Abstract

In this study, a cylindrical-water-resonator-based absorber with an ultra-broad operating band at microwave wavelengths is demonstrated theoretically and experimentally. By utilizing the dielectric resonator mode, spoof surface plasmon polariton mode, and grating mode of the cylindrical water resonator, the proposed absorber exhibits an absorptivity higher than 90% over almost the entire ultra-broad operating band from 5.58 to 24.21 GHz, with a relative bandwidth as high as 125%. The angular tolerance and thermal stability of the proposed absorber are simulated, and the results indicate that the absorber performs well in a wide range of angles of incidence and exhibits a weak dependence on the water temperature. The low cost, ultra-broad operating band, good wide-angle characteristics, and thermal stability make the absorber promising for applications in antenna measurement, stealth technology, and energy harvesting.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Water metamaterial for ultra-broadband and wide-angle absorption

Jianwen Xie, Weiren Zhu, Ivan D. Rukhlenko, Fajun Xiao, Chong He, Junping Geng, Xianling Liang, Ronghong Jin, and Malin Premaratne
Opt. Express 26(4) 5052-5059 (2018)

Broadband microwave absorption utilizing water-based metamaterial structures

Junming Zhao, Shu Wei, Cheng Wang, Ke Chen, Bo Zhu, Tian Jiang, and Yijun Feng
Opt. Express 26(7) 8522-8531 (2018)

