Abstract

A method to modify the spectra and optical temperature behaviors of Er3+ doped Sr2CaWO6 phosphors through doping La3+, Y3+, and Al3+ ions is reported. The thermometric parameters such as fluorescence emission intensity, fluorescence intensity ratio of red to green emissions, emission intensity ratios of thermally coupled levels (2H11/2/4S3/2), and temperature sensitivity can be effectively controlled by doping with La3+, Y3+, and Al3+ ions into Er3+ doped Sr2CaWO6. Moreover, the relative temperature sensitivity SR and the absolute temperature sensitivity SA are proved to be dependent on the pump power of 980 nm laser. The sensitivity values of SR in Er3+ doped Sr2CaWO6 increase about 85.2% by doping with 0.15 mol% La3+, when the excitation power is 526 mW/mm2.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+: BaGd2(MoO4)4 phosphors

Ruoshan Lei, Degang Deng, Xin Liu, Feifei Huang, Huanping Wang, Shilong Zhao, and Shiqing Xu
Opt. Mater. Express 8(10) 3023-3035 (2018)

Excellent up-conversion temperature sensing sensitivity and broad temperature range of Er-doped strontium tungstate multiphase phosphors

Ying Zhang, Xusheng Wang, Yongxiang Li, Yanxia Li, and Xi Yao
Opt. Mater. Express 8(1) 12-23 (2018)

Up-conversion luminescence of novel Yb3+-Ho3+/Er3+ doped Sr5(PO4)3Cl phosphors for optical temperature sensing

Jia Zhang, Guibin Chen, and Zhenghe Hua
Opt. Mater. Express 7(6) 2084-2089 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
    [Crossref] [PubMed]
  2. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
    [Crossref] [PubMed]
  3. Y. L. Ju, Y. Xu, F. F. Zhong, and Y. J. Zhang, Widely Tunable Compact Er3+-doped Fiber Ring Laser (IEEE, 2010), pp. 112–113.
  4. H. Suo, X. Q. Zhao, Z. Y. Zhang, R. Shi, Y. F. Wu, J. M. Xiang, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3: Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
    [Crossref]
  5. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
    [Crossref] [PubMed]
  6. R. Zheng, Q. Zhang, K. Yu, C. Liu, J. Ding, P. Lv, and W. Wei, “Continuous tunable broadband emission of fluorphosphate glasses for single-component multi-chromatic phosphors,” Opt. Lett. 42(20), 4099–4102 (2017).
    [Crossref] [PubMed]
  7. R. L. Zheng, D. W. Luo, Y. Yuan, Z. Y. Wang, Y. Zhang, W. Wei, L. B. Kong, and D. Y. Tang, “Dy3+/Ce3+ co-doped YAG transparent ceramics for single-composition tunable white light phosphor,” J. Am. Ceram. Soc. 98(10), 3231–3235 (2015).
    [Crossref]
  8. R. L. Zheng, Z. Y. Wang, P. Lv, Y. Yuan, Y. Zhang, J. J. Zheng, and W. Wei, “Novel synthesis of low hydroxyl content Yb3+-doped fluorophosphate glasses with long fluorescence lifetimes,” J. Am. Ceram. Soc. 98(3), 861–866 (2015).
    [Crossref]
  9. C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
    [Crossref] [PubMed]
  10. X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
    [Crossref] [PubMed]
  11. E. J. McLaurin, L. R. Bradshaw, and D. R. Gamelin, “Dual-emitting nanoscale temperature sensors,” Chem. Mater. 25(8), 1283–1292 (2013).
    [Crossref]
  12. V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
    [Crossref]
  13. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [Crossref]
  14. L. P. Li, L. J. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. G. Zhang, and W. X. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
    [Crossref] [PubMed]
  15. N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
    [Crossref]
  16. B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16(41), 22665–22676 (2014).
    [Crossref] [PubMed]
  17. S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
    [Crossref] [PubMed]
  18. S. León-Luis, U. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
    [Crossref]
  19. Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
    [Crossref]
  20. F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
    [Crossref] [PubMed]
  21. D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
    [Crossref] [PubMed]
  22. H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
    [Crossref] [PubMed]
  23. Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, G. Y. Peng, Y. L. Song, Z. Pan, and C. H. Wang, “The Effect of Li ON THE SPECTRUM of Er3+ in Li- and Er-Codoped ZnO Nanocrystals,” J. Phys. Chem. C 112(32), 12259–12263 (2008).
    [Crossref]
  24. S. W. Zhao, W. Liu, X. Y. Xue, Y. S. Yang, Z. Y. Zhao, Y. F. Wang, and B. Zhou, “Enhanced upconversion luminescence and modulated paramagnetic performance in NaGdF4: Yb, Er by Mg2+ tridoping,” RSC Advances 6(85), 81542–81551 (2016).
    [Crossref]
  25. L. Jiang, S. Xiao, X. Yang, J. Ding, and K. Dong, “Enhancement of up-conversion luminescence in Zn2SiO4:Yb3+,Er3+ by co-doping with Li+ or Bi3+,” Appl. Phys. B 107(2), 477–481 (2012).
    [Crossref]
  26. H. Suo, X. Q. Zhao, Z. Y. Zhang, R. Shi, Y. F. Wu, J. M. Xiang, and C. F. Guo, “ Local Symmetric Distortion Boosted Photon Up-conversion and Thermometric Sensitivity in Lanthanum Oxide Nanospheres,” Nanoscale, Accepted Manuscript (2018).
  27. S. Vasala and M. Karppinen, “A2B’B”O6 perovskites: A review,” Prog. Solid State Ch. 43(1–2), 1–36 (2015).
    [Crossref]
  28. M. Gateshki and J. M. Igartua, “ Crystal structures and phase transitions of the double-perovskite oxides Sr 2 CaWO 6 and Sr 2 MgWO 6, ” J. Phys. Condens. Matter 16(37), 6639–6649 (2004).
    [Crossref]
  29. B. Manoun, J. M. Igartua, M. Gateshki, and S. K. Saxena, “High-pressure Raman study of the Sr2CaWO6 double perovskite,” J. Phys. Condens. Matter 16(46), 8367–8376 (2004).
    [Crossref]
  30. L. L. Wang, B. K. Moon, S. H. Park, J. H. Kim, J. S. Shi, K. H. Kim, and J. H. Jeong, “Photoluminescence properties, crystal structureand electronic structure of a Sr2CaWO6:Sm3+ red phosphor,” RSC Advances 5(108), 89290–89288 (2015).
    [Crossref]
  31. X. J. Zhou, T. J. Xiao, X. Q. Zhao, Y. J. Wang, L. Li, Z. Q. Wang, and Q. X. Li, “Study of the optical properties of double-perovskite Sr2CaWxMo1-xO6 matrices,” J. Lumin. 152(2), 165–167 (2014).
    [Crossref]
  32. S. M. Pillai and C. P. G. Vallabhan, “A study of the electro luminescence spectrum of Cas: Er phosphor and the energy level splitting in Er3+ ions,” J. Phys. C Solid State Phys. 17(11), 2019–2025 (1984).
    [Crossref]
  33. X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
    [Crossref]
  34. G. K. Liu and X. Y. Chen, “Chapter 233 Spectroscopic properties of lanthanides in nanomaterials,” Handbookon the Physics and Chemistry of Rare Earths 37(07), 99–169 (2007).
  35. J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
    [Crossref]
  36. X. F. Wang, Q. Liu, P. Q. Cai, J. Wang, L. Qin, T. Q. Vu, and H. Jin, “Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
    [Crossref] [PubMed]
  37. N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
    [Crossref]
  38. F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  39. G. Burns, “Shielding and crystal fields at rare-earth ions,” Phys. Rev. 128(5), 2121–2130 (1962).
    [Crossref]

