Abstract

Biphotonic holographic recording through the competition of linearly polarized laser beams with wavelengths of 532 nm and 632.8 nm was investigated in an azobenzene liquid crystal film. With the irradiation of 532 nm excitation light as a switch, holographic gratings were able to be turned on and off. It was found that diffraction behaviors of the recorded gratings were strongly dependent on not only the polarization angle between the recording light and excitation light, but also the sample temperature. Formation processes and diffraction properties of biphotonic holographic gratings were discussed based on the photoisomerization of azobenzene groups. Besides, biphotonic polarization holographic recording was also achieved by means of adjusting the polarization states of recording light and the diffraction characteristics were analyzed in terms of Jones matrices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Off-resonant nonlinear optical refraction properties of azo dye doped nematic liquid crystals

Hongjing Li, Jianhao Wang, Changshun Wang, Pengfei Zeng, Peng Cai, Yujia Pan, and Yifei Yang
Opt. Mater. Express 6(2) 459-465 (2016)

Biphotonic holographic grating recordings for different polarization configurations in spirooxazine-doped polymers

Meiling Zheng, Xin Xie, Zhiying Zhang, Feng Shi, Xiuli Wang, Shencheng Fu, and Yichun Liu
Appl. Opt. 53(25) 5815-5823 (2014)

Polarization modulation by means of tunable polarization gratings in an azobenzene side-chain liquid-crystalline polymer film