Metasurface Salisbury screen: achieving ultra-wideband microwave absorption

Ziheng Zhou, Ke Chen, Junming Zhao, Ping Chen, Tian Jiang, Bo Zhu, Yijun Feng, and Yue Li
Opt. Express 25(24) 30241-30252 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. R. Paul, Introduction to Electromagnetic Compatibility (John Wiley & Sons, 2006).
  2. G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
    [Crossref]
  3. J. Grant, I. Escorcia‐Carranza, C. Li, I. J. McCrindle, J. Gough, and D. R. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
    [Crossref]
  4. P. D. Mauskopf, J. J. Bock, H. Del Castillo, W. L. Holzapfel, and A. E. Lange, “Composite infrared bolometers with Si3N4 micromesh absorbers,” Appl. Opt. 36(4), 765–771 (1997).
    [Crossref] [PubMed]
  5. J. M. Gildemeister, A. T. Lee, and P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77(24), 4040–4042 (2000).
    [Crossref]
  6. M. Bagmanci, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator,” Opt. Quant. Electron. 49(7), 257 (2017)
  7. P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
    [Crossref] [PubMed]
  8. H. Wang, Y. Yang, and L. P. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
    [Crossref]
  9. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [Crossref]
  10. Y. Matsuno and A. Sakurai, “Perfect infrared absorber and emitter based on a large-area metasurface,” Opt. Mater. Express 7(2), 618–626 (2017).
    [Crossref]
  11. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley Online Library, 2000).
  12. E. F. Knott, J. Shaeffer, and M. Tuley, Radar Cross Section (SciTech Publishing, 2004).
  13. A. Ansari and M. J. Akhtar, “Co/graphite based light weight microwave absorber for electromagnetic shielding and stealth applications,” Mater. Res. Express 4, 1 (2017)
  14. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref] [PubMed]
  15. T. Liu and J. Takahara, “Ultrabroadband absorber based on single-sized embedded metal-dielectric-metal structures and application of radiative cooling,” Opt. Express 25(12), A612–A627 (2017).
    [Crossref] [PubMed]
  16. D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
    [Crossref]
  17. H. Severin, “Nonreflecting absorbers for microwave radiation,” IRE Trans. Antennas Propag. 4(3), 385–392 (1956).
    [Crossref]
  18. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  19. J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
    [Crossref] [PubMed]
  20. G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
    [Crossref] [PubMed]
  21. X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
    [Crossref] [PubMed]
  22. G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chinese Phys. B 23, 1 (2014)
  23. L. La Spada and L. Vegni, “Metamaterial-based wideband electromagnetic wave absorber,” Opt. Express 24(6), 5763–5772 (2016).
    [Crossref] [PubMed]
  24. S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
    [Crossref]
  25. C. Hu, X. Li, Q. Feng, X. Chen, and X. Luo, “Investigation on the role of the dielectric loss in metamaterial absorber,” Opt. Express 18(7), 6598–6603 (2010).
    [Crossref] [PubMed]
  26. R. Yahiaoui, H. Němec, P. Kužel, F. Kadlec, C. Kadlec, and P. Mounaix, “Broadband dielectric terahertz metamaterials with negative permeability,” Opt. Lett. 34(22), 3541–3543 (2009).
    [Crossref] [PubMed]
  27. R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
    [Crossref]
  28. S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
    [Crossref]
  29. C. Hua and Z. Shen, “Shunt-excited sea-water monopole antenna of high efficiency,” IEEE Trans. Antenn. Propag. 63(11), 5185–5190 (2015).
    [Crossref]
  30. M. Zou, Z. Shen, and J. Pan, “Frequency-reconfigurable water antenna of circular polarization,” Appl. Phys. Lett. 108(1), 014102 (2016).
    [Crossref]
  31. Y. Li and K.-M. Luk, “A water dense dielectric patch antenna,” IEEE Access 3, 274–280 (2015).
    [Crossref]
  32. J. Sun and K.-M. Luk, “A wideband low cost and optically transparent water patch antenna with omnidirectional conical beam radiation patterns,” IEEE Trans. Antenn. Propag. 65(9), 4478–4485 (2017).
    [Crossref]
  33. Z. Shen, H. Yang, X. Huang, and Z. Yu, “Design of negative refractive index metamaterial with water droplets using 3D-printing,” J. Opt. 19(11), 115101 (2017).
    [Crossref]
  34. A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
    [Crossref] [PubMed]
  35. I. V. Stenishchev and A. A. Basharin, “Toroidal response in all-dielectric metamaterials based on water,” Sci. Rep. 7(1), 9468 (2017).
    [Crossref] [PubMed]
  36. X. Cai, S. Zhao, M. Hu, J. Xiao, N. Zhang, and J. Yang, “Water based fluidic radio frequency metamaterials,” J. Appl. Phys. 122(18), 184101 (2017).
    [Crossref]
  37. M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
    [Crossref]
  38. R. E. Jacobsen, A. V. Lavrinenko, and S. Arslanagic, “Water-based metasurfaces for effective switching of microwaves,” IEEE Antennas Wirel. Propag. Lett. 17(4), 571–574 (2018).
    [Crossref]
  39. Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
    [Crossref] [PubMed]
  40. W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
    [Crossref] [PubMed]
  41. H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail, and Y. Zetai, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
    [Crossref]
  42. Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
    [Crossref]
  43. Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
    [Crossref]
  44. D. J. Gogoi and N. S. Bhattacharyya, “Embedded dielectric water “atom” array for broadband microwave absorber based on Mie resonance,” J. Appl. Phys. 122(17), 175106 (2017).
    [Crossref]
  45. J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
    [Crossref] [PubMed]
  46. J. Zhao, S. Wei, C. Wang, K. Chen, B. Zhu, T. Jiang, and Y. Feng, “Broadband microwave absorption utilizing water-based metamaterial structures,” Opt. Express 26(7), 8522–8531 (2018).
    [Crossref] [PubMed]
  47. W. Ellison, “Permittivity of pure water at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100 °C,” J. Phys. Chem. Ref. Data 36(1), 1–18 (2007).
    [Crossref]
  48. Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu, and S. Qu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” J. Appl. Phys. 123(15), 155106 (2018).
    [Crossref]
  49. G. S. Kell, “Thermal expansivity, and compressibility of liquid water from 0° to 150°: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” J. Chem. Eng. Data 20(1), 97–105 (1975).
    [Crossref]

2018 (5)

D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

R. E. Jacobsen, A. V. Lavrinenko, and S. Arslanagic, “Water-based metasurfaces for effective switching of microwaves,” IEEE Antennas Wirel. Propag. Lett. 17(4), 571–574 (2018).
[Crossref]

J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
[Crossref] [PubMed]

J. Zhao, S. Wei, C. Wang, K. Chen, B. Zhu, T. Jiang, and Y. Feng, “Broadband microwave absorption utilizing water-based metamaterial structures,” Opt. Express 26(7), 8522–8531 (2018).
[Crossref] [PubMed]

Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu, and S. Qu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” J. Appl. Phys. 123(15), 155106 (2018).
[Crossref]

2017 (14)

W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref] [PubMed]

