossref]
  40. W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
    [Crossref]
  41. A. Banerjee, “Optimisation of superconducting thin film growth for next generation superconducting detector applications,” University of Glasgow (2017).
  42. O. Madelung, U. Rössler, and M. Schulz, eds., “Silicon (Si), lattice parameter, thermal expansion,” in Group IV Elements, IV–IV and III–V Compounds. Part B - Electronic, Transport, Optical and Other Properties (Springer Berlin Heidelberg, 2002), pp. 1–17.
  43. J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
    [Crossref]
  44. Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
    [Crossref]
  45. V. Anant, “Engineering the optical properties of subwavelength devices and materials,” Massachusetts Institute of Technology (2007).
  46. M. Leskela and M. Ritalä, “Atomic layer deposition (ALD) : from precursors to thin film structures,” Thin Solid Films 409(1), 138–146 (2002).
    [Crossref]
  47. E. Alfonso, J. Olaya, and G. Cubillos, “Thin film growth through sputtering technique and its applications,” in Crystallization - Science and Technology (InTech, 2012).
  48. S. A. Maier, Plasmonics : Fundamentals and Applications (Springer, 2007).
  49. C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
    [Crossref]
  50. P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
    [Crossref]
  51. H. Van Bui, A. Y. Kovalgin, and R. A. M. Wolters, “On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films,” Appl. Surf. Sci. 269, 45–49 (2013).
    [Crossref]
  52. C. M. Zgrabik and E. L. Hu, “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mater. Express 5(12), 2786 (2015).
    [Crossref]
  53. D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
    [Crossref]
  54. Y. Gutiérrez, R. A. de la Osa, D. Ortiz, J. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(2), 64 (2018).
    [Crossref]

2018 (2)

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]

Y. Gutiérrez, R. A. de la Osa, D. Ortiz, J. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(2), 64 (2018).
[Crossref]

2017 (3)

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

2016 (3)

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6(1), 38647 (2016).
[Crossref] [PubMed]

J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref] [PubMed]

C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

2015 (6)

R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref] [PubMed]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(12), 3128–3154 (2015).
[Crossref]

D. Bosworth, S.-L. Sahonta, R. H. Hadfield, and Z. H. Barber, “Amorphous molybdenum silicon superconducting thin films,” AIP Adv. 5(8), 087106 (2015).
[Crossref]

D. M. O’Carroll, “Nanophotonics and plasmonics for solar energy harvesting and conversion,” J. Photonics Energy 5(1), 057001 (2015).
[Crossref]

C. M. Zgrabik and E. L. Hu, “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mater. Express 5(12), 2786 (2015).
[Crossref]

2014 (2)

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

2013 (2)

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

H. Van Bui, A. Y. Kovalgin, and R. A. M. Wolters, “On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films,” Appl. Surf. Sci. 269, 45–49 (2013).
[Crossref]

2012 (1)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

2011 (1)

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

2008 (5)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, and F. Lévy, “High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process,” Opt. Express 16(5), 3191–3196 (2008).
[Crossref] [PubMed]

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref] [PubMed]

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref] [PubMed]

2007 (1)

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).
[Crossref]

2003 (1)

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

2002 (1)

M. Leskela and M. Ritalä, “Atomic layer deposition (ALD) : from precursors to thin film structures,” Thin Solid Films 409(1), 138–146 (2002).
[Crossref]

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

2000 (1)

M. Marlo and V. Milman, “Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals,” Phys. Rev. B 62(4), 2899–2907 (2000).
[Crossref]

1998 (1)

A. Misra, J. J. Petrovic, and T. E. Mitchell, “Microstructures and mechanical properties of a Mo3Si-Mo5Si3 composite,” Scr. Mater. 40(2), 191–196 (1998).
[Crossref]

1984 (1)

C. M. Perlov and C. Y. Fong, “Calculation of the superconducting transition temperature in niobium,” Phys. Rev. B 29(3), 1243–1249 (1984).
[Crossref]

1978 (1)

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

1974 (1)

P. Ettmayer, R. Kieffer, and F. Hattinger, “Determination of melting points of metal nitrides under nitrogen pressure,” Metall 28(12), 1151–1156 (1974).