Ziyao Lyu, Changshun Wang, Yujia Pan, Yifei Yang, and Renjie Xia
Appl. Opt. 57(12) 3146-3153 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. R. Fernández-Ruiz, M. Li, and J. Azaña, “Time-domain holograms for generation and processing of temporal complex information by intensity-only modulation processes,” Opt. Express 21(8), 10314–10323 (2013).
    [Crossref] [PubMed]
  2. M. Germann, T. Latychevskaia, C. Escher, and H.-W. Fink, “Pulsed electron holography,” Appl. Phys. Lett. 102(20), 203115 (2013).
    [Crossref]
  3. A. Uesaka, K. Hayashi, T. Matsushita, and S. Arai, “3D atomic imaging by internal-detector electron holography,” Phys. Rev. Lett. 107(4), 045502 (2011).
    [Crossref] [PubMed]
  4. B. E. Miller and Y. Takashima, “Cavity techniques for holographic data storage recording,” Opt. Express 24(6), 6300–6317 (2016).
    [Crossref] [PubMed]
  5. T. Sabel, S. Orlic, K. Pfeiffer, U. Ostrzinski, and G. Grützner, “Free-surface photopolymerizable recording material for volume holography,” Opt. Mater. Express 3(3), 329–338 (2013).
    [Crossref]
  6. B. Yang, X.-H. Hong, R.-E. Lu, Y.-Y. Yue, C. Zhang, Y.-Q. Qin, and Y.-Y. Zhu, “2D wave-front shaping in optical superlattices using nonlinear volume holography,” Opt. Lett. 41(13), 2927–2929 (2016).
    [Crossref] [PubMed]
  7. W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
    [Crossref] [PubMed]
  8. K. Mitsube, Y. Nishimura, K. Nagaya, S. Takayama, and Y. Tomita, “Holographic nanoparticle-polymer composites based on radical-mediated thiol-yne photopolymerizations: characterization and shift-multiplexed holographic digital data page storage,” Opt. Mater. Express 4(5), 982–996 (2014).
    [Crossref]
  9. Q. S. Wei, L. L. Huang, X. W. Li, J. Liu, and Y. T. Wang, “Broadband multiplane holography based on plasmonic metasurface,” Adv. Opt. Mater. 5(18), 1700434 (2017).
    [Crossref]
  10. A. K. Yetisen, Y. Montelongo, and H. Butt, “Rewritable three-dimensional holographic data storage via optical forces,” Appl. Phys. Lett. 109(6), 061106 (2016).
    [Crossref]
  11. X. Liu, B.-Y. Wang, and C.-S. Guo, “One-step Jones matrix polarization holography for extraction of spatially resolved Jones matrix of polarization-sensitive materials,” Opt. Lett. 39(21), 6170–6173 (2014).
    [Crossref] [PubMed]
  12. N. Tsutsumi, Y. Yabuhara, K. Kinashi, and W. Sakai, “Advantage of the circular polarization of light in the updatable holographic response in an azo-carbazole monolithic dye dispersed acrylate matrix,” Opt. Mater. Express 7(5), 1647–1655 (2017).
    [Crossref]
  13. N. Kawatsuki, H. Matsushita, M. Kondo, T. Sasaki, and H. Ono, “Photoinduced reorientation and polarization holography in a new photopolymer with 4-methoxy-N-benzylideneaniline side groups,” APL Mater. 1(2), 022103 (2013).
    [Crossref]
  14. B.-Y. Huang, K.-Y. Yu, S.-Y. Huang, and C.-T. Kuo, “The investigation of the two-dimensional surface relief grating on dye-doped polymer film,” Opt. Mater. Express 4(2), 308–314 (2014).
    [Crossref]
  15. D. Wei, U. Bortolozzo, J. P. Huignard, and S. Residori, “Slow and stored light by photo-isomerization induced transparency in dye doped chiral nematics,” Opt. Express 21(17), 19544–19554 (2013).
    [Crossref] [PubMed]
  16. C.-T. Wang, Y.-C. Wu, and T.-H. Lin, “Photo-switchable bistable twisted nematic liquid crystal optical switch,” Opt. Express 21(4), 4361–4366 (2013).
    [Crossref] [PubMed]
  17. H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
    [Crossref]
  18. N. Desbœufs, A.-D. Vu, K. Lahlil, Y. Lassailly, L. Martinelli, J.-P. Boilot, J. Peretti, and T. Gacoin, “Optical Patterning of Sol–Gel Silica Coatings,” Adv. Opt. Mater. 4(2), 313–320 (2016).
    [Crossref]
  19. E. Ouskova, J. Vapaavuori, and M. Kaivola, “Self-orienting liquid crystal doped with polymer-azo-dye complex,” Opt. Mater. Express 1(8), 1463–1470 (2011).
    [Crossref]
  20. F. Frascella, A. Angelini, S. Ricciardi, F. Pirri, and E. Descrovi, “Surface-relief formation in azo-polyelectrolyte layers with a protective polymer coating,” Opt. Mater. Express 6(2), 444–450 (2016).
    [Crossref]
  21. X. X. Wang, D. G. Zhang, Y. K. Chen, L. F. Zhu, W. H. Yu, P. Wang, P. J. Yao, H. Ming, W. X. Wu, and Q. J. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
    [Crossref]
  22. R. Wei, Z. Xu, and X. G. Wang, “Epoxy-based azo polymer for photofabricating surface-relief quasi-crystal structures,” Opt. Mater. Express 5(6), 1348–1355 (2015).
    [Crossref]
  23. Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Azo-dye-doped absorbing photonic crystals with purely imaginary refractive index contrast and all-optically switchable diffraction properties,” Opt. Mater. Express 2(1), 55–61 (2012).
    [Crossref]
  24. H.-C. Yeh, Y.-C. Kuo, S.-H. Lin, J.-D. Lin, T.-S. Mo, and S.-Y. Huang, “Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer,” Opt. Lett. 36(8), 1311–1313 (2011).
    [Crossref] [PubMed]
  25. J. Leibold and R. G. Sabat, “Laser-induced controllable chirped-pitch circular surface-relief diffraction gratings on AZO glass,” Photon. Res. 3(4), 158–163 (2015).
    [Crossref]
  26. X. Li, C. P. Chen, H. Y. Gao, Z. H. He, Y. Xiong, H. J. Li, W. Hu, Z. C. Ye, G. H. He, J. G. Lu, and Y. K. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
    [Crossref]
  27. Z. Cheng, H. Li, H. Shi, J. Ren, Q.-H. Yang, and P. Wang, “Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser,” Opt. Express 23(6), 7000–7006 (2015).
    [Crossref] [PubMed]
  28. C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
    [Crossref]
  29. A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic laser-induced ripple structures in dye-doped liquid crystal films,” Jpn. J. Appl. Phys. 45(9A), 7024–7027 (2006).
    [Crossref]
  30. K.-T. Cheng, C.-R. Lee, and A. Y.-G. Fuh, “Dynamics of biphotonic intensity holographic gratings based on dye‐doped liquid crystal films,” Liq. Cryst. 34(1), 95–100 (2007).
    [Crossref]
  31. A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic recording effect of polarization gratings based on dye‐doped liquid crystal films,” Liq. Cryst. 34(3), 389–393 (2007).
    [Crossref]
  32. L. J. Cook, D. A. Mazilu, I. Mazilu, B. M. Simpson, E. M. Schwen, V. O. Kim, and A. M. Seredinski, “Cooperative sequential-adsorption model in two dimensions with experimental applications for ionic self-assembly of nanoparticles,” Phys. Rev. E 89(6), 062411 (2014).
    [Crossref] [PubMed]
  33. A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
    [Crossref] [PubMed]
  34. H. J. Li, J. H. Wang, C. S. Wang, P. F. Zeng, P. Cai, Y. J. Pan, and Y. F. Yang, “Off-resonant nonlinear optical refraction properties of azo dye doped nematic liquid crystals,” Opt. Mater. Express 6(2), 459–465 (2016).
    [Crossref]
  35. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).
  36. Z. Lyu, C. Wang, Y. Pan, Y. Yang, and R. Xia, “Polarization modulation by means of tunable polarization gratings in an azobenzene side-chain liquid-crystalline polymer film,” Appl. Opt. 57(12), 3146–3153 (2018).
    [Crossref] [PubMed]
  37. C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson,“Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
    [Crossref]

2018 (1)

2017 (2)

2016 (7)

2015 (3)

2014 (6)

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

X. Li, C. P. Chen, H. Y. Gao, Z. H. He, Y. Xiong, H. J. Li, W. Hu, Z. C. Ye, G. H. He, J. G. Lu, and Y. K. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

L. J. Cook, D. A. Mazilu, I. Mazilu, B. M. Simpson, E. M. Schwen, V. O. Kim, and A. M. Seredinski, “Cooperative sequential-adsorption model in two dimensions with experimental applications for ionic self-assembly of nanoparticles,” Phys. Rev. E 89(6), 062411 (2014).
[Crossref] [PubMed]

K. Mitsube, Y. Nishimura, K. Nagaya, S. Takayama, and Y. Tomita, “Holographic nanoparticle-polymer composites based on radical-mediated thiol-yne photopolymerizations: characterization and shift-multiplexed holographic digital data page storage,” Opt. Mater. Express 4(5), 982–996 (2014).
[Crossref]

