Abstract

Holographic silicon polymer films based on photoswitchable molecules are studied with respect to their performance for hologram recording, with photoswitchable ruthenium sulfoxide complexes as an example. Our systematic study reveals that it is possible to record elementary holographic lossy gratings with outstanding quality with respect to their dynamics and in- and off-Bragg read-out features. Furthermore, the possibility for the recording of multiple holograms within the same volume element via angular multiplexing as well as the recording with continuous-wave and a fs-laser pulse train is successfully demonstrated. At the same time, a strong limitation of the maximum diffraction efficiency in the order of ∼ 10−3 is found that cannot be counterbalanced by either the tuning of material (thickness, concentration, ...) or recording parameters (repetition rate, wavelength, ...). This limitation – being severe for any type of holographic applications – is discussed and compared with the performance of high-efficient single-crystalline reference holographic media. We conclude that the potential of sulfoxide compounds may be hidden in holography until it becomes possible to synthesize polymer films with appropriate three-dimensional structural arrangement of the photoswitchable compounds.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-contrast, high-resolution photochromic silicone polymer based on photoswitchable [Ru(bpy)2OSO]PF6 building blocks

Kristin Springfeld, Volker Dieckmann, and Mirco Imlau
Photon. Res. 1(4) 197-201 (2013)

Pronounced photosensitivity of molecular [Ru(bpy)2(OSO)]+ solutions based on two photoinduced linkage isomers

Volker Dieckmann, Sebastian Eicke, Jeffrey J. Rack, Theo Woike, and Mirco Imlau
Opt. Express 17(17) 15052-15060 (2009)

Biphotonic holographic grating recordings for different polarization configurations in spirooxazine-doped polymers

Meiling Zheng, Xin Xie, Zhiying Zhang, Feng Shi, Xiuli Wang, Shencheng Fu, and Yichun Liu
Appl. Opt. 53(25) 5815-5823 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Th. Woike, W. Krasser, P. S. Bechthold, and S. Haussühl, “Extremely Long-Living Metastable State of Na2[Fe(CN)5NO]·2H2O Single Crystals: Optical Properties,” Phys. Rev. Lett. 53(18), 1767–1770 (1984).
  2. Th. Woike, W. Krasser, and S. Haussühl, “Optical switch, especially for information storage and retrieval,” U. S. Patent 4713795 (1987).
  3. Th. Woike, W. Kirchner, G. Schetter, T. Barthel, K. Hyung-sang, and S. Haussühl, “New information storage elements on the basis of metastable electronic states,” Opt. Commun. 106(1–3), 6–10 (1994).
  4. V. Dieckmann, S. Eicke, K. Springfeld, and M. Imlau, “Transition Metal Compounds Towards Holography,” Materials. 5(6), 1155–1175 (2012).
  5. L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci. Pol. Phys. 54(20), 2050–2058 (2016).
  6. R. Häussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, “Large real-time holographic 3D displays: enabling components and results,” Appl. Opt. 56(13), F45–F52 (2017).
  7. J. J. Rack, “Photoinduced molecular switches,” U.S. Patent 6433270 (2002).
  8. B. A. McClure and J. J. Rack, “Isomerization in Photochromic Ruthenium Sulfoxide Complexes,” Eur. J. Inorg. Chem. 2010(25), 3895–3904 (2010).
  9. V. Dieckmann, S. Eicke, J. J. Rack, Th. Woike, and M. Imlau, “Pronounced photosensitivity of molecular [Ru(bpy)2(OSO)]+ solutions based on two photoinduced linkage isomers,” Opt. Express 17(17), 15052–15060 (2009).
  10. V. Dieckmann, K. Springfeld, S. Eicke, M. Imlau, and J. J. Rack, “Thermal stability, photochromic sensitivity and optical properties of [Ru(bpy)2(OSOR)]+ compounds with R = Bn, BnCl, BnMe,” Opt. Express 18(22), 23495–23503 (2010).
  11. K. Springfeld, V. Dieckmann, and M. Imlau, “High-contrast, high-resolution photochromic silicone polymer based on photoswitchable [Ru(bpy)2OSO]PF6 building blocks,” Photonics Res. 1(4), 197–201 (2013).
  12. V. Dieckmann, “Lichtinduzierte Isomerisierung in Sulfoxid- und Nitrosyl-Komplexen: Photosensitivität und Modifikation,” Ph.D. thesis, Osnabrueck University, Osnabrueck, Germany (2010).
  13. K. Springfeld, “Photoschaltbare Koordinationskomplexe: Festkörpereinbettung und Schwingungsspektroskopie mit MIR-Femtosekundenpulsen,” Ph.D. thesis, Osnabrueck University, Osnabrueck, Germany (2013).
  14. M. Y. Livshits and J. J. Rack, “Photorefraction from a Photochromic Soft Material,” J. Phys. Chem. C 120(46), 26459–26464 (2016).
  15. M. Imlau, S. Haussühl, Th. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2[Fe(CN)5NO]·2H2O: a new photorefractive effect,” Appl. Phys. B 68(5), 877–885 (1999).
  16. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic Data Storage in Three-Dimensional Media,” Appl. Opt. 5(8), 1303–1311 (1966).
  17. D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26(4), 182–184 (1975).
  18. M. Imlau, Th. Woike, R. Schieder, and R. A. Rupp, “Holographic recording with orthogonally polarized waves in centrosymmetric Na2[Fe(CN)5NO]·2H2O,” EPL 53(4), 471–477 (2001).
  19. K.-M. Voit and M. Imlau, “Holographic Spectroscopy: Wavelength-Dependent Analysis of Photosensitive Materials by Means of Holographic Techniques,” Materials. 6(1), 334–358 (2013).
  20. B. A. McClure, N. V. Mockus, D. P. Butcher, D. A. Lutterman, C. Turro, J. L. Petersen, and J. J. Rack, “Photochromic Ruthenium Sulfoxide Complexes: Evidence for Isomerization Through a Conical Intersection,” Inorg. Chem. 48(17), 8084–8091 (2009).
  21. D. P. Butcher, A. A. Rachford, J. L. Petersen, and J. J. Rack, “Phototriggered S → O Isomerization of a Ruthenium-Bound Chelating Sulfoxide,” Inorg. Chem. 45(23), 9178–9180 (2006).
  22. N. V. Mockus, D. Rabinovich, J. L. Petersen, and J. J. Rack, “Femtosecond Isomerization in a Photochromic Molecular Switch,” Angew. Chem. Int. Ed. 47(8), 1458–1461 (2008).
  23. B. A. McClure and J. J. Rack, “Ultrafast Spectroscopy of a Photochromic Ruthenium Sulfoxide Complex,” Inorg. Chem. 50(16), 7586–7590 (2011).
  24. T. A. Grusenmeyer, B. A. McClure, C. J. Ziegler, and J. J. Rack, “Solvent Effects on Isomerization in a Ruthenium Sulfoxide Complex,” Inorg. Chem. 49(10), 4466–4470 (2010).
  25. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
  26. M. Fally, M. Imlau, R. A. Rupp, M. A. Ellabban, and Th. Woike, “Specific Recording Kinetics as a General Property of Unconventional Photorefractive Media,” Phys. Rev. Lett. 93(24), 243903 (2004).
  27. G. Borrmann, “Die Absorption von Röntgenstrahlen im Fall der Interferenz,” Z. Phys. 127(4), 297–323 (1950).
  28. S. Eicke, “Populations- und Relaxationskinetiken laserangeregter photofunktionaler Ruthenium-Sulfoxid-Komnplexe in hochkonzentrierten Lösungen,” Ph.D. thesis, Osnabrueck University, Osnabrueck, Germany (2012).
  29. S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. 4, 6 (2014).
  30. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).
  31. N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819 (2012).
  32. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Sciences (Springer-Verlag, Berlin Heidelberg, 2000).
  33. M. Imlau, T. Bieringer, S.G. Odoulov, and Th. Woike, “Holographic Data Storage,” in Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, R. Waser, ed. (Wiley-VCH, Weinheim, 2012), 3rd ed., pp. 725–750
  34. M. Imlau, R. Schieder, R. A. Rupp, and Th. Woike, “Anisotropic holographic scattering in centrosymmetric sodium nitroprusside,” Appl. Phys. Lett. 75(1), 16–18 (1999).
  35. M. A. Ellabban, M. Fally, M. Imlau, Th. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96(12), 6987–6993 (2004).
  36. H. Brüning, V. Dieckmann, B. Schoke, K.-M. Voit, M. Imlau, G. Corradi, and C. Merschjann, “Small-polaron based holograms in LiNbO3 in the visible spectrum,” Opt. Express 20(12), 13326–13336 (2012).
  37. M. Goulkov, D. Schaniel, and Th. Woike, “Pulse recording of thermal and linkage isomer gratings in nitrosyl compounds,” J. Opt. Soc. Am. B 27(5), 927–932 (2010).
  38. P. T. Manoharan and W. C. Hamilton, “The Crystal Structure of Sodium Nitroprusside,” Inorg. Chem. 2(5), 1043–1047 (1963).
  39. Th. Woike, S. Haussühl, B. Sugg, R. A. Rupp, J. Beckers, M. Imlau, and R. Schieder, “Phase gratings in the visible and near-infrared spectral range realized by metastable electronic states in Na2[Fe(CN)5NO]·2H2O,” Appl. Phys. B 63(3), 243–248 (1996).