1972 (1)

M. E. Packer and M. J. Murray, “A floating zone furnace for melting refractory metals and metal-like compounds,” J. Phys. Educ. 5(3), 246 (1972).

1970 (1)

M. E. Straumanis and S. Zyszczynski, “Lattice parameters, thermal expansion coefficients and densities of Nb, and of solid solutions Nb–O and Nb–N–O and their defect structure,” J. Appl. Cryst. 3(1), 1–6 (1970).
[Crossref]

1968 (1)

R. R. Pawar and V. T. Deshpande, “The anisotropy of the thermal expansion of α-titanium,” Acta Crystallogr. A 24(2), 316–317 (1968).
[Crossref]

1966 (1)

I. G. D ’yakov and A. D. Shvets, “Investigation of superconducting properties of molybdenum,” Sov. Phys. 22(49), 1091–1093 (1966).

1963 (1)

R. G. Ross and W. Hume-Rothery, “High temperature X-ray metallography: I. A new debye-scherrer camera for use at very high temperatures II. A new parafocusing camera III. Applications to the study of chromium, hafnium, molybdenum, rhodium, ruthenium and tungsten,” J. Less Common Met. 5(3), 258–270 (1963).
[Crossref]

1957 (1)

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108(5), 1175–1204 (1957).
[Crossref]

1953 (1)

M. C. Steele and R. A. Hein, “Superconductivity of Titanium,” Phys. Rev. 92(2), 243–247 (1953).
[Crossref]

Abadias, G.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]

Allman, M. S.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Altepeter, J. B.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Baffou, G.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6(1), 38647 (2016).
[Crossref] [PubMed]

Baily, S. A.

G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref] [PubMed]

Baker, J. H.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

Baker, L. J.

A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]

J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref] [PubMed]

Banerjee, A.

A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]

J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref] [PubMed]

Barber, Z. H.

A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]

J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref] [PubMed]

D. Bosworth, S.-L. Sahonta, R. H. Hadfield, and Z. H. Barber, “Amorphous molybdenum silicon superconducting thin films,” AIP Adv. 5(8), 087106 (2015).
[Crossref]

Bardeen, J.

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108(5), 1175–1204 (1957).
[Crossref]

Bauer, E.

G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref] [PubMed]

Bellas, D. V.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]

Benkahoul, M.

Beyer, A.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Bitauld, D.

Boiadjieva, N.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

Boltasseva, A.

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Bosworth, D.

A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]

J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref] [PubMed]

D. Bosworth, S.-L. Sahonta, R. H. Hadfield, and Z. H. Barber, “Amorphous molybdenum silicon superconducting thin films,” AIP Adv. 5(8), 087106 (2015).
[Crossref]

Briggs, J. A.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Burrell, A. K.

G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref] [PubMed]

Chen, J.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref] [PubMed]

Christensen, A. N.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

Chulkova, G.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Civale, L.

G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref] [PubMed]

Convey, D.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

Cooper, L. N.

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108(5), 1175–1204 (1957).
[Crossref]

D ’yakov, I. G.

I. G. D ’yakov and A. D. Shvets, “Investigation of superconducting properties of molybdenum,” Sov. Phys. 22(49), 1091–1093 (1966).

de la Osa, R. A.

Y. Gutiérrez, R. A. de la Osa, D. Ortiz, J. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(2), 64 (2018).
[Crossref]

Della Giovampaola, C.

C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

Deshpande, V. T.

R. R. Pawar and V. T. Deshpande, “The anisotropy of the thermal expansion of α-titanium,” Acta Crystallogr. A 24(2), 316–317 (1968).
[Crossref]

Deslandes, H.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

Devizenko, A. Y.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Dionne, J. A.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Divochiy, A. V.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Doye, A.

A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]

Drysdale, T. D.

R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref] [PubMed]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Engheta, N.

C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

Erotokritou, K.

A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]

J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref] [PubMed]

Ettmayer, P.

P. Ettmayer, R. Kieffer, and F. Hattinger, “Determination of melting points of metal nitrides under nitrogen pressure,” Metall 28(12), 1151–1156 (1974).

Fiore, A.