X. Liu, B.-Y. Wang, and C.-S. Guo, “One-step Jones matrix polarization holography for extraction of spatially resolved Jones matrix of polarization-sensitive materials,” Opt. Lett. 39(21), 6170–6173 (2014).
[Crossref] [PubMed]

B.-Y. Huang, K.-Y. Yu, S.-Y. Huang, and C.-T. Kuo, “The investigation of the two-dimensional surface relief grating on dye-doped polymer film,” Opt. Mater. Express 4(2), 308–314 (2014).
[Crossref]

2013 (7)

D. Wei, U. Bortolozzo, J. P. Huignard, and S. Residori, “Slow and stored light by photo-isomerization induced transparency in dye doped chiral nematics,” Opt. Express 21(17), 19544–19554 (2013).
[Crossref] [PubMed]

C.-T. Wang, Y.-C. Wu, and T.-H. Lin, “Photo-switchable bistable twisted nematic liquid crystal optical switch,” Opt. Express 21(4), 4361–4366 (2013).
[Crossref] [PubMed]

N. Kawatsuki, H. Matsushita, M. Kondo, T. Sasaki, and H. Ono, “Photoinduced reorientation and polarization holography in a new photopolymer with 4-methoxy-N-benzylideneaniline side groups,” APL Mater. 1(2), 022103 (2013).
[Crossref]

X. X. Wang, D. G. Zhang, Y. K. Chen, L. F. Zhu, W. H. Yu, P. Wang, P. J. Yao, H. Ming, W. X. Wu, and Q. J. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[Crossref]

T. Sabel, S. Orlic, K. Pfeiffer, U. Ostrzinski, and G. Grützner, “Free-surface photopolymerizable recording material for volume holography,” Opt. Mater. Express 3(3), 329–338 (2013).
[Crossref]

M. R. Fernández-Ruiz, M. Li, and J. Azaña, “Time-domain holograms for generation and processing of temporal complex information by intensity-only modulation processes,” Opt. Express 21(8), 10314–10323 (2013).
[Crossref] [PubMed]

M. Germann, T. Latychevskaia, C. Escher, and H.-W. Fink, “Pulsed electron holography,” Appl. Phys. Lett. 102(20), 203115 (2013).
[Crossref]

2012 (1)

2011 (3)

2008 (1)

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson,“Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[Crossref]

2007 (2)

K.-T. Cheng, C.-R. Lee, and A. Y.-G. Fuh, “Dynamics of biphotonic intensity holographic gratings based on dye‐doped liquid crystal films,” Liq. Cryst. 34(1), 95–100 (2007).
[Crossref]

A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic recording effect of polarization gratings based on dye‐doped liquid crystal films,” Liq. Cryst. 34(3), 389–393 (2007).
[Crossref]

2006 (1)

A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic laser-induced ripple structures in dye-doped liquid crystal films,” Jpn. J. Appl. Phys. 45(9A), 7024–7027 (2006).
[Crossref]

2003 (1)

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[Crossref]

2002 (1)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[Crossref] [PubMed]

Angelini, A.

Arai, S.

A. Uesaka, K. Hayashi, T. Matsushita, and S. Arai, “3D atomic imaging by internal-detector electron holography,” Phys. Rev. Lett. 107(4), 045502 (2011).
[Crossref] [PubMed]

Azaña, J.

Boilot, J.-P.

N. Desbœufs, A.-D. Vu, K. Lahlil, Y. Lassailly, L. Martinelli, J.-P. Boilot, J. Peretti, and T. Gacoin, “Optical Patterning of Sol–Gel Silica Coatings,” Adv. Opt. Mater. 4(2), 313–320 (2016).
[Crossref]

Bortolozzo, U.

Butt, H.

A. K. Yetisen, Y. Montelongo, and H. Butt, “Rewritable three-dimensional holographic data storage via optical forces,” Appl. Phys. Lett. 109(6), 061106 (2016).
[Crossref]

Cai, P.

Chen, C. P.

X. Li, C. P. Chen, H. Y. Gao, Z. H. He, Y. Xiong, H. J. Li, W. Hu, Z. C. Ye, G. H. He, J. G. Lu, and Y. K. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Chen, Y. K.

X. X. Wang, D. G. Zhang, Y. K. Chen, L. F. Zhu, W. H. Yu, P. Wang, P. J. Yao, H. Ming, W. X. Wu, and Q. J. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[Crossref]

Cheng, K.-T.

K.-T. Cheng, C.-R. Lee, and A. Y.-G. Fuh, “Dynamics of biphotonic intensity holographic gratings based on dye‐doped liquid crystal films,” Liq. Cryst. 34(1), 95–100 (2007).
[Crossref]

A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic recording effect of polarization gratings based on dye‐doped liquid crystal films,” Liq. Cryst. 34(3), 389–393 (2007).
[Crossref]

A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic laser-induced ripple structures in dye-doped liquid crystal films,” Jpn. J. Appl. Phys. 45(9A), 7024–7027 (2006).
[Crossref]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[Crossref]

Cheng, Z.

Cook, L. J.

L. J. Cook, D. A. Mazilu, I. Mazilu, B. M. Simpson, E. M. Schwen, V. O. Kim, and A. M. Seredinski, “Cooperative sequential-adsorption model in two dimensions with experimental applications for ionic self-assembly of nanoparticles,” Phys. Rev. E 89(6), 062411 (2014).
[Crossref] [PubMed]

Dai, H. T.