H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail, and Y. Zetai, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]

D. J. Gogoi and N. S. Bhattacharyya, “Embedded dielectric water “atom” array for broadband microwave absorber based on Mie resonance,” J. Appl. Phys. 122(17), 175106 (2017).
[Crossref]

I. V. Stenishchev and A. A. Basharin, “Toroidal response in all-dielectric metamaterials based on water,” Sci. Rep. 7(1), 9468 (2017).
[Crossref] [PubMed]

X. Cai, S. Zhao, M. Hu, J. Xiao, N. Zhang, and J. Yang, “Water based fluidic radio frequency metamaterials,” J. Appl. Phys. 122(18), 184101 (2017).
[Crossref]

J. Sun and K.-M. Luk, “A wideband low cost and optically transparent water patch antenna with omnidirectional conical beam radiation patterns,” IEEE Trans. Antenn. Propag. 65(9), 4478–4485 (2017).
[Crossref]

Z. Shen, H. Yang, X. Huang, and Z. Yu, “Design of negative refractive index metamaterial with water droplets using 3D-printing,” J. Opt. 19(11), 115101 (2017).
[Crossref]

Y. Matsuno and A. Sakurai, “Perfect infrared absorber and emitter based on a large-area metasurface,” Opt. Mater. Express 7(2), 618–626 (2017).
[Crossref]

A. Ansari and M. J. Akhtar, “Co/graphite based light weight microwave absorber for electromagnetic shielding and stealth applications,” Mater. Res. Express 4, 1 (2017)

T. Liu and J. Takahara, “Ultrabroadband absorber based on single-sized embedded metal-dielectric-metal structures and application of radiative cooling,” Opt. Express 25(12), A612–A627 (2017).
[Crossref] [PubMed]

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

M. Bagmanci, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator,” Opt. Quant. Electron. 49(7), 257 (2017)

2016 (4)

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

M. Zou, Z. Shen, and J. Pan, “Frequency-reconfigurable water antenna of circular polarization,” Appl. Phys. Lett. 108(1), 014102 (2016).
[Crossref]

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

L. La Spada and L. Vegni, “Metamaterial-based wideband electromagnetic wave absorber,” Opt. Express 24(6), 5763–5772 (2016).
[Crossref] [PubMed]

2015 (7)

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

C. Hua and Z. Shen, “Shunt-excited sea-water monopole antenna of high efficiency,” IEEE Trans. Antenn. Propag. 63(11), 5185–5190 (2015).
[Crossref]

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Y. Li and K.-M. Luk, “A water dense dielectric patch antenna,” IEEE Access 3, 274–280 (2015).
[Crossref]

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref] [PubMed]

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

2014 (4)

H. Wang, Y. Yang, and L. P. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chinese Phys. B 23, 1 (2014)

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

2013 (1)

J. Grant, I. Escorcia‐Carranza, C. Li, I. J. McCrindle, J. Gough, and D. R. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

2012 (2)

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]

X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (2)

R. Yahiaoui, H. Němec, P. Kužel, F. Kadlec, C. Kadlec, and P. Mounaix, “Broadband dielectric terahertz metamaterials with negative permeability,” Opt. Lett. 34(22), 3541–3543 (2009).
[Crossref] [PubMed]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (1)

W. Ellison, “Permittivity of pure water at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100 °C,” J. Phys. Chem. Ref. Data 36(1), 1–18 (2007).
[Crossref]

2000 (1)

J. M. Gildemeister, A. T. Lee, and P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77(24), 4040–4042 (2000).
[Crossref]

1997 (1)

1975 (1)

G. S. Kell, “Thermal expansivity, and compressibility of liquid water from 0° to 150°: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” J. Chem. Eng. Data 20(1), 97–105 (1975).
[Crossref]

1956 (1)

H. Severin, “Nonreflecting absorbers for microwave radiation,” IRE Trans. Antennas Propag. 4(3), 385–392 (1956).
[Crossref]

Akgol, O.

M. Bagmanci, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator,” Opt. Quant. Electron. 49(7), 257 (2017)

Akhtar, M. J.

A. Ansari and M. J. Akhtar, “Co/graphite based light weight microwave absorber for electromagnetic shielding and stealth applications,” Mater. Res. Express 4, 1 (2017)

Andryieuski, A.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref] [PubMed]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Ansari, A.