Fong, C. Y.

C. M. Perlov and C. Y. Fong, “Calculation of the superconducting transition temperature in niobium,” Phys. Rev. B 29(3), 1243–1249 (1984).
[Crossref]

Gaggero, A.

Gerrits, T.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Giannini, V.

R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref] [PubMed]

Gokden, B.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref] [PubMed]

Gol’tsman, G. N.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Goldhaber-Gordon, D.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Goltsman, G. N.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

González, F.

Y. Gutiérrez, R. A. de la Osa, D. Ortiz, J. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(2), 64 (2018).
[Crossref]

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guler, U.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Gutiérrez, Y.

Y. Gutiérrez, R. A. de la Osa, D. Ortiz, J. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(2), 64 (2018).
[Crossref]

Hadfield, R. H.

A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]

J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref] [PubMed]

D. Bosworth, S.-L. Sahonta, R. H. Hadfield, and Z. H. Barber, “Amorphous molybdenum silicon superconducting thin films,” AIP Adv. 5(8), 087106 (2015).
[Crossref]

R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref] [PubMed]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref] [PubMed]

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hattinger, F.

P. Ettmayer, R. Kieffer, and F. Hattinger, “Determination of melting points of metal nitrides under nitrogen pressure,” Metall 28(12), 1151–1156 (1974).

Heath, R. M.

A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]

J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016).
[Crossref] [PubMed]

R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref] [PubMed]

Hein, R. A.

M. C. Steele and R. A. Hein, “Superconductivity of Titanium,” Phys. Rev. 92(2), 243–247 (1953).
[Crossref]

Hilfiker, J. N.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

Horansky, R. D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Hu, E. L.

Hume-Rothery, W.

R. G. Ross and W. Hume-Rothery, “High temperature X-ray metallography: I. A new debye-scherrer camera for use at very high temperatures II. A new parafocusing camera III. Applications to the study of chromium, hafnium, molybdenum, rhodium, ruthenium and tungsten,” J. Less Common Met. 5(3), 258–270 (1963).
[Crossref]

Jain, M.

G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref] [PubMed]

Jia, Q.

G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref] [PubMed]

Kaiser, R.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

Kalfagiannis, N.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(12), 3128–3154 (2015).
[Crossref]

Kassavetis, S.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(12), 3128–3154 (2015).
[Crossref]

Kieffer, R.

P. Ettmayer, R. Kieffer, and F. Hattinger, “Determination of melting points of metal nitrides under nitrogen pressure,” Metall 28(12), 1151–1156 (1974).

Kildishev, A. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Kinsey, N.

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Kirkwood, R. A.

Korneev, A.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

Korneev, A. A.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Korneeva, Y. P.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Kouminov, P.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

Kovalgin, A. Y.

H. Van Bui, A. Y. Kovalgin, and R. A. M. Wolters, “On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films,” Appl. Surf. Sci. 269, 45–49 (2013).
[Crossref]

Kumar, P.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref] [PubMed]

Kumor, D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Lalisse, A.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6(1), 38647 (2016).
[Crossref] [PubMed]

Lee, K. F.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref] [PubMed]

Leibowitz, M.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

Lekka, C.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]

Leoni, R.

Leskela, M.

M. Leskela and M. Ritalä, “Atomic layer deposition (ALD) : from precursors to thin film structures,” Thin Solid Films 409(1), 138–146 (2002).
[Crossref]

Lévy, F.

Li, J.

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Lidorikis, E.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Lita, E.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Lo, W.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

Luo, H.

G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

MacLaren, I.

A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]

Maier, S. A.

R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref] [PubMed]

Malinsky, R.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

Manova, N. N.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Marlo, M.

M. Marlo and V. Milman, “Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals,” Phys. Rev. B 62(4), 2899–2907 (2000).
[Crossref]

Marsili, F.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, and F. Lévy, “High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process,” Opt. Express 16(5), 3191–3196 (2008).
[Crossref] [PubMed]

Mattioli, F.

McCleskey, T. M.

G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref] [PubMed]

Medic, M.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref] [PubMed]

Melosh, N. A.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Mikhailov, M. Y.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Miki, S.