2017 (2)

H. Suo, X. Q. Zhao, Z. Y. Zhang, R. Shi, Y. F. Wu, J. M. Xiang, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3: Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

R. Zheng, Q. Zhang, K. Yu, C. Liu, J. Ding, P. Lv, and W. Wei, “Continuous tunable broadband emission of fluorphosphate glasses for single-component multi-chromatic phosphors,” Opt. Lett. 42(20), 4099–4102 (2017).
[Crossref] [PubMed]

2016 (5)

L. P. Li, L. J. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. G. Zhang, and W. X. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
[Crossref] [PubMed]

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref] [PubMed]

S. W. Zhao, W. Liu, X. Y. Xue, Y. S. Yang, Z. Y. Zhao, Y. F. Wang, and B. Zhou, “Enhanced upconversion luminescence and modulated paramagnetic performance in NaGdF4: Yb, Er by Mg2+ tridoping,” RSC Advances 6(85), 81542–81551 (2016).
[Crossref]

X. F. Wang, Q. Liu, P. Q. Cai, J. Wang, L. Qin, T. Q. Vu, and H. Jin, “Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
[Crossref] [PubMed]

2015 (7)

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref] [PubMed]

S. Vasala and M. Karppinen, “A2B’B”O6 perovskites: A review,” Prog. Solid State Ch. 43(1–2), 1–36 (2015).
[Crossref]

L. L. Wang, B. K. Moon, S. H. Park, J. H. Kim, J. S. Shi, K. H. Kim, and J. H. Jeong, “Photoluminescence properties, crystal structureand electronic structure of a Sr2CaWO6:Sm3+ red phosphor,” RSC Advances 5(108), 89290–89288 (2015).
[Crossref]

R. L. Zheng, D. W. Luo, Y. Yuan, Z. Y. Wang, Y. Zhang, W. Wei, L. B. Kong, and D. Y. Tang, “Dy3+/Ce3+ co-doped YAG transparent ceramics for single-composition tunable white light phosphor,” J. Am. Ceram. Soc. 98(10), 3231–3235 (2015).
[Crossref]

R. L. Zheng, Z. Y. Wang, P. Lv, Y. Yuan, Y. Zhang, J. J. Zheng, and W. Wei, “Novel synthesis of low hydroxyl content Yb3+-doped fluorophosphate glasses with long fluorescence lifetimes,” J. Am. Ceram. Soc. 98(3), 861–866 (2015).
[Crossref]

2014 (3)

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16(41), 22665–22676 (2014).
[Crossref] [PubMed]

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

X. J. Zhou, T. J. Xiao, X. Q. Zhao, Y. J. Wang, L. Li, Z. Q. Wang, and Q. X. Li, “Study of the optical properties of double-perovskite Sr2CaWxMo1-xO6 matrices,” J. Lumin. 152(2), 165–167 (2014).
[Crossref]

2013 (2)

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

E. J. McLaurin, L. R. Bradshaw, and D. R. Gamelin, “Dual-emitting nanoscale temperature sensors,” Chem. Mater. 25(8), 1283–1292 (2013).
[Crossref]

2012 (5)

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
[Crossref]

L. Jiang, S. Xiao, X. Yang, J. Ding, and K. Dong, “Enhancement of up-conversion luminescence in Zn2SiO4:Yb3+,Er3+ by co-doping with Li+ or Bi3+,” Appl. Phys. B 107(2), 477–481 (2012).
[Crossref]