A. Ansari and M. J. Akhtar, “Co/graphite based light weight microwave absorber for electromagnetic shielding and stealth applications,” Mater. Res. Express 4, 1 (2017)

Arslanagic, S.

R. E. Jacobsen, A. V. Lavrinenko, and S. Arslanagic, “Water-based metasurfaces for effective switching of microwaves,” IEEE Antennas Wirel. Propag. Lett. 17(4), 571–574 (2018).
[Crossref]

Ashida, M.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Bagmanci, M.

M. Bagmanci, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator,” Opt. Quant. Electron. 49(7), 257 (2017)

Basharin, A. A.

I. V. Stenishchev and A. A. Basharin, “Toroidal response in all-dielectric metamaterials based on water,” Sci. Rep. 7(1), 9468 (2017).
[Crossref] [PubMed]

Belov, P.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

Bhattacharyya, N. S.

D. J. Gogoi and N. S. Bhattacharyya, “Embedded dielectric water “atom” array for broadband microwave absorber based on Mie resonance,” J. Appl. Phys. 122(17), 175106 (2017).
[Crossref]

Bock, J. J.

Bong, J.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Cai, H.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]

Cai, X.

X. Cai, S. Zhao, M. Hu, J. Xiao, N. Zhang, and J. Yang, “Water based fluidic radio frequency metamaterials,” J. Appl. Phys. 122(18), 184101 (2017).
[Crossref]

Cao, X. Y.

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

Chen, K.

Chen, L.

D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Chen, S.

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

Chen, X.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]

C. Hu, X. Li, Q. Feng, X. Chen, and X. Luo, “Investigation on the role of the dielectric loss in metamaterial absorber,” Opt. Express 18(7), 6598–6603 (2010).
[Crossref] [PubMed]

Chen, Z. Q.

G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chinese Phys. B 23, 1 (2014)

Cheng, L. L.

G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chinese Phys. B 23, 1 (2014)

Cheng, Q.

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Chong, P. H. J.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]

Cui, T. J.

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Cumming, D. R.

J. Grant, I. Escorcia‐Carranza, C. Li, I. J. McCrindle, J. Gough, and D. R. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Del Castillo, H.

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Ellison, W.

W. Ellison, “Permittivity of pure water at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100 °C,” J. Phys. Chem. Ref. Data 36(1), 1–18 (2007).
[Crossref]

Escorcia-Carranza, I.

J. Grant, I. Escorcia‐Carranza, C. Li, I. J. McCrindle, J. Gough, and D. R. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Fan, S.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Feng, Q.

Feng, Y.

Fujita, M.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Gao, J.

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

Geng, J.

Gildemeister, J. M.

J. M. Gildemeister, A. T. Lee, and P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77(24), 4040–4042 (2000).
[Crossref]

Gogoi, D. J.

D. J. Gogoi and N. S. Bhattacharyya, “Embedded dielectric water “atom” array for broadband microwave absorber based on Mie resonance,” J. Appl. Phys. 122(17), 175106 (2017).
[Crossref]

Gough, J.

J. Grant, I. Escorcia‐Carranza, C. Li, I. J. McCrindle, J. Gough, and D. R. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Grant, J.

J. Grant, I. Escorcia‐Carranza, C. Li, I. J. McCrindle, J. Gough, and D. R. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Hahn, J. W.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Hail, L.

H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail, and Y. Zetai, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]

Han, K.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Hao, Y. L.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]

He, C.

Helin, Y.

H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail, and Y. Zetai, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]

Holzapfel, W. L.

Hu, C.

Hu, M.

X. Cai, S. Zhao, M. Hu, J. Xiao, N. Zhang, and J. Yang, “Water based fluidic radio frequency metamaterials,” J. Appl. Phys. 122(18), 184101 (2017).
[Crossref]

Hu, W.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Hu, X. W.

G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chinese Phys. B 23, 1 (2014)

Hua, C.

C. Hua and Z. Shen, “Shunt-excited sea-water monopole antenna of high efficiency,” IEEE Trans. Antenn. Propag. 63(11), 5185–5190 (2015).
[Crossref]

Huang, L.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Huang, X.

Z. Shen, H. Yang, X. Huang, and Z. Yu, “Design of negative refractive index metamaterial with water droplets using 3D-printing,” J. Opt. 19(11), 115101 (2017).
[Crossref]

Jacobsen, R. E.