R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref] [PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

Milman, V.

M. Marlo and V. Milman, “Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals,” Phys. Rev. B 62(4), 2899–2907 (2000).
[Crossref]

Mirin, R.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Mirin, R. P.

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).
[Crossref]

Misra, A.

A. Misra, J. J. Petrovic, and T. E. Mitchell, “Microstructures and mechanical properties of a Mo3Si-Mo5Si3 composite,” Scr. Mater. 40(2), 191–196 (1998).
[Crossref]

Mitchell, T. E.

A. Misra, J. J. Petrovic, and T. E. Mitchell, “Microstructures and mechanical properties of a Mo3Si-Mo5Si3 composite,” Scr. Mater. 40(2), 191–196 (1998).
[Crossref]

Moreno, F.

Y. Gutiérrez, R. A. de la Osa, D. Ortiz, J. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(2), 64 (2018).
[Crossref]

Müller-Vogt, G.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

Murray, M. J.

M. E. Packer and M. J. Murray, “A floating zone furnace for melting refractory metals and metal-like compounds,” J. Phys. Educ. 5(3), 246 (1972).

Naik, G. V.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Nam, S. W.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref] [PubMed]

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).
[Crossref]

Natarajan, C. M.

Nord, M.

A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]

O’Carroll, D. M.

D. M. O’Carroll, “Nanophotonics and plasmonics for solar energy harvesting and conversion,” J. Photonics Energy 5(1), 057001 (2015).
[Crossref]

Okunev, O.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Ortiz, D.

Y. Gutiérrez, R. A. de la Osa, D. Ortiz, J. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(2), 64 (2018).
[Crossref]

Packer, M. E.

M. E. Packer and M. J. Murray, “A floating zone furnace for melting refractory metals and metal-like compounds,” J. Phys. Educ. 5(3), 246 (1972).

Patsalas, P.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(12), 3128–3154 (2015).
[Crossref]

Pawar, R. R.

R. R. Pawar and V. T. Deshpande, “The anisotropy of the thermal expansion of α-titanium,” Acta Crystallogr. A 24(2), 316–317 (1968).
[Crossref]

Pearlman, A.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

Perlov, C. M.

C. M. Perlov and C. Y. Fong, “Calculation of the superconducting transition temperature in niobium,” Phys. Rev. B 29(3), 1243–1249 (1984).
[Crossref]

Pershin, Y. P.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Petach, T. A.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Petrovic, J. J.

A. Misra, J. J. Petrovic, and T. E. Mitchell, “Microstructures and mechanical properties of a Mo3Si-Mo5Si3 composite,” Scr. Mater. 40(2), 191–196 (1998).
[Crossref]

Plain, J.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6(1), 38647 (2016).
[Crossref] [PubMed]

Reddy, H.

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

Ritalä, M.

M. Leskela and M. Ritalä, “Atomic layer deposition (ALD) : from precursors to thin film structures,” Thin Solid Films 409(1), 138–146 (2002).
[Crossref]

Ross, R. G.

R. G. Ross and W. Hume-Rothery, “High temperature X-ray metallography: I. A new debye-scherrer camera for use at very high temperatures II. A new parafocusing camera III. Applications to the study of chromium, hafnium, molybdenum, rhodium, ruthenium and tungsten,” J. Less Common Met. 5(3), 258–270 (1963).
[Crossref]

Sahasrabuddhe, K.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Sahonta, S.-L.

D. Bosworth, S.-L. Sahonta, R. H. Hadfield, and Z. H. Barber, “Amorphous molybdenum silicon superconducting thin films,” AIP Adv. 5(8), 087106 (2015).
[Crossref]

Saiz, J.

Y. Gutiérrez, R. A. de la Osa, D. Ortiz, J. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(2), 64 (2018).
[Crossref]

Schrieffer, J. R.

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108(5), 1175–1204 (1957).
[Crossref]

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Shah, D.

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Shaw, M. D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Shvets, A. D.

I. G. D ’yakov and A. D. Shvets, “Investigation of superconducting properties of molybdenum,” Sov. Phys. 22(49), 1091–1093 (1966).