2017 (1)

2016 (2)

L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci. Pol. Phys. 54(20), 2050–2058 (2016).

M. Y. Livshits and J. J. Rack, “Photorefraction from a Photochromic Soft Material,” J. Phys. Chem. C 120(46), 26459–26464 (2016).

2014 (1)

S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. 4, 6 (2014).

2013 (2)

K.-M. Voit and M. Imlau, “Holographic Spectroscopy: Wavelength-Dependent Analysis of Photosensitive Materials by Means of Holographic Techniques,” Materials. 6(1), 334–358 (2013).

K. Springfeld, V. Dieckmann, and M. Imlau, “High-contrast, high-resolution photochromic silicone polymer based on photoswitchable [Ru(bpy)2OSO]PF6 building blocks,” Photonics Res. 1(4), 197–201 (2013).

2012 (3)

V. Dieckmann, S. Eicke, K. Springfeld, and M. Imlau, “Transition Metal Compounds Towards Holography,” Materials. 5(6), 1155–1175 (2012).

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819 (2012).

H. Brüning, V. Dieckmann, B. Schoke, K.-M. Voit, M. Imlau, G. Corradi, and C. Merschjann, “Small-polaron based holograms in LiNbO3 in the visible spectrum,” Opt. Express 20(12), 13326–13336 (2012).

2011 (1)

B. A. McClure and J. J. Rack, “Ultrafast Spectroscopy of a Photochromic Ruthenium Sulfoxide Complex,” Inorg. Chem. 50(16), 7586–7590 (2011).

2010 (5)

T. A. Grusenmeyer, B. A. McClure, C. J. Ziegler, and J. J. Rack, “Solvent Effects on Isomerization in a Ruthenium Sulfoxide Complex,” Inorg. Chem. 49(10), 4466–4470 (2010).

V. Dieckmann, K. Springfeld, S. Eicke, M. Imlau, and J. J. Rack, “Thermal stability, photochromic sensitivity and optical properties of [Ru(bpy)2(OSOR)]+ compounds with R = Bn, BnCl, BnMe,” Opt. Express 18(22), 23495–23503 (2010).

B. A. McClure and J. J. Rack, “Isomerization in Photochromic Ruthenium Sulfoxide Complexes,” Eur. J. Inorg. Chem. 2010(25), 3895–3904 (2010).

M. Goulkov, D. Schaniel, and Th. Woike, “Pulse recording of thermal and linkage isomer gratings in nitrosyl compounds,” J. Opt. Soc. Am. B 27(5), 927–932 (2010).

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

2009 (2)

V. Dieckmann, S. Eicke, J. J. Rack, Th. Woike, and M. Imlau, “Pronounced photosensitivity of molecular [Ru(bpy)2(OSO)]+ solutions based on two photoinduced linkage isomers,” Opt. Express 17(17), 15052–15060 (2009).

B. A. McClure, N. V. Mockus, D. P. Butcher, D. A. Lutterman, C. Turro, J. L. Petersen, and J. J. Rack, “Photochromic Ruthenium Sulfoxide Complexes: Evidence for Isomerization Through a Conical Intersection,” Inorg. Chem. 48(17), 8084–8091 (2009).

2008 (1)

N. V. Mockus, D. Rabinovich, J. L. Petersen, and J. J. Rack, “Femtosecond Isomerization in a Photochromic Molecular Switch,” Angew. Chem. Int. Ed. 47(8), 1458–1461 (2008).

2006 (1)

D. P. Butcher, A. A. Rachford, J. L. Petersen, and J. J. Rack, “Phototriggered S → O Isomerization of a Ruthenium-Bound Chelating Sulfoxide,” Inorg. Chem. 45(23), 9178–9180 (2006).

2004 (2)

M. A. Ellabban, M. Fally, M. Imlau, Th. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96(12), 6987–6993 (2004).

M. Fally, M. Imlau, R. A. Rupp, M. A. Ellabban, and Th. Woike, “Specific Recording Kinetics as a General Property of Unconventional Photorefractive Media,” Phys. Rev. Lett. 93(24), 243903 (2004).

2001 (1)

M. Imlau, Th. Woike, R. Schieder, and R. A. Rupp, “Holographic recording with orthogonally polarized waves in centrosymmetric Na2[Fe(CN)5NO]·2H2O,” EPL 53(4), 471–477 (2001).

1999 (2)

M. Imlau, S. Haussühl, Th. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2[Fe(CN)5NO]·2H2O: a new photorefractive effect,” Appl. Phys. B 68(5), 877–885 (1999).