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
[Crossref]

2011 (2)

S. León-Luis, U. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

2010 (1)

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

2008 (1)

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, G. Y. Peng, Y. L. Song, Z. Pan, and C. H. Wang, “The Effect of Li ON THE SPECTRUM of Er3+ in Li- and Er-Codoped ZnO Nanocrystals,” J. Phys. Chem. C 112(32), 12259–12263 (2008).
[Crossref]

2007 (1)

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[Crossref]

2005 (1)

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

2004 (3)

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

M. Gateshki and J. M. Igartua, “ Crystal structures and phase transitions of the double-perovskite oxides Sr 2 CaWO 6 and Sr 2 MgWO 6, ” J. Phys. Condens. Matter 16(37), 6639–6649 (2004).
[Crossref]

B. Manoun, J. M. Igartua, M. Gateshki, and S. K. Saxena, “High-pressure Raman study of the Sr2CaWO6 double perovskite,” J. Phys. Condens. Matter 16(46), 8367–8376 (2004).
[Crossref]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

1984 (1)

S. M. Pillai and C. P. G. Vallabhan, “A study of the electro luminescence spectrum of Cas: Er phosphor and the energy level splitting in Er3+ ions,” J. Phys. C Solid State Phys. 17(11), 2019–2025 (1984).
[Crossref]

1962 (1)

G. Burns, “Shielding and crystal fields at rare-earth ions,” Phys. Rev. 128(5), 2121–2130 (1962).
[Crossref]

Aebischer, A.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Amaral, V. S.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

Auzel, F.

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Bai, Y. F.

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, G. Y. Peng, Y. L. Song, Z. Pan, and C. H. Wang, “The Effect of Li ON THE SPECTRUM of Er3+ in Li- and Er-Codoped ZnO Nanocrystals,” J. Phys. Chem. C 112(32), 12259–12263 (2008).
[Crossref]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Bradshaw, L. R.

E. J. McLaurin, L. R. Bradshaw, and D. R. Gamelin, “Dual-emitting nanoscale temperature sensors,” Chem. Mater. 25(8), 1283–1292 (2013).
[Crossref]

Brites, C. D. S.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

Bu, Y. Y.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Burns, G.

G. Burns, “Shielding and crystal fields at rare-earth ions,” Phys. Rev. 128(5), 2121–2130 (1962).
[Crossref]

Cai, P. Q.

Cao, W. X.

Capobianco, J. A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Carlos, L. D.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

Chen, D.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Chen, R.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref] [PubMed]

Chen, W.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Debasu, M. L.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref] [PubMed]

Ding, J.

R. Zheng, Q. Zhang, K. Yu, C. Liu, J. Ding, P. Lv, and W. Wei, “Continuous tunable broadband emission of fluorphosphate glasses for single-component multi-chromatic phosphors,” Opt. Lett. 42(20), 4099–4102 (2017).
[Crossref] [PubMed]

L. Jiang, S. Xiao, X. Yang, J. Ding, and K. Dong, “Enhancement of up-conversion luminescence in Zn2SiO4:Yb3+,Er3+ by co-doping with Li+ or Bi3+,” Appl. Phys. B 107(2), 477–481 (2012).
[Crossref]

Ding, M.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Dong, H.

H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref] [PubMed]

Dong, K.

L. Jiang, S. Xiao, X. Yang, J. Ding, and K. Dong, “Enhancement of up-conversion luminescence in Zn2SiO4:Yb3+,Er3+ by co-doping with Li+ or Bi3+,” Appl. Phys. B 107(2), 477–481 (2012).
[Crossref]

Fischer, L. H.

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

Gamelin, D. R.

E. J. McLaurin, L. R. Bradshaw, and D. R. Gamelin, “Dual-emitting nanoscale temperature sensors,” Chem. Mater. 25(8), 1283–1292 (2013).
[Crossref]

Gao, Y.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

García Solé, J.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

García-Revilla, S.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Gateshki, M.

M. Gateshki and J. M. Igartua, “ Crystal structures and phase transitions of the double-perovskite oxides Sr 2 CaWO 6 and Sr 2 MgWO 6, ” J. Phys. Condens. Matter 16(37), 6639–6649 (2004).
[Crossref]

B. Manoun, J. M. Igartua, M. Gateshki, and S. K. Saxena, “High-pressure Raman study of the Sr2CaWO6 double perovskite,” J. Phys. Condens. Matter 16(46), 8367–8376 (2004).
[Crossref]

Gerner, P.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Güdel, H. U.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Guo, C. F.

H. Suo, X. Q. Zhao, Z. Y. Zhang, R. Shi, Y. F. Wu, J. M. Xiang, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3: Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

Guo, Q.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Harms, G. S.

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

Huang, F.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Huang, W.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref] [PubMed]

Igartua, J. M.

M. Gateshki and J. M. Igartua, “ Crystal structures and phase transitions of the double-perovskite oxides Sr 2 CaWO 6 and Sr 2 MgWO 6, ” J. Phys. Condens. Matter 16(37), 6639–6649 (2004).
[Crossref]

B. Manoun, J. M. Igartua, M. Gateshki, and S. K. Saxena, “High-pressure Raman study of the Sr2CaWO6 double perovskite,” J. Phys. Condens. Matter 16(46), 8367–8376 (2004).
[Crossref]

Jaque, D.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Jeong, J. H.