Singh, N.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

Sivakov, A. G.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Slysz, W.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

Smirnov, K.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Smirnov, K. V.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Smith, S. M.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

Sobolewski, R.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Sorel, M.

Spengler, W.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

Steele, M. C.

M. C. Steele and R. A. Hein, “Superconductivity of Titanium,” Phys. Rev. 92(2), 243–247 (1953).
[Crossref]

Stevens, M.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Stevens, M. J.

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).
[Crossref]

Straumanis, M. E.

M. E. Straumanis and S. Zyszczynski, “Lattice parameters, thermal expansion coefficients and densities of Nb, and of solid solutions Nb–O and Nb–N–O and their defect structure,” J. Appl. Cryst. 3(1), 1–6 (1970).
[Crossref]

Tanner, M. G.

R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref] [PubMed]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

Terai, H.

Tessier, G.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6(1), 38647 (2016).
[Crossref] [PubMed]

Tiwald, T.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

Tompkins, H. G.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

Tsao, C.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

Vakhtomin, Y. B.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Van Bui, H.

H. Van Bui, A. Y. Kovalgin, and R. A. M. Wolters, “On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films,” Appl. Surf. Sci. 269, 45–49 (2013).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Verevkin, A.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

Verma, V. B.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Voronov, B.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Wang, Z.

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Wilsher, K.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

Wolters, R. A. M.

H. Van Bui, A. Y. Kovalgin, and R. A. M. Wolters, “On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films,” Appl. Surf. Sci. 269, 45–49 (2013).
[Crossref]

Yamashita, T.

Zgrabik, C. M.

Zhang, J.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhao, Y.

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Zhou, H.

G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref] [PubMed]

Zou, G.

G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref] [PubMed]

Zyszczynski, S.

M. E. Straumanis and S. Zyszczynski, “Lattice parameters, thermal expansion coefficients and densities of Nb, and of solid solutions Nb–O and Nb–N–O and their defect structure,” J. Appl. Cryst. 3(1), 1–6 (1970).
[Crossref]

Acta Crystallogr. A (1)

R. R. Pawar and V. T. Deshpande, “The anisotropy of the thermal expansion of α-titanium,” Acta Crystallogr. A 24(2), 316–317 (1968).
[Crossref]

Adv. Mater. (1)

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN Films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

AIP Adv. (1)

D. Bosworth, S.-L. Sahonta, R. H. Hadfield, and Z. H. Barber, “Amorphous molybdenum silicon superconducting thin films,” AIP Adv. 5(8), 087106 (2015).
[Crossref]

Appl. Phys. Lett. (3)

J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Appl. Sci. (1)

Y. Gutiérrez, R. A. de la Osa, D. Ortiz, J. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(2), 64 (2018).
[Crossref]

Appl. Surf. Sci. (1)

H. Van Bui, A. Y. Kovalgin, and R. A. M. Wolters, “On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films,” Appl. Surf. Sci. 269, 45–49 (2013).
[Crossref]

Chem. Commun. (Camb.) (1)

G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008).
[Crossref] [PubMed]

Electron. Lett. (1)

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003).
[Crossref]

J. Appl. Cryst. (1)

M. E. Straumanis and S. Zyszczynski, “Lattice parameters, thermal expansion coefficients and densities of Nb, and of solid solutions Nb–O and Nb–N–O and their defect structure,” J. Appl. Cryst. 3(1), 1–6 (1970).
[Crossref]

J. Appl. Phys. (1)

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).
[Crossref]

J. Less Common Met. (1)

R. G. Ross and W. Hume-Rothery, “High temperature X-ray metallography: I. A new debye-scherrer camera for use at very high temperatures II. A new parafocusing camera III. Applications to the study of chromium, hafnium, molybdenum, rhodium, ruthenium and tungsten,” J. Less Common Met. 5(3), 258–270 (1963).
[Crossref]

J. Photonics Energy (1)

D. M. O’Carroll, “Nanophotonics and plasmonics for solar energy harvesting and conversion,” J. Photonics Energy 5(1), 057001 (2015).
[Crossref]

J. Phys. Educ. (1)

M. E. Packer and M. J. Murray, “A floating zone furnace for melting refractory metals and metal-like compounds,” J. Phys. Educ. 5(3), 246 (1972).