M. Imlau, R. Schieder, R. A. Rupp, and Th. Woike, “Anisotropic holographic scattering in centrosymmetric sodium nitroprusside,” Appl. Phys. Lett. 75(1), 16–18 (1999).

1996 (1)

Th. Woike, S. Haussühl, B. Sugg, R. A. Rupp, J. Beckers, M. Imlau, and R. Schieder, “Phase gratings in the visible and near-infrared spectral range realized by metastable electronic states in Na2[Fe(CN)5NO]·2H2O,” Appl. Phys. B 63(3), 243–248 (1996).

1994 (1)

Th. Woike, W. Kirchner, G. Schetter, T. Barthel, K. Hyung-sang, and S. Haussühl, “New information storage elements on the basis of metastable electronic states,” Opt. Commun. 106(1–3), 6–10 (1994).

1984 (1)

Th. Woike, W. Krasser, P. S. Bechthold, and S. Haussühl, “Extremely Long-Living Metastable State of Na2[Fe(CN)5NO]·2H2O Single Crystals: Optical Properties,” Phys. Rev. Lett. 53(18), 1767–1770 (1984).

1975 (1)

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26(4), 182–184 (1975).

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).

1966 (1)

1963 (1)

P. T. Manoharan and W. C. Hamilton, “The Crystal Structure of Sodium Nitroprusside,” Inorg. Chem. 2(5), 1043–1047 (1963).

1950 (1)

G. Borrmann, “Die Absorption von Röntgenstrahlen im Fall der Interferenz,” Z. Phys. 127(4), 297–323 (1950).

Abe, J.

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819 (2012).

Amodei, J. J.

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26(4), 182–184 (1975).

Angelov, V.

M. Imlau, S. Haussühl, Th. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2[Fe(CN)5NO]·2H2O: a new photorefractive effect,” Appl. Phys. B 68(5), 877–885 (1999).

Bablumian, A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Barthel, T.

Th. Woike, W. Kirchner, G. Schetter, T. Barthel, K. Hyung-sang, and S. Haussühl, “New information storage elements on the basis of metastable electronic states,” Opt. Commun. 106(1–3), 6–10 (1994).

Bechthold, P. S.

Th. Woike, W. Krasser, P. S. Bechthold, and S. Haussühl, “Extremely Long-Living Metastable State of Na2[Fe(CN)5NO]·2H2O Single Crystals: Optical Properties,” Phys. Rev. Lett. 53(18), 1767–1770 (1984).

Beckers, J.

Th. Woike, S. Haussühl, B. Sugg, R. A. Rupp, J. Beckers, M. Imlau, and R. Schieder, “Phase gratings in the visible and near-infrared spectral range realized by metastable electronic states in Na2[Fe(CN)5NO]·2H2O,” Appl. Phys. B 63(3), 243–248 (1996).

Bieringer, T.

M. Imlau, T. Bieringer, S.G. Odoulov, and Th. Woike, “Holographic Data Storage,” in Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, R. Waser, ed. (Wiley-VCH, Weinheim, 2012), 3rd ed., pp. 725–750

Blanche, P.-A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Borrmann, G.

G. Borrmann, “Die Absorption von Röntgenstrahlen im Fall der Interferenz,” Z. Phys. 127(4), 297–323 (1950).

Brüning, H.

Burke, W. J.

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26(4), 182–184 (1975).

Butcher, D. P.

B. A. McClure, N. V. Mockus, D. P. Butcher, D. A. Lutterman, C. Turro, J. L. Petersen, and J. J. Rack, “Photochromic Ruthenium Sulfoxide Complexes: Evidence for Isomerization Through a Conical Intersection,” Inorg. Chem. 48(17), 8084–8091 (2009).

D. P. Butcher, A. A. Rachford, J. L. Petersen, and J. J. Rack, “Phototriggered S → O Isomerization of a Ruthenium-Bound Chelating Sulfoxide,” Inorg. Chem. 45(23), 9178–9180 (2006).

Cao, L.

L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci. Pol. Phys. 54(20), 2050–2058 (2016).

Christenson, C.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Corradi, G.

Dieckmann, V.

S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. 4, 6 (2014).

K. Springfeld, V. Dieckmann, and M. Imlau, “High-contrast, high-resolution photochromic silicone polymer based on photoswitchable [Ru(bpy)2OSO]PF6 building blocks,” Photonics Res. 1(4), 197–201 (2013).

V. Dieckmann, S. Eicke, K. Springfeld, and M. Imlau, “Transition Metal Compounds Towards Holography,” Materials. 5(6), 1155–1175 (2012).

H. Brüning, V. Dieckmann, B. Schoke, K.-M. Voit, M. Imlau, G. Corradi, and C. Merschjann, “Small-polaron based holograms in LiNbO3 in the visible spectrum,” Opt. Express 20(12), 13326–13336 (2012).

V. Dieckmann, K. Springfeld, S. Eicke, M. Imlau, and J. J. Rack, “Thermal stability, photochromic sensitivity and optical properties of [Ru(bpy)2(OSOR)]+ compounds with R = Bn, BnCl, BnMe,” Opt. Express 18(22), 23495–23503 (2010).

V. Dieckmann, S. Eicke, J. J. Rack, Th. Woike, and M. Imlau, “Pronounced photosensitivity of molecular [Ru(bpy)2(OSO)]+ solutions based on two photoinduced linkage isomers,” Opt. Express 17(17), 15052–15060 (2009).

V. Dieckmann, “Lichtinduzierte Isomerisierung in Sulfoxid- und Nitrosyl-Komplexen: Photosensitivität und Modifikation,” Ph.D. thesis, Osnabrueck University, Osnabrueck, Germany (2010).

Eicke, S.

S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. 4, 6 (2014).

V. Dieckmann, S. Eicke, K. Springfeld, and M. Imlau, “Transition Metal Compounds Towards Holography,” Materials. 5(6), 1155–1175 (2012).

V. Dieckmann, K. Springfeld, S. Eicke, M. Imlau, and J. J. Rack, “Thermal stability, photochromic sensitivity and optical properties of [Ru(bpy)2(OSOR)]+ compounds with R = Bn, BnCl, BnMe,” Opt. Express 18(22), 23495–23503 (2010).

V. Dieckmann, S. Eicke, J. J. Rack, Th. Woike, and M. Imlau, “Pronounced photosensitivity of molecular [Ru(bpy)2(OSO)]+ solutions based on two photoinduced linkage isomers,” Opt. Express 17(17), 15052–15060 (2009).

S. Eicke, “Populations- und Relaxationskinetiken laserangeregter photofunktionaler Ruthenium-Sulfoxid-Komnplexe in hochkonzentrierten Lösungen,” Ph.D. thesis, Osnabrueck University, Osnabrueck, Germany (2012).

Ellabban, M. A.

M. Fally, M. Imlau, R. A. Rupp, M. A. Ellabban, and Th. Woike, “Specific Recording Kinetics as a General Property of Unconventional Photorefractive Media,” Phys. Rev. Lett. 93(24), 243903 (2004).

M. A. Ellabban, M. Fally, M. Imlau, Th. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96(12), 6987–6993 (2004).

Fally, M.