Desbœufs, N.

N. Desbœufs, A.-D. Vu, K. Lahlil, Y. Lassailly, L. Martinelli, J.-P. Boilot, J. Peretti, and T. Gacoin, “Optical Patterning of Sol–Gel Silica Coatings,” Adv. Opt. Mater. 4(2), 313–320 (2016).
[Crossref]

Descrovi, E.

Escher, C.

M. Germann, T. Latychevskaia, C. Escher, and H.-W. Fink, “Pulsed electron holography,” Appl. Phys. Lett. 102(20), 203115 (2013).
[Crossref]

Fernández-Ruiz, M. R.

Fink, H.-W.

M. Germann, T. Latychevskaia, C. Escher, and H.-W. Fink, “Pulsed electron holography,” Appl. Phys. Lett. 102(20), 203115 (2013).
[Crossref]

Frascella, F.

Fu, T.-L.

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[Crossref]

Fuh, A. Y.-G.

K.-T. Cheng, C.-R. Lee, and A. Y.-G. Fuh, “Dynamics of biphotonic intensity holographic gratings based on dye‐doped liquid crystal films,” Liq. Cryst. 34(1), 95–100 (2007).
[Crossref]

A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic recording effect of polarization gratings based on dye‐doped liquid crystal films,” Liq. Cryst. 34(3), 389–393 (2007).
[Crossref]

A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic laser-induced ripple structures in dye-doped liquid crystal films,” Jpn. J. Appl. Phys. 45(9A), 7024–7027 (2006).
[Crossref]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[Crossref]

Gacoin, T.

N. Desbœufs, A.-D. Vu, K. Lahlil, Y. Lassailly, L. Martinelli, J.-P. Boilot, J. Peretti, and T. Gacoin, “Optical Patterning of Sol–Gel Silica Coatings,” Adv. Opt. Mater. 4(2), 313–320 (2016).
[Crossref]

Gao, H. Y.

X. Li, C. P. Chen, H. Y. Gao, Z. H. He, Y. Xiong, H. J. Li, W. Hu, Z. C. Ye, G. H. He, J. G. Lu, and Y. K. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Germann, M.

M. Germann, T. Latychevskaia, C. Escher, and H.-W. Fink, “Pulsed electron holography,” Appl. Phys. Lett. 102(20), 203115 (2013).
[Crossref]

Grützner, G.

Guo, C.-S.

Hayashi, K.

A. Uesaka, K. Hayashi, T. Matsushita, and S. Arai, “3D atomic imaging by internal-detector electron holography,” Phys. Rev. Lett. 107(4), 045502 (2011).
[Crossref] [PubMed]

Hayazawa, N.

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

He, G. H.

X. Li, C. P. Chen, H. Y. Gao, Z. H. He, Y. Xiong, H. J. Li, W. Hu, Z. C. Ye, G. H. He, J. G. Lu, and Y. K. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

He, S.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

He, Z. H.

X. Li, C. P. Chen, H. Y. Gao, Z. H. He, Y. Xiong, H. J. Li, W. Hu, Z. C. Ye, G. H. He, J. G. Lu, and Y. K. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Hong, X.-H.

Hu, W.

X. Li, C. P. Chen, H. Y. Gao, Z. H. He, Y. Xiong, H. J. Li, W. Hu, Z. C. Ye, G. H. He, J. G. Lu, and Y. K. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Huang, B.-Y.

Huang, L. L.

Q. S. Wei, L. L. Huang, X. W. Li, J. Liu, and Y. T. Wang, “Broadband multiplane holography based on plasmonic metasurface,” Adv. Opt. Mater. 5(18), 1700434 (2017).
[Crossref]

Huang, S.-Y.

Huignard, J. P.

Inouye, Y.

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

Ishitobi, H.

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

Kaivola, M.

Kawata, S.

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

Kawatsuki, N.

N. Kawatsuki, H. Matsushita, M. Kondo, T. Sasaki, and H. Ono, “Photoinduced reorientation and polarization holography in a new photopolymer with 4-methoxy-N-benzylideneaniline side groups,” APL Mater. 1(2), 022103 (2013).
[Crossref]

Khomenko, A. V.

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson,“Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[Crossref]

Kim, V. O.

L. J. Cook, D. A. Mazilu, I. Mazilu, B. M. Simpson, E. M. Schwen, V. O. Kim, and A. M. Seredinski, “Cooperative sequential-adsorption model in two dimensions with experimental applications for ionic self-assembly of nanoparticles,” Phys. Rev. E 89(6), 062411 (2014).
[Crossref] [PubMed]

Kinashi, K.

Kobayashi, T.

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

Kondo, M.

N. Kawatsuki, H. Matsushita, M. Kondo, T. Sasaki, and H. Ono, “Photoinduced reorientation and polarization holography in a new photopolymer with 4-methoxy-N-benzylideneaniline side groups,” APL Mater. 1(2), 022103 (2013).
[Crossref]

Kuo, C.-T.

Kuo, Y.-C.

Lahlil, K.

N. Desbœufs, A.-D. Vu, K. Lahlil, Y. Lassailly, L. Martinelli, J.-P. Boilot, J. Peretti, and T. Gacoin, “Optical Patterning of Sol–Gel Silica Coatings,” Adv. Opt. Mater. 4(2), 313–320 (2016).
[Crossref]

Lassailly, Y.