Mater. Sci. Eng. Rep. (1)

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. Rep. 123, 1–55 (2018).
[Crossref]

Materials (Basel) (1)

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(12), 3128–3154 (2015).
[Crossref]

Metall (1)

P. Ettmayer, R. Kieffer, and F. Hattinger, “Determination of melting points of metal nitrides under nitrogen pressure,” Metall 28(12), 1151–1156 (1974).

Nano Lett. (1)

R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Mater. Express (1)

Phys. Rev. (2)

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108(5), 1175–1204 (1957).
[Crossref]

M. C. Steele and R. A. Hein, “Superconductivity of Titanium,” Phys. Rev. 92(2), 243–247 (1953).
[Crossref]

Phys. Rev. B (4)

M. Marlo and V. Milman, “Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals,” Phys. Rev. B 62(4), 2899–2907 (2000).
[Crossref]

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys. Rev. B 17(3), 1095–1101 (1978).
[Crossref]

C. M. Perlov and C. Y. Fong, “Calculation of the superconducting transition temperature in niobium,” Phys. Rev. B 29(3), 1243–1249 (1984).
[Crossref]

C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

Phys. Rev. Lett. (1)

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref] [PubMed]

Sci. Rep. (1)

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6(1), 38647 (2016).
[Crossref] [PubMed]

Science (1)

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Scr. Mater. (1)

A. Misra, J. J. Petrovic, and T. E. Mitchell, “Microstructures and mechanical properties of a Mo3Si-Mo5Si3 composite,” Scr. Mater. 40(2), 191–196 (1998).
[Crossref]

Sov. Phys. (1)

I. G. D ’yakov and A. D. Shvets, “Investigation of superconducting properties of molybdenum,” Sov. Phys. 22(49), 1091–1093 (1966).

Supercond. Sci. Technol. (3)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017).
[Crossref]

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Thin Solid Films (2)

M. Leskela and M. Ritalä, “Atomic layer deposition (ALD) : from precursors to thin film structures,” Thin Solid Films 409(1), 138–146 (2002).
[Crossref]

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

Other (13)

E. Alfonso, J. Olaya, and G. Cubillos, “Thin film growth through sputtering technique and its applications,” in Crystallization - Science and Technology (InTech, 2012).

S. A. Maier, Plasmonics : Fundamentals and Applications (Springer, 2007).

V. Anant, “Engineering the optical properties of subwavelength devices and materials,” Massachusetts Institute of Technology (2007).

A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials Development for High Efficiency Superconducting Nanowire Single-Photon Detectors,” MRS Proc. 1807, 1–6 (2015).
[Crossref]

R. E. Smallwood, ASTM Committee B-10 on Reactive and Refractory Metals and Alloys, and L. Symposium on Refractory Metals and Their Industrial Applications, Refractory Metals and Their Industrial Applications: A Symposium (ASTM, 1984).

T. E. Tietz and J. W. Wilson, Behavior and Properties of Refractory Metals (Stanford University Press, 1965).

M. Bauccio, ASM Metals Reference Book (ASM International, 1993).

E. Lassner and W.-D. Schubert, Tungsten : Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Kluwer Academic/Plenum Publishers, 1999).

D. Cristea, I. Ghiuță, and D. Munteanu, “Tantalum based materials for implants and prosthesis applications,” Bull. Transilv. Univ. Braşov 857(2), (2015).

W. M. Haynes, CRC Handbook of Chemistry and Physics : A Ready-Reference Book of Chemical and Physical Data, 92nd ed. (CRC Press, 2011).

H. O. Pierson, Handbook of Refractory Carbides and Nitrides : Properties, Characteristics, Processing, and Applications (Noyes Publications, 1996).

A. Banerjee, “Optimisation of superconducting thin film growth for next generation superconducting detector applications,” University of Glasgow (2017).