R. E. Jacobsen, A. V. Lavrinenko, and S. Arslanagic, “Water-based metasurfaces for effective switching of microwaves,” IEEE Antennas Wirel. Propag. Lett. 17(4), 571–574 (2018).
[Crossref]

Ji, J.

Jiang, T.

Jiang, W.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Jiang, Y.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Jiao, C.

H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail, and Y. Zetai, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]

Jin, R.

Ju, S.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Ju Kim, Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Kadlec, C.

Kadlec, F.

Kakimi, R.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Kapitanova, P.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

Karaaslan, M.

M. Bagmanci, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator,” Opt. Quant. Electron. 49(7), 257 (2017)

Kell, G. S.

G. S. Kell, “Thermal expansivity, and compressibility of liquid water from 0° to 150°: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” J. Chem. Eng. Data 20(1), 97–105 (1975).
[Crossref]

Kim, J.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Kim, K. W.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Kivshar, Y. S.

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref] [PubMed]

Kong, L. H.

G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chinese Phys. B 23, 1 (2014)

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Kužel, P.

Kuznetsova, S. M.

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref] [PubMed]

La Spada, L.

Lai, S.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lange, A. E.

Lavrinenko, A. V.

R. E. Jacobsen, A. V. Lavrinenko, and S. Arslanagic, “Water-based metasurfaces for effective switching of microwaves,” IEEE Antennas Wirel. Propag. Lett. 17(4), 571–574 (2018).
[Crossref]

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref] [PubMed]

Lee, A. T.

J. M. Gildemeister, A. T. Lee, and P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77(24), 4040–4042 (2000).
[Crossref]

Lee, Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Li, C.

J. Grant, I. Escorcia‐Carranza, C. Li, I. J. McCrindle, J. Gough, and D. R. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Li, G.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Li, O.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Li, P.

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

Li, R. F.

D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Li, S. J.

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

Li, X.

Li, Y.

Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu, and S. Qu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” J. Appl. Phys. 123(15), 155106 (2018).
[Crossref]

Y. Li and K.-M. Luk, “A water dense dielectric patch antenna,” IEEE Access 3, 274–280 (2015).
[Crossref]

Liang, Q. X.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]

Liang, X.

Liew, K. K.

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

Lim, T.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Ling, F.

Liu, B.

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

Liu, C.

D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Liu, M. H.

G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chinese Phys. B 23, 1 (2014)

Liu, T.

T. Liu and J. Takahara, “Ultrabroadband absorber based on single-sized embedded metal-dielectric-metal structures and application of radiative cooling,” Opt. Express 25(12), A612–A627 (2017).
[Crossref] [PubMed]

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

Liu, Y. M.

D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Lu, W.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Luk, K.-M.

J. Sun and K.-M. Luk, “A wideband low cost and optically transparent water patch antenna with omnidirectional conical beam radiation patterns,” IEEE Trans. Antenn. Propag. 65(9), 4478–4485 (2017).
[Crossref]

Y. Li and K.-M. Luk, “A water dense dielectric patch antenna,” IEEE Access 3, 274–280 (2015).
[Crossref]

Luo, C.

Luo, X.

Ma, R.

D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Ma, Y.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Matsuno, Y.

Mauskopf, P. D.

McCrindle, I. J.

J. Grant, I. Escorcia‐Carranza, C. Li, I. J. McCrindle, J. Gough, and D. R. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Mounaix, P.

Nagai, M.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Nagatsuma, T.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Nemec, H.

Ni, B.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Ni, Y.

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

Odit, M.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pan, J.

M. Zou, Z. Shen, and J. Pan, “Frequency-reconfigurable water antenna of circular polarization,” Appl. Phys. Lett. 108(1), 014102 (2016).
[Crossref]

Pang, Y.

Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu, and S. Qu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” J. Appl. Phys. 123(15), 155106 (2018).
[Crossref]

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Park, S. Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Peng, X. Y.

Premaratne, M.

Qu, S.

Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu, and S. Qu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” J. Appl. Phys. 123(15), 155106 (2018).
[Crossref]

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Rhee, J. Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Richards, P. L.

J. M. Gildemeister, A. T. Lee, and P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77(24), 4040–4042 (2000).
[Crossref]

Rukhlenko, I. D.