M. A. Ellabban, M. Fally, M. Imlau, Th. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96(12), 6987–6993 (2004).

M. Fally, M. Imlau, R. A. Rupp, M. A. Ellabban, and Th. Woike, “Specific Recording Kinetics as a General Property of Unconventional Photorefractive Media,” Phys. Rev. Lett. 93(24), 243903 (2004).

Flores, D.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Goulkov, M.

Granzow, T.

M. A. Ellabban, M. Fally, M. Imlau, Th. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96(12), 6987–6993 (2004).

Gritsai, Y.

Grusenmeyer, T. A.

T. A. Grusenmeyer, B. A. McClure, C. J. Ziegler, and J. J. Rack, “Solvent Effects on Isomerization in a Ruthenium Sulfoxide Complex,” Inorg. Chem. 49(10), 4466–4470 (2010).

Gu, T.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Hamilton, W. C.

P. T. Manoharan and W. C. Hamilton, “The Crystal Structure of Sodium Nitroprusside,” Inorg. Chem. 2(5), 1043–1047 (1963).

Häussler, R.

Haussühl, S.

M. Imlau, S. Haussühl, Th. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2[Fe(CN)5NO]·2H2O: a new photorefractive effect,” Appl. Phys. B 68(5), 877–885 (1999).

Th. Woike, S. Haussühl, B. Sugg, R. A. Rupp, J. Beckers, M. Imlau, and R. Schieder, “Phase gratings in the visible and near-infrared spectral range realized by metastable electronic states in Na2[Fe(CN)5NO]·2H2O,” Appl. Phys. B 63(3), 243–248 (1996).

Th. Woike, W. Kirchner, G. Schetter, T. Barthel, K. Hyung-sang, and S. Haussühl, “New information storage elements on the basis of metastable electronic states,” Opt. Commun. 106(1–3), 6–10 (1994).

Th. Woike, W. Krasser, P. S. Bechthold, and S. Haussühl, “Extremely Long-Living Metastable State of Na2[Fe(CN)5NO]·2H2O Single Crystals: Optical Properties,” Phys. Rev. Lett. 53(18), 1767–1770 (1984).

Th. Woike, W. Krasser, and S. Haussühl, “Optical switch, especially for information storage and retrieval,” U. S. Patent 4713795 (1987).

Hsieh, W.-Y.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Hyung-sang, K.

Th. Woike, W. Kirchner, G. Schetter, T. Barthel, K. Hyung-sang, and S. Haussühl, “New information storage elements on the basis of metastable electronic states,” Opt. Commun. 106(1–3), 6–10 (1994).

Imlau, M.

S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. 4, 6 (2014).

K.-M. Voit and M. Imlau, “Holographic Spectroscopy: Wavelength-Dependent Analysis of Photosensitive Materials by Means of Holographic Techniques,” Materials. 6(1), 334–358 (2013).

K. Springfeld, V. Dieckmann, and M. Imlau, “High-contrast, high-resolution photochromic silicone polymer based on photoswitchable [Ru(bpy)2OSO]PF6 building blocks,” Photonics Res. 1(4), 197–201 (2013).

V. Dieckmann, S. Eicke, K. Springfeld, and M. Imlau, “Transition Metal Compounds Towards Holography,” Materials. 5(6), 1155–1175 (2012).

H. Brüning, V. Dieckmann, B. Schoke, K.-M. Voit, M. Imlau, G. Corradi, and C. Merschjann, “Small-polaron based holograms in LiNbO3 in the visible spectrum,” Opt. Express 20(12), 13326–13336 (2012).

V. Dieckmann, K. Springfeld, S. Eicke, M. Imlau, and J. J. Rack, “Thermal stability, photochromic sensitivity and optical properties of [Ru(bpy)2(OSOR)]+ compounds with R = Bn, BnCl, BnMe,” Opt. Express 18(22), 23495–23503 (2010).

V. Dieckmann, S. Eicke, J. J. Rack, Th. Woike, and M. Imlau, “Pronounced photosensitivity of molecular [Ru(bpy)2(OSO)]+ solutions based on two photoinduced linkage isomers,” Opt. Express 17(17), 15052–15060 (2009).

M. Fally, M. Imlau, R. A. Rupp, M. A. Ellabban, and Th. Woike, “Specific Recording Kinetics as a General Property of Unconventional Photorefractive Media,” Phys. Rev. Lett. 93(24), 243903 (2004).

M. A. Ellabban, M. Fally, M. Imlau, Th. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96(12), 6987–6993 (2004).

M. Imlau, Th. Woike, R. Schieder, and R. A. Rupp, “Holographic recording with orthogonally polarized waves in centrosymmetric Na2[Fe(CN)5NO]·2H2O,” EPL 53(4), 471–477 (2001).

M. Imlau, S. Haussühl, Th. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2[Fe(CN)5NO]·2H2O: a new photorefractive effect,” Appl. Phys. B 68(5), 877–885 (1999).

M. Imlau, R. Schieder, R. A. Rupp, and Th. Woike, “Anisotropic holographic scattering in centrosymmetric sodium nitroprusside,” Appl. Phys. Lett. 75(1), 16–18 (1999).

Th. Woike, S. Haussühl, B. Sugg, R. A. Rupp, J. Beckers, M. Imlau, and R. Schieder, “Phase gratings in the visible and near-infrared spectral range realized by metastable electronic states in Na2[Fe(CN)5NO]·2H2O,” Appl. Phys. B 63(3), 243–248 (1996).

M. Imlau, T. Bieringer, S.G. Odoulov, and Th. Woike, “Holographic Data Storage,” in Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, R. Waser, ed. (Wiley-VCH, Weinheim, 2012), 3rd ed., pp. 725–750

Ishii, N.

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819 (2012).

Jin, G.

L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci. Pol. Phys. 54(20), 2050–2058 (2016).

Kathaperumal, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Kato, T.

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819 (2012).

Kirchner, W.

Th. Woike, W. Kirchner, G. Schetter, T. Barthel, K. Hyung-sang, and S. Haussühl, “New information storage elements on the basis of metastable electronic states,” Opt. Commun. 106(1–3), 6–10 (1994).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).

Kozma, A.

Krasser, W.

Th. Woike, W. Krasser, P. S. Bechthold, and S. Haussühl, “Extremely Long-Living Metastable State of Na2[Fe(CN)5NO]·2H2O Single Crystals: Optical Properties,” Phys. Rev. Lett. 53(18), 1767–1770 (1984).

Th. Woike, W. Krasser, and S. Haussühl, “Optical switch, especially for information storage and retrieval,” U. S. Patent 4713795 (1987).

Kruse, A.

S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. 4, 6 (2014).

Leith, E. N.

Lin, W.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Livshits, M. Y.

M. Y. Livshits and J. J. Rack, “Photorefraction from a Photochromic Soft Material,” J. Phys. Chem. C 120(46), 26459–26464 (2016).

Lutterman, D. A.