O. Madelung, U. Rössler, and M. Schulz, eds., “Silicon (Si), lattice parameter, thermal expansion,” in Group IV Elements, IV–IV and III–V Compounds. Part B - Electronic, Transport, Optical and Other Properties (Springer Berlin Heidelberg, 2002), pp. 1–17.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Complex refractive index measurement for uncapped and capped MoSi films using variable angle spectroscopic ellipsometry (VASE) and comparison with optical constants (index of refraction n and extinction coefficient κ) measurements of NbN and NbTiN films (a) refractive index measurement of MoSi film with Si cap, MoSi film without a Si cap, NbN film and NbTiN film; (b) extinction coefficient measurement of MoSi film with Si cap, MoSi film without a Si cap, NbN film and NbTiN film.
Fig. 2
Fig. 2 High resolution transmission electron microscopy (HRTEM) analysis of NbTiN and MoSi thin films (a) TEM image of 5 nm thick NbTiN, the image shows the existence of polycrystalline structures and large grains in the film; (b) 5 nm thick MoSi with a Si cap, since the Si cap has been deposited without breaking the vacuum of the deposition system there is no sharp interface between MoSi thin film and silicon cap; (c) 5 nm thick MoSi without any Si cap (diffraction pattern recorded from the sample has been shown at the bottom of the figure) indicating the amorphous nature of the film.
Fig. 3
Fig. 3 Evaluation of complex refractive index of TiN thin films grown in the sputter deposition system (In the inset of top figure, a magnified view of n(λ) curve for 5 nm, 30 nm and 100 nm thick TiN films).
Fig. 4
Fig. 4 Measurement of complex refractive index of TiN thin films grown in the atomic layer deposition system: extinction coefficient falls consistently with film thickness, thinnest film (3 nm thick) shows lowest value of κ over whole wavelength range.
Fig. 5
Fig. 5 Extinction coefficient (κ) for TiN films grown in two different deposition techniques (sputtering and atomic layer deposition) as a function of film thickness at 1550 nm wavelength
Fig. 6
Fig. 6 High resolution transmission microscopy (HRTEM) images of TiN films grown on silicon substrate (a) film grown using sputter deposition system; (b) ALD (Atomic layer deposition) deposited film; the existence of crystalline structure is evident in both the images.
Fig. 7
Fig. 7 Wavelength dependence of real part and imaginary part of permittivity, ε (a) Re(ε) of 5 nm thick MoSi (without any silicon cap), NbN and NbTiN thin films as a function of wavelength; (b) spectral variation of Re(ε) for TiN thin films grown in the atomic layer deposition system, thickness varying from 3 nm to 30 nm; (c) Im(ε) of 5 nm thick MoSi (without any silicon cap), NbN and NbTiN thin films; (d) Im(ε) of ALD deposited TiN films
Fig. 8
Fig. 8 Wavelength dependence of propagation length (quantifying the 1/e field-decay length along the direction of propagation of surface plasmon polariton wave in a metal/dielectric interface) of refractory metal-based thin materials we have explored in this study:(a) TiN grown in the sputter system; (b) TiN films deposited in ALD; (c) a comparison of propagation length of 5 nm thick MoSi (without Si cap), NbN, NbTiN and TiN grown by the two different techniques.
Fig. 9
Fig. 9 Spectral variation of evanescent decay length (quantifying the confinement of surface plasmon polariton wave in a metal/dielectric interface) of refractory metal-based thin materials we have explored in this study (a) TiN grown in the sputter system; (b) TiN films deposited in ALD; (c) a comparison of propagation length of 5 nm thick MoSi (without any Si cap), NbN, NbTiN and TiN grown in the 2 different techniques.
Fig. 10
Fig. 10 Variation of superconducting transition temperature of NbTiN, MoSi and TiN (sputtered and ALD grown) films with film thickness. As described in Section 2, sputtered films have been grown on silicon substrates at room temperature and ALD TiN films were grown on silicon substrates at 350°C.

Tables (3)

Tables Icon

Table 1 Comparison of melting points and superconducting properties of refractory metals or metal-based alloys or compounds

Tables Icon

Table 2 Deposition parameters used for film growth in the sputter system

Tables Icon

Table 3 Optical absorption of 5 nm thick NbN, NbTiN, MoSi and TiN

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L= [2Im(β)] 1
β= 2π λ ε m ε m +1 ;
z ^ = 1 | k z |
k z = β 2 ( 2π λ ) 2 .

Metrics