L. L. Wang, B. K. Moon, S. H. Park, J. H. Kim, J. S. Shi, K. H. Kim, and J. H. Jeong, “Photoluminescence properties, crystal structureand electronic structure of a Sr2CaWO6:Sm3+ red phosphor,” RSC Advances 5(108), 89290–89288 (2015).
[Crossref]

Ji, Z.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Jiang, L.

L. Jiang, S. Xiao, X. Yang, J. Ding, and K. Dong, “Enhancement of up-conversion luminescence in Zn2SiO4:Yb3+,Er3+ by co-doping with Li+ or Bi3+,” Appl. Phys. B 107(2), 477–481 (2012).
[Crossref]

Jiang, W.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Jin, H.

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Karppinen, M.

S. Vasala and M. Karppinen, “A2B’B”O6 perovskites: A review,” Prog. Solid State Ch. 43(1–2), 1–36 (2015).
[Crossref]

Kim, J. H.

L. L. Wang, B. K. Moon, S. H. Park, J. H. Kim, J. S. Shi, K. H. Kim, and J. H. Jeong, “Photoluminescence properties, crystal structureand electronic structure of a Sr2CaWO6:Sm3+ red phosphor,” RSC Advances 5(108), 89290–89288 (2015).
[Crossref]

Kim, K. H.

L. L. Wang, B. K. Moon, S. H. Park, J. H. Kim, J. S. Shi, K. H. Kim, and J. H. Jeong, “Photoluminescence properties, crystal structureand electronic structure of a Sr2CaWO6:Sm3+ red phosphor,” RSC Advances 5(108), 89290–89288 (2015).
[Crossref]

Kong, L. B.

R. L. Zheng, D. W. Luo, Y. Yuan, Z. Y. Wang, Y. Zhang, W. Wei, L. B. Kong, and D. Y. Tang, “Dy3+/Ce3+ co-doped YAG transparent ceramics for single-composition tunable white light phosphor,” J. Am. Ceram. Soc. 98(10), 3231–3235 (2015).
[Crossref]

Lalla, E.

S. León-Luis, U. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Lavín, V.

S. León-Luis, U. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

León-Luis, S.

S. León-Luis, U. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Li, L.

X. J. Zhou, T. J. Xiao, X. Q. Zhao, Y. J. Wang, L. Li, Z. Q. Wang, and Q. X. Li, “Study of the optical properties of double-perovskite Sr2CaWxMo1-xO6 matrices,” J. Lumin. 152(2), 165–167 (2014).
[Crossref]

Li, L. P.

Li, Q. X.

X. J. Zhou, T. J. Xiao, X. Q. Zhao, Y. J. Wang, L. Li, Z. Q. Wang, and Q. X. Li, “Study of the optical properties of double-perovskite Sr2CaWxMo1-xO6 matrices,” J. Lumin. 152(2), 165–167 (2014).
[Crossref]

Liang, Z.

Lima, P. P.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

Lin, H.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Liu, C.

Liu, C. S.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, Q.

Liu, T.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, W.

S. W. Zhao, W. Liu, X. Y. Xue, Y. S. Yang, Z. Y. Zhao, Y. F. Wang, and B. Zhou, “Enhanced upconversion luminescence and modulated paramagnetic performance in NaGdF4: Yb, Er by Mg2+ tridoping,” RSC Advances 6(85), 81542–81551 (2016).
[Crossref]

Liu, X.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref] [PubMed]

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Luo, D. W.

R. L. Zheng, D. W. Luo, Y. Yuan, Z. Y. Wang, Y. Zhang, W. Wei, L. B. Kong, and D. Y. Tang, “Dy3+/Ce3+ co-doped YAG transparent ceramics for single-composition tunable white light phosphor,” J. Am. Ceram. Soc. 98(10), 3231–3235 (2015).
[Crossref]

Lv, P.

R. Zheng, Q. Zhang, K. Yu, C. Liu, J. Ding, P. Lv, and W. Wei, “Continuous tunable broadband emission of fluorphosphate glasses for single-component multi-chromatic phosphors,” Opt. Lett. 42(20), 4099–4102 (2017).
[Crossref] [PubMed]

R. L. Zheng, Z. Y. Wang, P. Lv, Y. Yuan, Y. Zhang, J. J. Zheng, and W. Wei, “Novel synthesis of low hydroxyl content Yb3+-doped fluorophosphate glasses with long fluorescence lifetimes,” J. Am. Ceram. Soc. 98(3), 861–866 (2015).
[Crossref]

Maalej, R.

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16(41), 22665–22676 (2014).
[Crossref] [PubMed]

Maciel, G. S.

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
[Crossref]

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
[Crossref]

Manoun, B.

B. Manoun, J. M. Igartua, M. Gateshki, and S. K. Saxena, “High-pressure Raman study of the Sr2CaWO6 double perovskite,” J. Phys. Condens. Matter 16(46), 8367–8376 (2004).
[Crossref]

Martín Rodriguez, E.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Martinez Maestro, L.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

McLaurin, E. J.

E. J. McLaurin, L. R. Bradshaw, and D. R. Gamelin, “Dual-emitting nanoscale temperature sensors,” Chem. Mater. 25(8), 1283–1292 (2013).
[Crossref]

Meier, R. J.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Millán, A.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

Moon, B. K.

L. L. Wang, B. K. Moon, S. H. Park, J. H. Kim, J. S. Shi, K. H. Kim, and J. H. Jeong, “Photoluminescence properties, crystal structureand electronic structure of a Sr2CaWO6:Sm3+ red phosphor,” RSC Advances 5(108), 89290–89288 (2015).
[Crossref]

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Ningthoujam, R. S.