N. Desbœufs, A.-D. Vu, K. Lahlil, Y. Lassailly, L. Martinelli, J.-P. Boilot, J. Peretti, and T. Gacoin, “Optical Patterning of Sol–Gel Silica Coatings,” Adv. Opt. Mater. 4(2), 313–320 (2016).
[Crossref]

Latychevskaia, T.

M. Germann, T. Latychevskaia, C. Escher, and H.-W. Fink, “Pulsed electron holography,” Appl. Phys. Lett. 102(20), 203115 (2013).
[Crossref]

Lee, C.-R.

A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic recording effect of polarization gratings based on dye‐doped liquid crystal films,” Liq. Cryst. 34(3), 389–393 (2007).
[Crossref]

K.-T. Cheng, C.-R. Lee, and A. Y.-G. Fuh, “Dynamics of biphotonic intensity holographic gratings based on dye‐doped liquid crystal films,” Liq. Cryst. 34(1), 95–100 (2007).
[Crossref]

A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic laser-induced ripple structures in dye-doped liquid crystal films,” Jpn. J. Appl. Phys. 45(9A), 7024–7027 (2006).
[Crossref]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[Crossref]

Leibold, J.

Leong, E. S. P.

Li, H.

Li, H. J.

H. J. Li, J. H. Wang, C. S. Wang, P. F. Zeng, P. Cai, Y. J. Pan, and Y. F. Yang, “Off-resonant nonlinear optical refraction properties of azo dye doped nematic liquid crystals,” Opt. Mater. Express 6(2), 459–465 (2016).
[Crossref]

X. Li, C. P. Chen, H. Y. Gao, Z. H. He, Y. Xiong, H. J. Li, W. Hu, Z. C. Ye, G. H. He, J. G. Lu, and Y. K. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Li, M.

Li, X.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

X. Li, C. P. Chen, H. Y. Gao, Z. H. He, Y. Xiong, H. J. Li, W. Hu, Z. C. Ye, G. H. He, J. G. Lu, and Y. K. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Li, X. W.

Q. S. Wei, L. L. Huang, X. W. Li, J. Liu, and Y. T. Wang, “Broadband multiplane holography based on plasmonic metasurface,” Adv. Opt. Mater. 5(18), 1700434 (2017).
[Crossref]

Lin, J.-D.

Lin, S.-H.

Lin, T.-H.

Liu, J.

Q. S. Wei, L. L. Huang, X. W. Li, J. Liu, and Y. T. Wang, “Broadband multiplane holography based on plasmonic metasurface,” Adv. Opt. Mater. 5(18), 1700434 (2017).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

Liu, X.

Liu, Y. J.

Lu, J. G.

X. Li, C. P. Chen, H. Y. Gao, Z. H. He, Y. Xiong, H. J. Li, W. Hu, Z. C. Ye, G. H. He, J. G. Lu, and Y. K. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Lu, R.-E.

Lyu, Z.

Mao, Y.

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson,“Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[Crossref]

Martinelli, L.

N. Desbœufs, A.-D. Vu, K. Lahlil, Y. Lassailly, L. Martinelli, J.-P. Boilot, J. Peretti, and T. Gacoin, “Optical Patterning of Sol–Gel Silica Coatings,” Adv. Opt. Mater. 4(2), 313–320 (2016).
[Crossref]

Matsushita, H.

N. Kawatsuki, H. Matsushita, M. Kondo, T. Sasaki, and H. Ono, “Photoinduced reorientation and polarization holography in a new photopolymer with 4-methoxy-N-benzylideneaniline side groups,” APL Mater. 1(2), 022103 (2013).
[Crossref]

Matsushita, T.

A. Uesaka, K. Hayashi, T. Matsushita, and S. Arai, “3D atomic imaging by internal-detector electron holography,” Phys. Rev. Lett. 107(4), 045502 (2011).
[Crossref] [PubMed]

Mazilu, D. A.

L. J. Cook, D. A. Mazilu, I. Mazilu, B. M. Simpson, E. M. Schwen, V. O. Kim, and A. M. Seredinski, “Cooperative sequential-adsorption model in two dimensions with experimental applications for ionic self-assembly of nanoparticles,” Phys. Rev. E 89(6), 062411 (2014).
[Crossref] [PubMed]

Mazilu, I.

L. J. Cook, D. A. Mazilu, I. Mazilu, B. M. Simpson, E. M. Schwen, V. O. Kim, and A. M. Seredinski, “Cooperative sequential-adsorption model in two dimensions with experimental applications for ionic self-assembly of nanoparticles,” Phys. Rev. E 89(6), 062411 (2014).
[Crossref] [PubMed]

Miller, B. E.

Ming, H.

X. X. Wang, D. G. Zhang, Y. K. Chen, L. F. Zhu, W. H. Yu, P. Wang, P. J. Yao, H. Ming, W. X. Wu, and Q. J. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[Crossref]

Mitsube, K.

Mo, T.-S.

H.-C. Yeh, Y.-C. Kuo, S.-H. Lin, J.-D. Lin, T.-S. Mo, and S.-Y. Huang, “Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer,” Opt. Lett. 36(8), 1311–1313 (2011).
[Crossref] [PubMed]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[Crossref]

Montelongo, Y.