Sabah, C.

M. Bagmanci, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator,” Opt. Quant. Electron. 49(7), 257 (2017)

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sakurai, A.

Severin, H.

H. Severin, “Nonreflecting absorbers for microwave radiation,” IRE Trans. Antennas Propag. 4(3), 385–392 (1956).
[Crossref]

Shao, C.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Shen, S.

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

Shen, Y.

Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu, and S. Qu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” J. Appl. Phys. 123(15), 155106 (2018).
[Crossref]

Shen, Z.

Z. Shen, H. Yang, X. Huang, and Z. Yu, “Design of negative refractive index metamaterial with water droplets using 3D-printing,” J. Opt. 19(11), 115101 (2017).
[Crossref]

M. Zou, Z. Shen, and J. Pan, “Frequency-reconfigurable water antenna of circular polarization,” Appl. Phys. Lett. 108(1), 014102 (2016).
[Crossref]

C. Hua and Z. Shen, “Shunt-excited sea-water monopole antenna of high efficiency,” IEEE Trans. Antenn. Propag. 63(11), 5185–5190 (2015).
[Crossref]

Shen, Z. X.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Song, Q.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Stenishchev, I. V.

I. V. Stenishchev and A. A. Basharin, “Toroidal response in all-dielectric metamaterials based on water,” Sci. Rep. 7(1), 9468 (2017).
[Crossref] [PubMed]

Sun, J.

J. Sun and K.-M. Luk, “A wideband low cost and optically transparent water patch antenna with omnidirectional conical beam radiation patterns,” IEEE Trans. Antenn. Propag. 65(9), 4478–4485 (2017).
[Crossref]

Sze, J.

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

Takahara, J.

Teng, J. H.

Unal, E.

M. Bagmanci, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator,” Opt. Quant. Electron. 49(7), 257 (2017)

Vegni, L.

Wang, B.

Wang, C.

Wang, G. D.

G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chinese Phys. B 23, 1 (2014)

Wang, H.

H. Wang, Y. Yang, and L. P. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]

Wang, J.

Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu, and S. Qu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” J. Appl. Phys. 123(15), 155106 (2018).
[Crossref]

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Wang, L. P.

H. Wang, Y. Yang, and L. P. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]

Wei, S.

Wu, D.

D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Wu, P. C.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]

Xia, S.

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Xiao, F.

Xiao, J.

X. Cai, S. Zhao, M. Hu, J. Xiao, N. Zhang, and J. Yang, “Water based fluidic radio frequency metamaterials,” J. Appl. Phys. 122(18), 184101 (2017).
[Crossref]

Xiaojun, H.

H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail, and Y. Zetai, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]

Xie, J.

Xie, L.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Xu, W.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Xu, Z.

Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu, and S. Qu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” J. Appl. Phys. 123(15), 155106 (2018).
[Crossref]

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Xua, Z. H.

D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Yahiaoui, R.

Yang, H.

Z. Shen, H. Yang, X. Huang, and Z. Yu, “Design of negative refractive index metamaterial with water droplets using 3D-printing,” J. Opt. 19(11), 115101 (2017).
[Crossref]

Yang, J.

X. Cai, S. Zhao, M. Hu, J. Xiao, N. Zhang, and J. Yang, “Water based fluidic radio frequency metamaterials,” J. Appl. Phys. 122(18), 184101 (2017).
[Crossref]

Yang, Y.

H. Wang, Y. Yang, and L. P. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]

Yang, Z. C.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]

Yao, G.

Yao, J.

Ye, H.

D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Yin, G.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Yin, S.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Ying, Y.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Yoo, Y. J.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Yu, L.

D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Yu, Z.

Z. Shen, H. Yang, X. Huang, and Z. Yu, “Design of negative refractive index metamaterial with water droplets using 3D-printing,” J. Opt. 19(11), 115101 (2017).
[Crossref]

Yu, Z. Y.

D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Yuan, J.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Yue, J.

Zetai, Y.

H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail, and Y. Zetai, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]

Zhang, C.

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

Zhang, D. H.

Zhang, N.

X. Cai, S. Zhao, M. Hu, J. Xiao, N. Zhang, and J. Yang, “Water based fluidic radio frequency metamaterials,” J. Appl. Phys. 122(18), 184101 (2017).
[Crossref]

Zhang, W.