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16(41), 22665–22676 (2014).
[Crossref] [PubMed]

Palacio, F.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

Pan, Z.

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, G. Y. Peng, Y. L. Song, Z. Pan, and C. H. Wang, “The Effect of Li ON THE SPECTRUM of Er3+ in Li- and Er-Codoped ZnO Nanocrystals,” J. Phys. Chem. C 112(32), 12259–12263 (2008).
[Crossref]

Parchur, A. K.

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16(41), 22665–22676 (2014).
[Crossref] [PubMed]

Park, S. H.

L. L. Wang, B. K. Moon, S. H. Park, J. H. Kim, J. S. Shi, K. H. Kim, and J. H. Jeong, “Photoluminescence properties, crystal structureand electronic structure of a Sr2CaWO6:Sm3+ red phosphor,” RSC Advances 5(108), 89290–89288 (2015).
[Crossref]

Peng, G. Y.

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, G. Y. Peng, Y. L. Song, Z. Pan, and C. H. Wang, “The Effect of Li ON THE SPECTRUM of Er3+ in Li- and Er-Codoped ZnO Nanocrystals,” J. Phys. Chem. C 112(32), 12259–12263 (2008).
[Crossref]

Pillai, S. M.

S. M. Pillai and C. P. G. Vallabhan, “A study of the electro luminescence spectrum of Cas: Er phosphor and the energy level splitting in Er3+ ions,” J. Phys. C Solid State Phys. 17(11), 2019–2025 (1984).
[Crossref]

Qin, L.

Qin, X.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref] [PubMed]

Qiu, J.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Rai, S. B.

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16(41), 22665–22676 (2014).
[Crossref] [PubMed]

Rai, V. K.

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[Crossref]

Rakov, N.

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
[Crossref]

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
[Crossref]

Ramakrishna, P. V.

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16(41), 22665–22676 (2014).
[Crossref] [PubMed]

Rocha, J.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref] [PubMed]

Rodríguez-Mendoza, U.

S. León-Luis, U. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Sanz-Rodríguez, F.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Saxena, S. K.

B. Manoun, J. M. Igartua, M. Gateshki, and S. K. Saxena, “High-pressure Raman study of the Sr2CaWO6 double perovskite,” J. Phys. Condens. Matter 16(46), 8367–8376 (2004).
[Crossref]

Shi, J. S.

L. L. Wang, B. K. Moon, S. H. Park, J. H. Kim, J. S. Shi, K. H. Kim, and J. H. Jeong, “Photoluminescence properties, crystal structureand electronic structure of a Sr2CaWO6:Sm3+ red phosphor,” RSC Advances 5(108), 89290–89288 (2015).
[Crossref]

Shi, R.

H. Suo, X. Q. Zhao, Z. Y. Zhang, R. Shi, Y. F. Wu, J. M. Xiang, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3: Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

Silva, N. J. O.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

Singh, B. P.

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16(41), 22665–22676 (2014).
[Crossref] [PubMed]

Singh, P.

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16(41), 22665–22676 (2014).
[Crossref] [PubMed]

Singh, S.

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16(41), 22665–22676 (2014).
[Crossref] [PubMed]

Song, Y. L.

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, G. Y. Peng, Y. L. Song, Z. Pan, and C. H. Wang, “The Effect of Li ON THE SPECTRUM of Er3+ in Li- and Er-Codoped ZnO Nanocrystals,” J. Phys. Chem. C 112(32), 12259–12263 (2008).
[Crossref]

Sun, L. D.

H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref] [PubMed]

Suo, H.

H. Suo, X. Q. Zhao, Z. Y. Zhang, R. Shi, Y. F. Wu, J. M. Xiang, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3: Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

Suyver, J. F.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Tan, D.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Tang, D. Y.

R. L. Zheng, D. W. Luo, Y. Yuan, Z. Y. Wang, Y. Zhang, W. Wei, L. B. Kong, and D. Y. Tang, “Dy3+/Ce3+ co-doped YAG transparent ceramics for single-composition tunable white light phosphor,” J. Am. Ceram. Soc. 98(10), 3231–3235 (2015).
[Crossref]

Vallabhan, C. P. G.

S. M. Pillai and C. P. G. Vallabhan, “A study of the electro luminescence spectrum of Cas: Er phosphor and the energy level splitting in Er3+ ions,” J. Phys. C Solid State Phys. 17(11), 2019–2025 (1984).
[Crossref]

Vasala, S.

S. Vasala and M. Karppinen, “A2B’B”O6 perovskites: A review,” Prog. Solid State Ch. 43(1–2), 1–36 (2015).
[Crossref]

Vetrone, F.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Vu, T. Q.

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Wan, Z.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Wang, C. H.

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, G. Y. Peng, Y. L. Song, Z. Pan, and C. H. Wang, “The Effect of Li ON THE SPECTRUM of Er3+ in Li- and Er-Codoped ZnO Nanocrystals,” J. Phys. Chem. C 112(32), 12259–12263 (2008).
[Crossref]

Wang, J.

Wang, L. L.

L. L. Wang, B. K. Moon, S. H. Park, J. H. Kim, J. S. Shi, K. H. Kim, and J. H. Jeong, “Photoluminescence properties, crystal structureand electronic structure of a Sr2CaWO6:Sm3+ red phosphor,” RSC Advances 5(108), 89290–89288 (2015).
[Crossref]

Wang, X. D.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Wang, X. F.

Wang, Y. F.