A. K. Yetisen, Y. Montelongo, and H. Butt, “Rewritable three-dimensional holographic data storage via optical forces,” Appl. Phys. Lett. 109(6), 061106 (2016).
[Crossref]

Nagaya, K.

Nakamura, I.

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

Natansohn, A.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[Crossref] [PubMed]

Nishimura, Y.

Ono, H.

N. Kawatsuki, H. Matsushita, M. Kondo, T. Sasaki, and H. Ono, “Photoinduced reorientation and polarization holography in a new photopolymer with 4-methoxy-N-benzylideneaniline side groups,” APL Mater. 1(2), 022103 (2013).
[Crossref]

Orlic, S.

Ostrzinski, U.

Ouskova, E.

Pan, Y.

Pan, Y. J.

Peretti, J.

N. Desbœufs, A.-D. Vu, K. Lahlil, Y. Lassailly, L. Martinelli, J.-P. Boilot, J. Peretti, and T. Gacoin, “Optical Patterning of Sol–Gel Silica Coatings,” Adv. Opt. Mater. 4(2), 313–320 (2016).
[Crossref]

Pfeiffer, K.

Pirri, F.

Qin, Y.-Q.

Qiu, C.-W.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

Rangel-Rojo, R.

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson,“Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[Crossref]

Reineke, B.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

Ren, J.

Residori, S.

Ricciardi, S.

Rochon, P.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[Crossref] [PubMed]

Sabat, R. G.

Sabel, T.

Sakai, W.

Sasaki, T.

N. Kawatsuki, H. Matsushita, M. Kondo, T. Sasaki, and H. Ono, “Photoinduced reorientation and polarization holography in a new photopolymer with 4-methoxy-N-benzylideneaniline side groups,” APL Mater. 1(2), 022103 (2013).
[Crossref]

Schwen, E. M.

L. J. Cook, D. A. Mazilu, I. Mazilu, B. M. Simpson, E. M. Schwen, V. O. Kim, and A. M. Seredinski, “Cooperative sequential-adsorption model in two dimensions with experimental applications for ionic self-assembly of nanoparticles,” Phys. Rev. E 89(6), 062411 (2014).
[Crossref] [PubMed]

Sekkat, Z.

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

Seredinski, A. M.

L. J. Cook, D. A. Mazilu, I. Mazilu, B. M. Simpson, E. M. Schwen, V. O. Kim, and A. M. Seredinski, “Cooperative sequential-adsorption model in two dimensions with experimental applications for ionic self-assembly of nanoparticles,” Phys. Rev. E 89(6), 062411 (2014).
[Crossref] [PubMed]

Shi, H.

Simpson, B. M.

L. J. Cook, D. A. Mazilu, I. Mazilu, B. M. Simpson, E. M. Schwen, V. O. Kim, and A. M. Seredinski, “Cooperative sequential-adsorption model in two dimensions with experimental applications for ionic self-assembly of nanoparticles,” Phys. Rev. E 89(6), 062411 (2014).
[Crossref] [PubMed]

Su, Y. K.

X. Li, C. P. Chen, H. Y. Gao, Z. H. He, Y. Xiong, H. J. Li, W. Hu, Z. C. Ye, G. H. He, J. G. Lu, and Y. K. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Sun, X. W.

Takashima, Y.

Takayama, S.

Tamayo-Rivera, L.

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson,“Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[Crossref]

Teng, J. H.

Tomita, Y.

Torres-Torres, C.

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson,“Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[Crossref]

Tsutsumi, N.

Uesaka, A.

A. Uesaka, K. Hayashi, T. Matsushita, and S. Arai, “3D atomic imaging by internal-detector electron holography,” Phys. Rev. Lett. 107(4), 045502 (2011).
[Crossref] [PubMed]

Vapaavuori, J.

Vu, A.-D.

N. Desbœufs, A.-D. Vu, K. Lahlil, Y. Lassailly, L. Martinelli, J.-P. Boilot, J. Peretti, and T. Gacoin, “Optical Patterning of Sol–Gel Silica Coatings,” Adv. Opt. Mater. 4(2), 313–320 (2016).
[Crossref]

Wang, B.-Y.

Wang, C.

Wang, C. S.

Wang, C.-T.

Wang, J. H.

Wang, P.

Z. Cheng, H. Li, H. Shi, J. Ren, Q.-H. Yang, and P. Wang, “Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser,” Opt. Express 23(6), 7000–7006 (2015).
[Crossref] [PubMed]

X. X. Wang, D. G. Zhang, Y. K. Chen, L. F. Zhu, W. H. Yu, P. Wang, P. J. Yao, H. Ming, W. X. Wu, and Q. J. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[Crossref]

Wang, X. G.

Wang, X. X.

X. X. Wang, D. G. Zhang, Y. K. Chen, L. F. Zhu, W. H. Yu, P. Wang, P. J. Yao, H. Ming, W. X. Wu, and Q. J. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[Crossref]

Wang, Y.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

Wang, Y. T.

Q. S. Wei, L. L. Huang, X. W. Li, J. Liu, and Y. T. Wang, “Broadband multiplane holography based on plasmonic metasurface,” Adv. Opt. Mater. 5(18), 1700434 (2017).
[Crossref]

Watson, W. H.

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson,“Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[Crossref]

Wei, D.

Wei, Q. S.