B. A. McClure, N. V. Mockus, D. P. Butcher, D. A. Lutterman, C. Turro, J. L. Petersen, and J. J. Rack, “Photochromic Ruthenium Sulfoxide Complexes: Evidence for Isomerization Through a Conical Intersection,” Inorg. Chem. 48(17), 8084–8091 (2009).

Manoharan, P. T.

P. T. Manoharan and W. C. Hamilton, “The Crystal Structure of Sodium Nitroprusside,” Inorg. Chem. 2(5), 1043–1047 (1963).

Marks, J.

Massey, N.

McClure, B. A.

B. A. McClure and J. J. Rack, “Ultrafast Spectroscopy of a Photochromic Ruthenium Sulfoxide Complex,” Inorg. Chem. 50(16), 7586–7590 (2011).

T. A. Grusenmeyer, B. A. McClure, C. J. Ziegler, and J. J. Rack, “Solvent Effects on Isomerization in a Ruthenium Sulfoxide Complex,” Inorg. Chem. 49(10), 4466–4470 (2010).

B. A. McClure and J. J. Rack, “Isomerization in Photochromic Ruthenium Sulfoxide Complexes,” Eur. J. Inorg. Chem. 2010(25), 3895–3904 (2010).

B. A. McClure, N. V. Mockus, D. P. Butcher, D. A. Lutterman, C. Turro, J. L. Petersen, and J. J. Rack, “Photochromic Ruthenium Sulfoxide Complexes: Evidence for Isomerization Through a Conical Intersection,” Inorg. Chem. 48(17), 8084–8091 (2009).

Merschjann, C.

Missbach, R.

Mockus, N. V.

B. A. McClure, N. V. Mockus, D. P. Butcher, D. A. Lutterman, C. Turro, J. L. Petersen, and J. J. Rack, “Photochromic Ruthenium Sulfoxide Complexes: Evidence for Isomerization Through a Conical Intersection,” Inorg. Chem. 48(17), 8084–8091 (2009).

N. V. Mockus, D. Rabinovich, J. L. Petersen, and J. J. Rack, “Femtosecond Isomerization in a Photochromic Molecular Switch,” Angew. Chem. Int. Ed. 47(8), 1458–1461 (2008).

Norwood, R. A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Odoulov, S.G.

M. Imlau, T. Bieringer, S.G. Odoulov, and Th. Woike, “Holographic Data Storage,” in Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, R. Waser, ed. (Wiley-VCH, Weinheim, 2012), 3rd ed., pp. 725–750

Petersen, J. L.

B. A. McClure, N. V. Mockus, D. P. Butcher, D. A. Lutterman, C. Turro, J. L. Petersen, and J. J. Rack, “Photochromic Ruthenium Sulfoxide Complexes: Evidence for Isomerization Through a Conical Intersection,” Inorg. Chem. 48(17), 8084–8091 (2009).

N. V. Mockus, D. Rabinovich, J. L. Petersen, and J. J. Rack, “Femtosecond Isomerization in a Photochromic Molecular Switch,” Angew. Chem. Int. Ed. 47(8), 1458–1461 (2008).

D. P. Butcher, A. A. Rachford, J. L. Petersen, and J. J. Rack, “Phototriggered S → O Isomerization of a Ruthenium-Bound Chelating Sulfoxide,” Inorg. Chem. 45(23), 9178–9180 (2006).

Peyghambarian, N.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Phillips, W.

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26(4), 182–184 (1975).

Rabinovich, D.

N. V. Mockus, D. Rabinovich, J. L. Petersen, and J. J. Rack, “Femtosecond Isomerization in a Photochromic Molecular Switch,” Angew. Chem. Int. Ed. 47(8), 1458–1461 (2008).

Rachford, A. A.

D. P. Butcher, A. A. Rachford, J. L. Petersen, and J. J. Rack, “Phototriggered S → O Isomerization of a Ruthenium-Bound Chelating Sulfoxide,” Inorg. Chem. 45(23), 9178–9180 (2006).

Rachwal, B.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Rack, J. J.

M. Y. Livshits and J. J. Rack, “Photorefraction from a Photochromic Soft Material,” J. Phys. Chem. C 120(46), 26459–26464 (2016).

B. A. McClure and J. J. Rack, “Ultrafast Spectroscopy of a Photochromic Ruthenium Sulfoxide Complex,” Inorg. Chem. 50(16), 7586–7590 (2011).

T. A. Grusenmeyer, B. A. McClure, C. J. Ziegler, and J. J. Rack, “Solvent Effects on Isomerization in a Ruthenium Sulfoxide Complex,” Inorg. Chem. 49(10), 4466–4470 (2010).

B. A. McClure and J. J. Rack, “Isomerization in Photochromic Ruthenium Sulfoxide Complexes,” Eur. J. Inorg. Chem. 2010(25), 3895–3904 (2010).

V. Dieckmann, K. Springfeld, S. Eicke, M. Imlau, and J. J. Rack, “Thermal stability, photochromic sensitivity and optical properties of [Ru(bpy)2(OSOR)]+ compounds with R = Bn, BnCl, BnMe,” Opt. Express 18(22), 23495–23503 (2010).

V. Dieckmann, S. Eicke, J. J. Rack, Th. Woike, and M. Imlau, “Pronounced photosensitivity of molecular [Ru(bpy)2(OSO)]+ solutions based on two photoinduced linkage isomers,” Opt. Express 17(17), 15052–15060 (2009).

B. A. McClure, N. V. Mockus, D. P. Butcher, D. A. Lutterman, C. Turro, J. L. Petersen, and J. J. Rack, “Photochromic Ruthenium Sulfoxide Complexes: Evidence for Isomerization Through a Conical Intersection,” Inorg. Chem. 48(17), 8084–8091 (2009).

N. V. Mockus, D. Rabinovich, J. L. Petersen, and J. J. Rack, “Femtosecond Isomerization in a Photochromic Molecular Switch,” Angew. Chem. Int. Ed. 47(8), 1458–1461 (2008).

D. P. Butcher, A. A. Rachford, J. L. Petersen, and J. J. Rack, “Phototriggered S → O Isomerization of a Ruthenium-Bound Chelating Sulfoxide,” Inorg. Chem. 45(23), 9178–9180 (2006).

J. J. Rack, “Photoinduced molecular switches,” U.S. Patent 6433270 (2002).

Rupp, R. A.

M. Fally, M. Imlau, R. A. Rupp, M. A. Ellabban, and Th. Woike, “Specific Recording Kinetics as a General Property of Unconventional Photorefractive Media,” Phys. Rev. Lett. 93(24), 243903 (2004).

M. A. Ellabban, M. Fally, M. Imlau, Th. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96(12), 6987–6993 (2004).

M. Imlau, Th. Woike, R. Schieder, and R. A. Rupp, “Holographic recording with orthogonally polarized waves in centrosymmetric Na2[Fe(CN)5NO]·2H2O,” EPL 53(4), 471–477 (2001).

M. Imlau, S. Haussühl, Th. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2[Fe(CN)5NO]·2H2O: a new photorefractive effect,” Appl. Phys. B 68(5), 877–885 (1999).