S. W. Zhao, W. Liu, X. Y. Xue, Y. S. Yang, Z. Y. Zhao, Y. F. Wang, and B. Zhou, “Enhanced upconversion luminescence and modulated paramagnetic performance in NaGdF4: Yb, Er by Mg2+ tridoping,” RSC Advances 6(85), 81542–81551 (2016).
[Crossref]

Wang, Y. J.

X. J. Zhou, T. J. Xiao, X. Q. Zhao, Y. J. Wang, L. Li, Z. Q. Wang, and Q. X. Li, “Study of the optical properties of double-perovskite Sr2CaWxMo1-xO6 matrices,” J. Lumin. 152(2), 165–167 (2014).
[Crossref]

Wang, Y. S.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Wang, Y. X.

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, G. Y. Peng, Y. L. Song, Z. Pan, and C. H. Wang, “The Effect of Li ON THE SPECTRUM of Er3+ in Li- and Er-Codoped ZnO Nanocrystals,” J. Phys. Chem. C 112(32), 12259–12263 (2008).
[Crossref]

Wang, Z. Q.

X. J. Zhou, T. J. Xiao, X. Q. Zhao, Y. J. Wang, L. Li, Z. Q. Wang, and Q. X. Li, “Study of the optical properties of double-perovskite Sr2CaWxMo1-xO6 matrices,” J. Lumin. 152(2), 165–167 (2014).
[Crossref]

Wang, Z. Y.

R. L. Zheng, D. W. Luo, Y. Yuan, Z. Y. Wang, Y. Zhang, W. Wei, L. B. Kong, and D. Y. Tang, “Dy3+/Ce3+ co-doped YAG transparent ceramics for single-composition tunable white light phosphor,” J. Am. Ceram. Soc. 98(10), 3231–3235 (2015).
[Crossref]

R. L. Zheng, Z. Y. Wang, P. Lv, Y. Yuan, Y. Zhang, J. J. Zheng, and W. Wei, “Novel synthesis of low hydroxyl content Yb3+-doped fluorophosphate glasses with long fluorescence lifetimes,” J. Am. Ceram. Soc. 98(3), 861–866 (2015).
[Crossref]

Wei, W.

R. Zheng, Q. Zhang, K. Yu, C. Liu, J. Ding, P. Lv, and W. Wei, “Continuous tunable broadband emission of fluorphosphate glasses for single-component multi-chromatic phosphors,” Opt. Lett. 42(20), 4099–4102 (2017).
[Crossref] [PubMed]

R. L. Zheng, Z. Y. Wang, P. Lv, Y. Yuan, Y. Zhang, J. J. Zheng, and W. Wei, “Novel synthesis of low hydroxyl content Yb3+-doped fluorophosphate glasses with long fluorescence lifetimes,” J. Am. Ceram. Soc. 98(3), 861–866 (2015).
[Crossref]

R. L. Zheng, D. W. Luo, Y. Yuan, Z. Y. Wang, Y. Zhang, W. Wei, L. B. Kong, and D. Y. Tang, “Dy3+/Ce3+ co-doped YAG transparent ceramics for single-composition tunable white light phosphor,” J. Am. Ceram. Soc. 98(10), 3231–3235 (2015).
[Crossref]

Wolfbeis, O. S.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

Wu, Y. F.

H. Suo, X. Q. Zhao, Z. Y. Zhang, R. Shi, Y. F. Wu, J. M. Xiang, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3: Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

Xiang, J. M.

H. Suo, X. Q. Zhao, Z. Y. Zhang, R. Shi, Y. F. Wu, J. M. Xiang, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3: Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

Xiao, S.

L. Jiang, S. Xiao, X. Yang, J. Ding, and K. Dong, “Enhancement of up-conversion luminescence in Zn2SiO4:Yb3+,Er3+ by co-doping with Li+ or Bi3+,” Appl. Phys. B 107(2), 477–481 (2012).
[Crossref]

Xiao, T. J.

X. J. Zhou, T. J. Xiao, X. Q. Zhao, Y. J. Wang, L. Li, Z. Q. Wang, and Q. X. Li, “Study of the optical properties of double-perovskite Sr2CaWxMo1-xO6 matrices,” J. Lumin. 152(2), 165–167 (2014).
[Crossref]

Xie, X.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref] [PubMed]

Xu, C.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Xu, J.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Xu, W.

Xue, X. Y.

S. W. Zhao, W. Liu, X. Y. Xue, Y. S. Yang, Z. Y. Zhao, Y. F. Wang, and B. Zhou, “Enhanced upconversion luminescence and modulated paramagnetic performance in NaGdF4: Yb, Er by Mg2+ tridoping,” RSC Advances 6(85), 81542–81551 (2016).
[Crossref]

Yan, C. H.

H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref] [PubMed]

Yan, X. H.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Yang, K.

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, G. Y. Peng, Y. L. Song, Z. Pan, and C. H. Wang, “The Effect of Li ON THE SPECTRUM of Er3+ in Li- and Er-Codoped ZnO Nanocrystals,” J. Phys. Chem. C 112(32), 12259–12263 (2008).
[Crossref]

Yang, X.

L. Jiang, S. Xiao, X. Yang, J. Ding, and K. Dong, “Enhancement of up-conversion luminescence in Zn2SiO4:Yb3+,Er3+ by co-doping with Li+ or Bi3+,” Appl. Phys. B 107(2), 477–481 (2012).
[Crossref]

Yang, Y. S.

S. W. Zhao, W. Liu, X. Y. Xue, Y. S. Yang, Z. Y. Zhao, Y. F. Wang, and B. Zhou, “Enhanced upconversion luminescence and modulated paramagnetic performance in NaGdF4: Yb, Er by Mg2+ tridoping,” RSC Advances 6(85), 81542–81551 (2016).
[Crossref]

Yu, K.