Q. S. Wei, L. L. Huang, X. W. Li, J. Liu, and Y. T. Wang, “Broadband multiplane holography based on plasmonic metasurface,” Adv. Opt. Mater. 5(18), 1700434 (2017).
[Crossref]

Wei, R.

Wu, W. X.

X. X. Wang, D. G. Zhang, Y. K. Chen, L. F. Zhu, W. H. Yu, P. Wang, P. J. Yao, H. Ming, W. X. Wu, and Q. J. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[Crossref]

Wu, Y.-C.

Xia, R.

Xiong, Y.

X. Li, C. P. Chen, H. Y. Gao, Z. H. He, Y. Xiong, H. J. Li, W. Hu, Z. C. Ye, G. H. He, J. G. Lu, and Y. K. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Xu, Z.

Yabuhara, Y.

Yang, B.

Yang, Q.-H.

Yang, Y.

Yang, Y. F.

Yao, P. J.

X. X. Wang, D. G. Zhang, Y. K. Chen, L. F. Zhu, W. H. Yu, P. Wang, P. J. Yao, H. Ming, W. X. Wu, and Q. J. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[Crossref]

Ye, W.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

Ye, Z. C.

X. Li, C. P. Chen, H. Y. Gao, Z. H. He, Y. Xiong, H. J. Li, W. Hu, Z. C. Ye, G. H. He, J. G. Lu, and Y. K. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Yeh, H.-C.

Yetisen, A. K.

A. K. Yetisen, Y. Montelongo, and H. Butt, “Rewritable three-dimensional holographic data storage via optical forces,” Appl. Phys. Lett. 109(6), 061106 (2016).
[Crossref]

Yu, K.-Y.

Yu, W. H.

X. X. Wang, D. G. Zhang, Y. K. Chen, L. F. Zhu, W. H. Yu, P. Wang, P. J. Yao, H. Ming, W. X. Wu, and Q. J. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[Crossref]

Yue, Y.-Y.

Zeng, P. F.

Zentgraf, T.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

Zeuner, F.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

Zhang, C.

Zhang, D. G.

X. X. Wang, D. G. Zhang, Y. K. Chen, L. F. Zhu, W. H. Yu, P. Wang, P. J. Yao, H. Ming, W. X. Wu, and Q. J. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[Crossref]

Zhang, Q. J.

X. X. Wang, D. G. Zhang, Y. K. Chen, L. F. Zhu, W. H. Yu, P. Wang, P. J. Yao, H. Ming, W. X. Wu, and Q. J. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[Crossref]

Zhang, S.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

Zhu, L. F.

X. X. Wang, D. G. Zhang, Y. K. Chen, L. F. Zhu, W. H. Yu, P. Wang, P. J. Yao, H. Ming, W. X. Wu, and Q. J. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[Crossref]

Zhu, Y.-Y.

ACS Photonics (1)

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

Adv. Opt. Mater. (2)

N. Desbœufs, A.-D. Vu, K. Lahlil, Y. Lassailly, L. Martinelli, J.-P. Boilot, J. Peretti, and T. Gacoin, “Optical Patterning of Sol–Gel Silica Coatings,” Adv. Opt. Mater. 4(2), 313–320 (2016).
[Crossref]

Q. S. Wei, L. L. Huang, X. W. Li, J. Liu, and Y. T. Wang, “Broadband multiplane holography based on plasmonic metasurface,” Adv. Opt. Mater. 5(18), 1700434 (2017).
[Crossref]

APL Mater. (1)

N. Kawatsuki, H. Matsushita, M. Kondo, T. Sasaki, and H. Ono, “Photoinduced reorientation and polarization holography in a new photopolymer with 4-methoxy-N-benzylideneaniline side groups,” APL Mater. 1(2), 022103 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. K. Yetisen, Y. Montelongo, and H. Butt, “Rewritable three-dimensional holographic data storage via optical forces,” Appl. Phys. Lett. 109(6), 061106 (2016).
[Crossref]

M. Germann, T. Latychevskaia, C. Escher, and H.-W. Fink, “Pulsed electron holography,” Appl. Phys. Lett. 102(20), 203115 (2013).
[Crossref]

X. X. Wang, D. G. Zhang, Y. K. Chen, L. F. Zhu, W. H. Yu, P. Wang, P. J. Yao, H. Ming, W. X. Wu, and Q. J. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[Crossref]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[Crossref]

Chem. Rev. (1)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[Crossref] [PubMed]

J. Disp. Technol. (1)

X. Li, C. P. Chen, H. Y. Gao, Z. H. He, Y. Xiong, H. J. Li, W. Hu, Z. C. Ye, G. H. He, J. G. Lu, and Y. K. Su, “Video-rate holographic display using azo-dye-doped liquid crystal,” J. Disp. Technol. 10(6), 438–443 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic laser-induced ripple structures in dye-doped liquid crystal films,” Jpn. J. Appl. Phys. 45(9A), 7024–7027 (2006).
[Crossref]

Liq. Cryst. (2)

K.-T. Cheng, C.-R. Lee, and A. Y.-G. Fuh, “Dynamics of biphotonic intensity holographic gratings based on dye‐doped liquid crystal films,” Liq. Cryst. 34(1), 95–100 (2007).
[Crossref]

A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic recording effect of polarization gratings based on dye‐doped liquid crystal films,” Liq. Cryst. 34(3), 389–393 (2007).
[Crossref]

Nat. Commun. (1)

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref] [PubMed]

Opt. Commun. (1)

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson,“Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. Express (9)