M. Imlau, R. Schieder, R. A. Rupp, and Th. Woike, “Anisotropic holographic scattering in centrosymmetric sodium nitroprusside,” Appl. Phys. Lett. 75(1), 16–18 (1999).

Th. Woike, S. Haussühl, B. Sugg, R. A. Rupp, J. Beckers, M. Imlau, and R. Schieder, “Phase gratings in the visible and near-infrared spectral range realized by metastable electronic states in Na2[Fe(CN)5NO]·2H2O,” Appl. Phys. B 63(3), 243–248 (1996).

Sahm, H.

Schaniel, D.

Schetter, G.

Th. Woike, W. Kirchner, G. Schetter, T. Barthel, K. Hyung-sang, and S. Haussühl, “New information storage elements on the basis of metastable electronic states,” Opt. Commun. 106(1–3), 6–10 (1994).

Schieder, R.

M. Imlau, Th. Woike, R. Schieder, and R. A. Rupp, “Holographic recording with orthogonally polarized waves in centrosymmetric Na2[Fe(CN)5NO]·2H2O,” EPL 53(4), 471–477 (2001).

M. Imlau, R. Schieder, R. A. Rupp, and Th. Woike, “Anisotropic holographic scattering in centrosymmetric sodium nitroprusside,” Appl. Phys. Lett. 75(1), 16–18 (1999).

M. Imlau, S. Haussühl, Th. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2[Fe(CN)5NO]·2H2O: a new photorefractive effect,” Appl. Phys. B 68(5), 877–885 (1999).

Th. Woike, S. Haussühl, B. Sugg, R. A. Rupp, J. Beckers, M. Imlau, and R. Schieder, “Phase gratings in the visible and near-infrared spectral range realized by metastable electronic states in Na2[Fe(CN)5NO]·2H2O,” Appl. Phys. B 63(3), 243–248 (1996).

Schoke, B.

Schwarz, K.

M. Imlau, S. Haussühl, Th. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2[Fe(CN)5NO]·2H2O: a new photorefractive effect,” Appl. Phys. B 68(5), 877–885 (1999).

Siddiqui, O.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Springfeld, K.

K. Springfeld, V. Dieckmann, and M. Imlau, “High-contrast, high-resolution photochromic silicone polymer based on photoswitchable [Ru(bpy)2OSO]PF6 building blocks,” Photonics Res. 1(4), 197–201 (2013).

V. Dieckmann, S. Eicke, K. Springfeld, and M. Imlau, “Transition Metal Compounds Towards Holography,” Materials. 5(6), 1155–1175 (2012).

V. Dieckmann, K. Springfeld, S. Eicke, M. Imlau, and J. J. Rack, “Thermal stability, photochromic sensitivity and optical properties of [Ru(bpy)2(OSOR)]+ compounds with R = Bn, BnCl, BnMe,” Opt. Express 18(22), 23495–23503 (2010).

K. Springfeld, “Photoschaltbare Koordinationskomplexe: Festkörpereinbettung und Schwingungsspektroskopie mit MIR-Femtosekundenpulsen,” Ph.D. thesis, Osnabrueck University, Osnabrueck, Germany (2013).

Staebler, D. L.

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26(4), 182–184 (1975).

Stock, M.

Stolle, H.

Sugg, B.

Th. Woike, S. Haussühl, B. Sugg, R. A. Rupp, J. Beckers, M. Imlau, and R. Schieder, “Phase gratings in the visible and near-infrared spectral range realized by metastable electronic states in Na2[Fe(CN)5NO]·2H2O,” Appl. Phys. B 63(3), 243–248 (1996).

Thomas, J.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Turro, C.

B. A. McClure, N. V. Mockus, D. P. Butcher, D. A. Lutterman, C. Turro, J. L. Petersen, and J. J. Rack, “Photochromic Ruthenium Sulfoxide Complexes: Evidence for Isomerization Through a Conical Intersection,” Inorg. Chem. 48(17), 8084–8091 (2009).

Upatnieks, J.

Voit, K.-M.

S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. 4, 6 (2014).

K.-M. Voit and M. Imlau, “Holographic Spectroscopy: Wavelength-Dependent Analysis of Photosensitive Materials by Means of Holographic Techniques,” Materials. 6(1), 334–358 (2013).

H. Brüning, V. Dieckmann, B. Schoke, K.-M. Voit, M. Imlau, G. Corradi, and C. Merschjann, “Small-polaron based holograms in LiNbO3 in the visible spectrum,” Opt. Express 20(12), 13326–13336 (2012).

Voorakaranam, R.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Walder, L.

S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. 4, 6 (2014).

Wang, P.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Wang, Z.

L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci. Pol. Phys. 54(20), 2050–2058 (2016).

Woike, Th.

M. Goulkov, D. Schaniel, and Th. Woike, “Pulse recording of thermal and linkage isomer gratings in nitrosyl compounds,” J. Opt. Soc. Am. B 27(5), 927–932 (2010).

V. Dieckmann, S. Eicke, J. J. Rack, Th. Woike, and M. Imlau, “Pronounced photosensitivity of molecular [Ru(bpy)2(OSO)]+ solutions based on two photoinduced linkage isomers,” Opt. Express 17(17), 15052–15060 (2009).

M. A. Ellabban, M. Fally, M. Imlau, Th. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96(12), 6987–6993 (2004).

M. Fally, M. Imlau, R. A. Rupp, M. A. Ellabban, and Th. Woike, “Specific Recording Kinetics as a General Property of Unconventional Photorefractive Media,” Phys. Rev. Lett. 93(24), 243903 (2004).

M. Imlau, Th. Woike, R. Schieder, and R. A. Rupp, “Holographic recording with orthogonally polarized waves in centrosymmetric Na2[Fe(CN)5NO]·2H2O,” EPL 53(4), 471–477 (2001).

M. Imlau, S. Haussühl, Th. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2[Fe(CN)5NO]·2H2O: a new photorefractive effect,” Appl. Phys. B 68(5), 877–885 (1999).

M. Imlau, R. Schieder, R. A. Rupp, and Th. Woike, “Anisotropic holographic scattering in centrosymmetric sodium nitroprusside,” Appl. Phys. Lett. 75(1), 16–18 (1999).

Th. Woike, S. Haussühl, B. Sugg, R. A. Rupp, J. Beckers, M. Imlau, and R. Schieder, “Phase gratings in the visible and near-infrared spectral range realized by metastable electronic states in Na2[Fe(CN)5NO]·2H2O,” Appl. Phys. B 63(3), 243–248 (1996).

Th. Woike, W. Kirchner, G. Schetter, T. Barthel, K. Hyung-sang, and S. Haussühl, “New information storage elements on the basis of metastable electronic states,” Opt. Commun. 106(1–3), 6–10 (1994).

Th. Woike, W. Krasser, P. S. Bechthold, and S. Haussühl, “Extremely Long-Living Metastable State of Na2[Fe(CN)5NO]·2H2O Single Crystals: Optical Properties,” Phys. Rev. Lett. 53(18), 1767–1770 (1984).