Yu, Y.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Yuan, Y.

R. L. Zheng, Z. Y. Wang, P. Lv, Y. Yuan, Y. Zhang, J. J. Zheng, and W. Wei, “Novel synthesis of low hydroxyl content Yb3+-doped fluorophosphate glasses with long fluorescence lifetimes,” J. Am. Ceram. Soc. 98(3), 861–866 (2015).
[Crossref]

R. L. Zheng, D. W. Luo, Y. Yuan, Z. Y. Wang, Y. Zhang, W. Wei, L. B. Kong, and D. Y. Tang, “Dy3+/Ce3+ co-doped YAG transparent ceramics for single-composition tunable white light phosphor,” J. Am. Ceram. Soc. 98(10), 3231–3235 (2015).
[Crossref]

Zamarrón, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Zhang, Q.

Zhang, X. R.

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, G. Y. Peng, Y. L. Song, Z. Pan, and C. H. Wang, “The Effect of Li ON THE SPECTRUM of Er3+ in Li- and Er-Codoped ZnO Nanocrystals,” J. Phys. Chem. C 112(32), 12259–12263 (2008).
[Crossref]

Zhang, Y.

R. L. Zheng, D. W. Luo, Y. Yuan, Z. Y. Wang, Y. Zhang, W. Wei, L. B. Kong, and D. Y. Tang, “Dy3+/Ce3+ co-doped YAG transparent ceramics for single-composition tunable white light phosphor,” J. Am. Ceram. Soc. 98(10), 3231–3235 (2015).
[Crossref]

R. L. Zheng, Z. Y. Wang, P. Lv, Y. Yuan, Y. Zhang, J. J. Zheng, and W. Wei, “Novel synthesis of low hydroxyl content Yb3+-doped fluorophosphate glasses with long fluorescence lifetimes,” J. Am. Ceram. Soc. 98(3), 861–866 (2015).
[Crossref]

Zhang, Z. G.

Zhang, Z. Y.

H. Suo, X. Q. Zhao, Z. Y. Zhang, R. Shi, Y. F. Wu, J. M. Xiang, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3: Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

Zhao, S. W.

S. W. Zhao, W. Liu, X. Y. Xue, Y. S. Yang, Z. Y. Zhao, Y. F. Wang, and B. Zhou, “Enhanced upconversion luminescence and modulated paramagnetic performance in NaGdF4: Yb, Er by Mg2+ tridoping,” RSC Advances 6(85), 81542–81551 (2016).
[Crossref]

Zhao, X. Q.

H. Suo, X. Q. Zhao, Z. Y. Zhang, R. Shi, Y. F. Wu, J. M. Xiang, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3: Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

X. J. Zhou, T. J. Xiao, X. Q. Zhao, Y. J. Wang, L. Li, Z. Q. Wang, and Q. X. Li, “Study of the optical properties of double-perovskite Sr2CaWxMo1-xO6 matrices,” J. Lumin. 152(2), 165–167 (2014).
[Crossref]

Zhao, Z. Y.

S. W. Zhao, W. Liu, X. Y. Xue, Y. S. Yang, Z. Y. Zhao, Y. F. Wang, and B. Zhou, “Enhanced upconversion luminescence and modulated paramagnetic performance in NaGdF4: Yb, Er by Mg2+ tridoping,” RSC Advances 6(85), 81542–81551 (2016).
[Crossref]

Zheng, J. J.

R. L. Zheng, Z. Y. Wang, P. Lv, Y. Yuan, Y. Zhang, J. J. Zheng, and W. Wei, “Novel synthesis of low hydroxyl content Yb3+-doped fluorophosphate glasses with long fluorescence lifetimes,” J. Am. Ceram. Soc. 98(3), 861–866 (2015).
[Crossref]

Zheng, L. J.

Zheng, R.

Zheng, R. L.

R. L. Zheng, Z. Y. Wang, P. Lv, Y. Yuan, Y. Zhang, J. J. Zheng, and W. Wei, “Novel synthesis of low hydroxyl content Yb3+-doped fluorophosphate glasses with long fluorescence lifetimes,” J. Am. Ceram. Soc. 98(3), 861–866 (2015).
[Crossref]

R. L. Zheng, D. W. Luo, Y. Yuan, Z. Y. Wang, Y. Zhang, W. Wei, L. B. Kong, and D. Y. Tang, “Dy3+/Ce3+ co-doped YAG transparent ceramics for single-composition tunable white light phosphor,” J. Am. Ceram. Soc. 98(10), 3231–3235 (2015).
[Crossref]

Zheng, S.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Zhong, J.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Zhou, B.

S. W. Zhao, W. Liu, X. Y. Xue, Y. S. Yang, Z. Y. Zhao, Y. F. Wang, and B. Zhou, “Enhanced upconversion luminescence and modulated paramagnetic performance in NaGdF4: Yb, Er by Mg2+ tridoping,” RSC Advances 6(85), 81542–81551 (2016).
[Crossref]

Zhou, J.

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Zhou, J. C.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Zhou, X.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

Zhou, X. J.

X. J. Zhou, T. J. Xiao, X. Q. Zhao, Y. J. Wang, L. Li, Z. Q. Wang, and Q. X. Li, “Study of the optical properties of double-perovskite Sr2CaWxMo1-xO6 matrices,” J. Lumin. 152(2), 165–167 (2014).
[Crossref]

Zhou, Y.