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]

Zhang, Z.

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

Zhao, J.

Zhao, S.

X. Cai, S. Zhao, M. Hu, J. Xiao, N. Zhang, and J. Yang, “Water based fluidic radio frequency metamaterials,” J. Appl. Phys. 122(18), 184101 (2017).
[Crossref]

Zhaoyang, S.

H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail, and Y. Zetai, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]

Zheng, G.

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

Zheng, Y. J.

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

Zhou, X. Y.

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Zhu, B.

Zhu, J.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Zhu, L.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Zhu, W.

Zhukovsky, S. V.

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref] [PubMed]

Zou, M.

M. Zou, Z. Shen, and J. Pan, “Frequency-reconfigurable water antenna of circular polarization,” Appl. Phys. Lett. 108(1), 014102 (2016).
[Crossref]

Adv. Mater. (1)

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Q. Song, W. Zhang, P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, and H. Cai, “Water-resonator-based metasurface: An ultrabroadband and near-Unity absorption,” Adv. Opt. Mater. 5, 8 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

J. M. Gildemeister, A. T. Lee, and P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77(24), 4040–4042 (2000).
[Crossref]

H. Wang, Y. Yang, and L. P. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

M. Zou, Z. Shen, and J. Pan, “Frequency-reconfigurable water antenna of circular polarization,” Appl. Phys. Lett. 108(1), 014102 (2016).
[Crossref]

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Y. Zhou, Z. Xu, T. J. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Chinese Phys. B (1)

G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chinese Phys. B 23, 1 (2014)

IEEE Access (1)

Y. Li and K.-M. Luk, “A water dense dielectric patch antenna,” IEEE Access 3, 274–280 (2015).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

R. E. Jacobsen, A. V. Lavrinenko, and S. Arslanagic, “Water-based metasurfaces for effective switching of microwaves,” IEEE Antennas Wirel. Propag. Lett. 17(4), 571–574 (2018).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

C. Hua and Z. Shen, “Shunt-excited sea-water monopole antenna of high efficiency,” IEEE Trans. Antenn. Propag. 63(11), 5185–5190 (2015).
[Crossref]

J. Sun and K.-M. Luk, “A wideband low cost and optically transparent water patch antenna with omnidirectional conical beam radiation patterns,” IEEE Trans. Antenn. Propag. 65(9), 4478–4485 (2017).
[Crossref]

IRE Trans. Antennas Propag. (1)

H. Severin, “Nonreflecting absorbers for microwave radiation,” IRE Trans. Antennas Propag. 4(3), 385–392 (1956).
[Crossref]

J. Appl. Phys. (3)

X. Cai, S. Zhao, M. Hu, J. Xiao, N. Zhang, and J. Yang, “Water based fluidic radio frequency metamaterials,” J. Appl. Phys. 122(18), 184101 (2017).
[Crossref]

Y. Pang, Y. Shen, Y. Li, J. Wang, Z. Xu, and S. Qu, “Water-based metamaterial absorbers for optical transparency and broadband microwave absorption,” J. Appl. Phys. 123(15), 155106 (2018).
[Crossref]

D. J. Gogoi and N. S. Bhattacharyya, “Embedded dielectric water “atom” array for broadband microwave absorber based on Mie resonance,” J. Appl. Phys. 122(17), 175106 (2017).
[Crossref]

J. Chem. Eng. Data (1)

G. S. Kell, “Thermal expansivity, and compressibility of liquid water from 0° to 150°: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” J. Chem. Eng. Data 20(1), 97–105 (1975).
[Crossref]

J. Opt. (1)

Z. Shen, H. Yang, X. Huang, and Z. Yu, “Design of negative refractive index metamaterial with water droplets using 3D-printing,” J. Opt. 19(11), 115101 (2017).
[Crossref]

J. Phys. Chem. Ref. Data (1)

W. Ellison, “Permittivity of pure water at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100 °C,” J. Phys. Chem. Ref. Data 36(1), 1–18 (2007).
[Crossref]

J. Phys. D Appl. Phys. (2)

H. Xiaojun, Y. Helin, S. Zhaoyang, C. Jiao, L. Hail, and Y. Zetai, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Laser Photonics Rev. (1)