Th. Woike, W. Krasser, and S. Haussühl, “Optical switch, especially for information storage and retrieval,” U. S. Patent 4713795 (1987).

M. Imlau, T. Bieringer, S.G. Odoulov, and Th. Woike, “Holographic Data Storage,” in Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, R. Waser, ed. (Wiley-VCH, Weinheim, 2012), 3rd ed., pp. 725–750

Yamamoto, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Zhang, F.

L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci. Pol. Phys. 54(20), 2050–2058 (2016).

Zhang, S.

L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci. Pol. Phys. 54(20), 2050–2058 (2016).

Ziegler, C. J.

T. A. Grusenmeyer, B. A. McClure, C. J. Ziegler, and J. J. Rack, “Solvent Effects on Isomerization in a Ruthenium Sulfoxide Complex,” Inorg. Chem. 49(10), 4466–4470 (2010).

Zong, S.

L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci. Pol. Phys. 54(20), 2050–2058 (2016).

Zschau, E.

Angew. Chem. Int. Ed. (1)

N. V. Mockus, D. Rabinovich, J. L. Petersen, and J. J. Rack, “Femtosecond Isomerization in a Photochromic Molecular Switch,” Angew. Chem. Int. Ed. 47(8), 1458–1461 (2008).

Appl. Opt. (2)

Appl. Phys. B (2)

M. Imlau, S. Haussühl, Th. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2[Fe(CN)5NO]·2H2O: a new photorefractive effect,” Appl. Phys. B 68(5), 877–885 (1999).

Th. Woike, S. Haussühl, B. Sugg, R. A. Rupp, J. Beckers, M. Imlau, and R. Schieder, “Phase gratings in the visible and near-infrared spectral range realized by metastable electronic states in Na2[Fe(CN)5NO]·2H2O,” Appl. Phys. B 63(3), 243–248 (1996).

Appl. Phys. Lett. (2)

M. Imlau, R. Schieder, R. A. Rupp, and Th. Woike, “Anisotropic holographic scattering in centrosymmetric sodium nitroprusside,” Appl. Phys. Lett. 75(1), 16–18 (1999).

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26(4), 182–184 (1975).

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).

EPL (1)

M. Imlau, Th. Woike, R. Schieder, and R. A. Rupp, “Holographic recording with orthogonally polarized waves in centrosymmetric Na2[Fe(CN)5NO]·2H2O,” EPL 53(4), 471–477 (2001).

Eur. J. Inorg. Chem. (1)

B. A. McClure and J. J. Rack, “Isomerization in Photochromic Ruthenium Sulfoxide Complexes,” Eur. J. Inorg. Chem. 2010(25), 3895–3904 (2010).

Inorg. Chem. (5)

B. A. McClure and J. J. Rack, “Ultrafast Spectroscopy of a Photochromic Ruthenium Sulfoxide Complex,” Inorg. Chem. 50(16), 7586–7590 (2011).

T. A. Grusenmeyer, B. A. McClure, C. J. Ziegler, and J. J. Rack, “Solvent Effects on Isomerization in a Ruthenium Sulfoxide Complex,” Inorg. Chem. 49(10), 4466–4470 (2010).

B. A. McClure, N. V. Mockus, D. P. Butcher, D. A. Lutterman, C. Turro, J. L. Petersen, and J. J. Rack, “Photochromic Ruthenium Sulfoxide Complexes: Evidence for Isomerization Through a Conical Intersection,” Inorg. Chem. 48(17), 8084–8091 (2009).

D. P. Butcher, A. A. Rachford, J. L. Petersen, and J. J. Rack, “Phototriggered S → O Isomerization of a Ruthenium-Bound Chelating Sulfoxide,” Inorg. Chem. 45(23), 9178–9180 (2006).

P. T. Manoharan and W. C. Hamilton, “The Crystal Structure of Sodium Nitroprusside,” Inorg. Chem. 2(5), 1043–1047 (1963).

J. Appl. Phys. (1)

M. A. Ellabban, M. Fally, M. Imlau, Th. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96(12), 6987–6993 (2004).

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

M. Y. Livshits and J. J. Rack, “Photorefraction from a Photochromic Soft Material,” J. Phys. Chem. C 120(46), 26459–26464 (2016).

J. Polym. Sci. Pol. Phys. (1)

L. Cao, Z. Wang, S. Zong, S. Zhang, F. Zhang, and G. Jin, “Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display,” J. Polym. Sci. Pol. Phys. 54(20), 2050–2058 (2016).

J. Spectrosc. Dyn. (1)

S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. 4, 6 (2014).

Materials. (2)

K.-M. Voit and M. Imlau, “Holographic Spectroscopy: Wavelength-Dependent Analysis of Photosensitive Materials by Means of Holographic Techniques,” Materials. 6(1), 334–358 (2013).

V. Dieckmann, S. Eicke, K. Springfeld, and M. Imlau, “Transition Metal Compounds Towards Holography,” Materials. 5(6), 1155–1175 (2012).

Nature. (1)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature. 468(7320), 80–83 (2010).

Opt. Commun. (1)

Th. Woike, W. Kirchner, G. Schetter, T. Barthel, K. Hyung-sang, and S. Haussühl, “New information storage elements on the basis of metastable electronic states,” Opt. Commun. 106(1–3), 6–10 (1994).

Opt. Express (3)

Photonics Res. (1)

K. Springfeld, V. Dieckmann, and M. Imlau, “High-contrast, high-resolution photochromic silicone polymer based on photoswitchable [Ru(bpy)2OSO]PF6 building blocks,” Photonics Res. 1(4), 197–201 (2013).

Phys. Rev. Lett. (2)

Th. Woike, W. Krasser, P. S. Bechthold, and S. Haussühl, “Extremely Long-Living Metastable State of Na2[Fe(CN)5NO]·2H2O Single Crystals: Optical Properties,” Phys. Rev. Lett. 53(18), 1767–1770 (1984).

M. Fally, M. Imlau, R. A. Rupp, M. A. Ellabban, and Th. Woike, “Specific Recording Kinetics as a General Property of Unconventional Photorefractive Media,” Phys. Rev. Lett. 93(24), 243903 (2004).

Sci. Rep. (1)

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819 (2012).

Z. Phys. (1)

G. Borrmann, “Die Absorption von Röntgenstrahlen im Fall der Interferenz,” Z. Phys. 127(4), 297–323 (1950).

Other (7)

S. Eicke, “Populations- und Relaxationskinetiken laserangeregter photofunktionaler Ruthenium-Sulfoxid-Komnplexe in hochkonzentrierten Lösungen,” Ph.D. thesis, Osnabrueck University, Osnabrueck, Germany (2012).

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Sciences (Springer-Verlag, Berlin Heidelberg, 2000).

M. Imlau, T. Bieringer, S.G. Odoulov, and Th. Woike, “Holographic Data Storage,” in Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, R. Waser, ed. (Wiley-VCH, Weinheim, 2012), 3rd ed., pp. 725–750

Th. Woike, W. Krasser, and S. Haussühl, “Optical switch, especially for information storage and retrieval,” U. S. Patent 4713795 (1987).