E. Ouskova, J. Vapaavuori, and M. Kaivola, “Self-orienting liquid crystal doped with polymer-azo-dye complex,” Opt. Mater. Express 1(8), 1463–1470 (2011).
[Crossref]

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Azo-dye-doped absorbing photonic crystals with purely imaginary refractive index contrast and all-optically switchable diffraction properties,” Opt. Mater. Express 2(1), 55–61 (2012).
[Crossref]

T. Sabel, S. Orlic, K. Pfeiffer, U. Ostrzinski, and G. Grützner, “Free-surface photopolymerizable recording material for volume holography,” Opt. Mater. Express 3(3), 329–338 (2013).
[Crossref]

B.-Y. Huang, K.-Y. Yu, S.-Y. Huang, and C.-T. Kuo, “The investigation of the two-dimensional surface relief grating on dye-doped polymer film,” Opt. Mater. Express 4(2), 308–314 (2014).
[Crossref]

K. Mitsube, Y. Nishimura, K. Nagaya, S. Takayama, and Y. Tomita, “Holographic nanoparticle-polymer composites based on radical-mediated thiol-yne photopolymerizations: characterization and shift-multiplexed holographic digital data page storage,” Opt. Mater. Express 4(5), 982–996 (2014).
[Crossref]

N. Tsutsumi, Y. Yabuhara, K. Kinashi, and W. Sakai, “Advantage of the circular polarization of light in the updatable holographic response in an azo-carbazole monolithic dye dispersed acrylate matrix,” Opt. Mater. Express 7(5), 1647–1655 (2017).
[Crossref]

R. Wei, Z. Xu, and X. G. Wang, “Epoxy-based azo polymer for photofabricating surface-relief quasi-crystal structures,” Opt. Mater. Express 5(6), 1348–1355 (2015).
[Crossref]

F. Frascella, A. Angelini, S. Ricciardi, F. Pirri, and E. Descrovi, “Surface-relief formation in azo-polyelectrolyte layers with a protective polymer coating,” Opt. Mater. Express 6(2), 444–450 (2016).
[Crossref]

H. J. Li, J. H. Wang, C. S. Wang, P. F. Zeng, P. Cai, Y. J. Pan, and Y. F. Yang, “Off-resonant nonlinear optical refraction properties of azo dye doped nematic liquid crystals,” Opt. Mater. Express 6(2), 459–465 (2016).
[Crossref]

Photon. Res. (1)

Phys. Rev. E (1)

L. J. Cook, D. A. Mazilu, I. Mazilu, B. M. Simpson, E. M. Schwen, V. O. Kim, and A. M. Seredinski, “Cooperative sequential-adsorption model in two dimensions with experimental applications for ionic self-assembly of nanoparticles,” Phys. Rev. E 89(6), 062411 (2014).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. Uesaka, K. Hayashi, T. Matsushita, and S. Arai, “3D atomic imaging by internal-detector electron holography,” Phys. Rev. Lett. 107(4), 045502 (2011).
[Crossref] [PubMed]

Other (1)

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Absorption spectrums of the azobenzene liquid crystal film before and after the irradiation of 532 nm light. Inset: chemical structure of the compound.
Fig. 2
Fig. 2 Experimental setup for biphotonic holographic recording. W1 and W2 are linearly polarized recording waves. A, attenuator; P, polarizer; BS, beam splitter; M, mirror; Q1, 632.8 nm half-wave plate; Q2, 532 nm half-wave plate.
Fig. 3
Fig. 3 Real time behavior of the first-order diffraction efficiency during a biphotonic holographic grating was recorded at room temperature. Inset: diffraction patterns of the recorded holographic grating and polarization states of diffraction light.
Fig. 4
Fig. 4 Dependence of DE on the polarization state of 532 nm excitation light. Inset: diagrams of intermolecular torques when the polarization directions of recording light and excitation light are parallel (a), intersecting (b), and orthogonal (c) respectively.
Fig. 5
Fig. 5 Typical time evolution showing the biphotonic holographic recording at different temperatures. Inset: diffraction patterns of biphotonic holographic gratings.
Fig. 6
Fig. 6 The number of diffraction rings in the azobenzene side-chain liquid crystal film as a function of laser intensity under CW Nd:YAG laser irradiation. Inset: the mechanism of photo-induced reorientation and cis(right)-trans(left) isomerization of azobenzene groups.
Fig. 7
Fig. 7 Diffraction rings of red light in the azobenzene side-chain liquid crystal film without (a) and with (b) the irradiation of a 532 nm beam (c).
Fig. 8
Fig. 8 The coordinate system of the biphotonic polarization holographic recording.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

η off =A(1 e K a t )+B(1 e K b t )
Δϕ(z)= 2π λ d/2 d/2 Δn(z,ρ) dρ
N= Δϕ(z) 2π = 1 λ d/2 d/2 Δn(z,ρ) dρ
I 1 (d)= I 1 (0) 1+ z 0 1 1+ z 0 1 exp(ζd) exp(γd)
I 2 (d)= I 2 (0) 1+ z 0 1+ z 0 exp(ζd) exp(γd)
T off =( exp[iΔ φ off (cos δ off )] 0 0 exp[iΔ φ off (cos δ off )] )
R=( cosθ sinθ )
E off ±1 = T off ±1 R= Δ φ off 4 exp(±i δ off )( sinθ cosθ )

Metrics