J. Grant, I. Escorcia‐Carranza, C. Li, I. J. McCrindle, J. Gough, and D. R. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Mater. Des. (1)

D. Wu, C. Liu, Z. H. Xua, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Mater. Res. Express (1)

A. Ansari and M. J. Akhtar, “Co/graphite based light weight microwave absorber for electromagnetic shielding and stealth applications,” Mater. Res. Express 4, 1 (2017)

Nat. Photonics (1)

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Opt. Express (8)

T. Liu and J. Takahara, “Ultrabroadband absorber based on single-sized embedded metal-dielectric-metal structures and application of radiative cooling,” Opt. Express 25(12), A612–A627 (2017).
[Crossref] [PubMed]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
[Crossref] [PubMed]

W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref] [PubMed]

L. La Spada and L. Vegni, “Metamaterial-based wideband electromagnetic wave absorber,” Opt. Express 24(6), 5763–5772 (2016).
[Crossref] [PubMed]

C. Hu, X. Li, Q. Feng, X. Chen, and X. Luo, “Investigation on the role of the dielectric loss in metamaterial absorber,” Opt. Express 18(7), 6598–6603 (2010).
[Crossref] [PubMed]

J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
[Crossref] [PubMed]

J. Zhao, S. Wei, C. Wang, K. Chen, B. Zhu, T. Jiang, and Y. Feng, “Broadband microwave absorption utilizing water-based metamaterial structures,” Opt. Express 26(7), 8522–8531 (2018).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Quant. Electron. (1)

M. Bagmanci, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator,” Opt. Quant. Electron. 49(7), 257 (2017)

Phys. Rev. B (1)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sci. Rep. (4)

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref] [PubMed]

I. V. Stenishchev and A. A. Basharin, “Toroidal response in all-dielectric metamaterials based on water,” Sci. Rep. 7(1), 9468 (2017).
[Crossref] [PubMed]

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Other (3)

C. R. Paul, Introduction to Electromagnetic Compatibility (John Wiley & Sons, 2006).

B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley Online Library, 2000).

E. F. Knott, J. Shaeffer, and M. Tuley, Radar Cross Section (SciTech Publishing, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the cylindrical-water-resonator-based ultra-broadband absorber. (b) Exploded view of the unit cell of the absorber. Each part of the unit cell is arranged layer-by-layer. (c) Side view and (d) top view of the unit cell. The geometrical parameters are as follows: p = 11.4 mm, rd = 3.2 mm, hd = 3.8 mm, tc = 1 mm, hs = 0.8 mm, dci = 0.6 mm, and dco = 2.2 mm.
Fig. 2
Fig. 2 Permittivity of water at 5–25 GHz obtained using Debye model.
Fig. 3
Fig. 3 (a) Simulated absorption spectra of proposed water-resonator-based absorber, metal-backed water plate, and cylindrical water resonator without metal back. The four absorption peaks of the proposed absorber have been marked as f1, f2, f3, and f4. Inset: Power loss density in the resonator for case II at 20.88 GHz. Blue represent the minimum power loss while red represents the maximum power loss. (b) Simulated input impedance of water-resonator-based absorber, with the four absorption peaks also marked.
Fig. 4
Fig. 4 Simulated vector field distribution in the absorber. (a, d, g, j) E-field in xoz plane for f1, f2, f3, and f4 of 6.07, 8.1, 16.19, and 23.45 GHz, respectively. (b, e, h, k) H-field in yoz plane for f1, f2, f3, and f4 of 6.07, 8.1, 16.19, and 23.45 GHz, respectively. (c, f, i, l) Power-loss density in xoz plane for f1, f2, f3, and f4 of 6.07, 8.1, 16.19, and 23.45 GHz, respectively.
Fig. 5
Fig. 5 Simulated and measured absorption spectra of the proposed absorber. Inset: Photo of absorber prototype with 15 × 15 elements. (a) Top view and (b) bottom view.
Fig. 6
Fig. 6 Absorption spectra of the proposed water absorber for oblique-incidence waves with different angles of incidence and polarization states. (a) TE mode and (b) TM mode.
Fig. 7
Fig. 7 Absorption spectrum of the absorber at different temperatures.

Tables (1)

Tables Icon

Table 1 Comparison between Proposed Absorber and Previous Water-based Absorber

Metrics