V. Dieckmann, “Lichtinduzierte Isomerisierung in Sulfoxid- und Nitrosyl-Komplexen: Photosensitivität und Modifikation,” Ph.D. thesis, Osnabrueck University, Osnabrueck, Germany (2010).

K. Springfeld, “Photoschaltbare Koordinationskomplexe: Festkörpereinbettung und Schwingungsspektroskopie mit MIR-Femtosekundenpulsen,” Ph.D. thesis, Osnabrueck University, Osnabrueck, Germany (2013).

J. J. Rack, “Photoinduced molecular switches,” U.S. Patent 6433270 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Photograph of a typical as-prepared OSO-PDMS film sample (c = (0.97 ± 0.03) mM and thickness d = (2.2 ± 0.1) mm). The bulky stripe of dimension 17 mm ×13 mm exhibits an orange/yellow, translucent color and shows a moderate number of surface inclusions.
Fig. 2
Fig. 2 a) Absorption spectrum of the ground state (GS, black) and metastable state (MS, orange) for OSO embedded in PDMS, concentration c = (0.36 ± 0.03) mM and thickness d = (2.1 ± 0.1) mm. b) Absorption spectrum of the ground state (GS, black) and metastable states (MS, orange) for BIQ embedded in PDMS, concentration c = (1.86 ± 0.03) mM and thickness d = (1.3 ± 0.1) mm. Orange and black arrows indicate an increase and decrease of the absorption coefficient with respect to the ground state absorption, respectively.
Fig. 3
Fig. 3 Experimental setup of our self-made two-beam interferometer. SH1...3: shutters, PH: pinhole, I1...4: iris diaphragm, BS1...4: beam splitters, D1...4: diodes, L1...4: lenses, P1...4: polarizers, λ/2: half-wave plate, F1...4: single line filters, R,S: reference and signal beams. The half angle between the two recording beams at λrecord = (406.6 ± 0.8) nm is adjusted to Θ B ext = ( 4.9 ± 0.2 ) ° that accords with a read-out angle Θext ≈ 6.4° at λread = 532 nm.
Fig. 4
Fig. 4 a) Principal sketch of the incident recording and read-out beam paths with cw-laser light. All intensities were measured with Si-PIN diodes. Furthermore, the light-induced structural changes inside the OSO-complex upon UV/blue light exposure, i.e. the change from a Ru-S-O to a Ru-O-S bond according to Ref. [23], is schematically shown. b) Equivalent principal sketch for fs-pulse recording in BIQ-PDMS polymer films [24].
Fig. 5
Fig. 5 Experimental setup for repetitive fs-pulse recording in BIQ-PDMS film samples. SH: shutter, CH: chopper (frep = 100 Hz), FM1,2: focusing mirrors (ffocus = 500 mm), BS1,2: beam splitters, I1,2: iris diaphragm, D1...4: diodes, OD1...3: optical density filters, OG1,2: orange glasses, F1: single line filter, L1...4: lenses, DL: delay line, R,S: reference and signal beams. The half angle between the two recording beams at λrecord = 488 nm is adjusted to Θ B ext = ( 6.8 ± 0.2 ) ° that accords with a read-out angle Θext ≈ 8.8° at λread = 632.8 nm.
Fig. 6
Fig. 6 a) Diffraction efficiency ηR (orange) as a function of exposure Q measured with a (0.36 ± 0.03) mM OSO-PDMS polymer film with a film thickness d = (2.1 ± 0.1) mm, and a fit (black) according to Eq. (1). A maximum value of η max R = ( 2.75 ± 0.64 ) × 10 4 is reached at an exposure of Q max R = ( 0.91 ± 0.06 ) J / cm 2. b) Light-induced change of the absorption coefficient ΔαR (orange) as a function of exposure Q, and a fit (black) according to the two-fold exponential function of Eq. (2) with characteristic exposures Q1 = (4.74 ± 0.29) J/cm2 and Q2 = (0.49 ± 0.11) J/cm2, respectively.
Fig. 7
Fig. 7 Dependence of the maximum value of the diffraction efficiency η max R as a function of OSO-concentration c in OSO-PDMS polymer films ( = (1.9 ± 0.4) mm). An increase of η max R ( c ) up to its threefold value is obvious. The dashed black line serves as a guide to the eye.
Fig. 8
Fig. 8 Rocking curve as a function of deviation from the external Bragg angle Θ B ext = ( 6.4 ± 0.2 ) ° for a (1.1 ± 0.1) mm thick (0.36 ± 0.03) mM OSO-PDMS sample after an exposure Q = (0.85 ± 0.11) J/cm2 at λ = (406.6 ± 0.8) nm. The black line corresponds to the result of fitting Eq. (3) to the data set. Absolute deviations ΔηS between data set and fitting result are shown below (identical decimal power).
Fig. 9
Fig. 9 Four holographic gratings have been written into a (0.36 ± 0.03) mM OSO-PDMS sample with a thickness d = (2.1 ± 0.1) mm and with a mutual angular mismatch of 1° in the sequence #1...#4. Recording for each hologram was stopped at an exposure of Q = (1.2 ± 0.2) J/cm2. At the end of the entire recording scheme, read-out was performed with the probe beam I 0 R (λ = 532 nm) during film rotation at constant velocity (0.01°/s) over the angular range from −1° to +4°.
Fig. 10
Fig. 10 Diffraction efficiency (orange) as a function of average exposure using a (1.86 ± 0.03) mM BIQ-PDMS sample with a thickness d = (1.3 ± 0.1) mm for the particular case of repetitive fs-pulse exposure (frep = 100 Hz). The fit (black solid line) according to Eq. (1) for 0 < < 0.4 × 104 J/cm2 requires an additional term modeled by a Gauss error function (black dashed line). A maximum value of η max R = ( 2.0 ± 0.1 ) × 10 3 is reached at an average exposure of Q ¯ max R = ( 5.3 ± 1.3 ) × 10 3 J / cm 2.

Tables (1)

Tables Icon

Table 1 Parameters obtained from fitting the theoretical function of a rocking curve for the case of a lossy grating (Eq. (3)) to the experimental data set (cf. black line in Fig. 8).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η ( Q ) = A × I 1 [ m ( Q δ Q ) / Q 0 ] 2 × exp [ 2 ( Q δ Q ) / Q 0 ]
α fit = α 0 + A 1 exp ( Q / Q 1 ) + A 2 exp ( Q / Q 2 )
η ( z , Θ ) = A LB ( Θ ) 1 ( λ ) 2 | sinh ( { 1 ( λ ) 2 [ 2 β ( | Θ | ) cos ( Θ ) 0 ( λ ) ] 2 } 1 / 2 k 0 z 4 [ 0 ( λ ) ] 1 / 2 cos ( Θ ) ) | 2 | [ 2 β ( | Θ | ) cos ( Θ ) 0 ( λ ) ] 2 [ 1 ( λ ) ] 2 |