L. P. Li, L. J. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. G. Zhang, and W. X. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
[Crossref] [PubMed]

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
[Crossref] [PubMed]

ACS Nano (1)

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature Sensing Using Fluorescent Nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

Appl. Phys. B (2)

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[Crossref]

L. Jiang, S. Xiao, X. Yang, J. Ding, and K. Dong, “Enhancement of up-conversion luminescence in Zn2SiO4:Yb3+,Er3+ by co-doping with Li+ or Bi3+,” Appl. Phys. B 107(2), 477–481 (2012).
[Crossref]

Chem. Mater. (1)

E. J. McLaurin, L. R. Bradshaw, and D. R. Gamelin, “Dual-emitting nanoscale temperature sensors,” Chem. Mater. 25(8), 1283–1292 (2013).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref] [PubMed]

J. Am. Ceram. Soc. (2)

R. L. Zheng, D. W. Luo, Y. Yuan, Z. Y. Wang, Y. Zhang, W. Wei, L. B. Kong, and D. Y. Tang, “Dy3+/Ce3+ co-doped YAG transparent ceramics for single-composition tunable white light phosphor,” J. Am. Ceram. Soc. 98(10), 3231–3235 (2015).
[Crossref]

R. L. Zheng, Z. Y. Wang, P. Lv, Y. Yuan, Y. Zhang, J. J. Zheng, and W. Wei, “Novel synthesis of low hydroxyl content Yb3+-doped fluorophosphate glasses with long fluorescence lifetimes,” J. Am. Ceram. Soc. 98(3), 861–866 (2015).
[Crossref]

J. Appl. Phys. (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

J. Lumin. (1)

X. J. Zhou, T. J. Xiao, X. Q. Zhao, Y. J. Wang, L. Li, Z. Q. Wang, and Q. X. Li, “Study of the optical properties of double-perovskite Sr2CaWxMo1-xO6 matrices,” J. Lumin. 152(2), 165–167 (2014).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

H. Suo, X. Q. Zhao, Z. Y. Zhang, R. Shi, Y. F. Wu, J. M. Xiang, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3: Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(6), 1501–1507 (2017).
[Crossref]

J. Phys. C Solid State Phys. (1)

S. M. Pillai and C. P. G. Vallabhan, “A study of the electro luminescence spectrum of Cas: Er phosphor and the energy level splitting in Er3+ ions,” J. Phys. C Solid State Phys. 17(11), 2019–2025 (1984).
[Crossref]

J. Phys. Chem. C (1)

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, G. Y. Peng, Y. L. Song, Z. Pan, and C. H. Wang, “The Effect of Li ON THE SPECTRUM of Er3+ in Li- and Er-Codoped ZnO Nanocrystals,” J. Phys. Chem. C 112(32), 12259–12263 (2008).
[Crossref]

J. Phys. Condens. Matter (2)

M. Gateshki and J. M. Igartua, “ Crystal structures and phase transitions of the double-perovskite oxides Sr 2 CaWO 6 and Sr 2 MgWO 6, ” J. Phys. Condens. Matter 16(37), 6639–6649 (2004).
[Crossref]

B. Manoun, J. M. Igartua, M. Gateshki, and S. K. Saxena, “High-pressure Raman study of the Sr2CaWO6 double perovskite,” J. Phys. Condens. Matter 16(46), 8367–8376 (2004).
[Crossref]

Nanoscale (3)

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, “Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors,” Nanoscale 6(11), 5675–5679 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16(41), 22665–22676 (2014).
[Crossref] [PubMed]

Phys. Rev. (1)

G. Burns, “Shielding and crystal fields at rare-earth ions,” Phys. Rev. 128(5), 2121–2130 (1962).
[Crossref]

Phys. Rev. B (1)

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Prog. Solid State Ch. (1)

S. Vasala and M. Karppinen, “A2B’B”O6 perovskites: A review,” Prog. Solid State Ch. 43(1–2), 1–36 (2015).
[Crossref]

RSC Advances (3)

L. L. Wang, B. K. Moon, S. H. Park, J. H. Kim, J. S. Shi, K. H. Kim, and J. H. Jeong, “Photoluminescence properties, crystal structureand electronic structure of a Sr2CaWO6:Sm3+ red phosphor,” RSC Advances 5(108), 89290–89288 (2015).
[Crossref]

S. W. Zhao, W. Liu, X. Y. Xue, Y. S. Yang, Z. Y. Zhao, Y. F. Wang, and B. Zhou, “Enhanced upconversion luminescence and modulated paramagnetic performance in NaGdF4: Yb, Er by Mg2+ tridoping,” RSC Advances 6(85), 81542–81551 (2016).
[Crossref]

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Sens. Actuators B Chem. (3)

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
[Crossref]

S. León-Luis, U. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
[Crossref]

Other (3)

Y. L. Ju, Y. Xu, F. F. Zhong, and Y. J. Zhang, Widely Tunable Compact Er3+-doped Fiber Ring Laser (IEEE, 2010), pp. 112–113.

G. K. Liu and X. Y. Chen, “Chapter 233 Spectroscopic properties of lanthanides in nanomaterials,” Handbookon the Physics and Chemistry of Rare Earths 37(07), 99–169 (2007).

H. Suo, X. Q. Zhao, Z. Y. Zhang, R. Shi, Y. F. Wu, J. M. Xiang, and C. F. Guo, “ Local Symmetric Distortion Boosted Photon Up-conversion and Thermometric Sensitivity in Lanthanum Oxide Nanospheres,” Nanoscale, Accepted Manuscript (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 (a) XRD patterns and (b) Unit cell parameters a (Å), b (Å), c (Å) and v (Å3) vs of Sr2CaWO6 doped with Er3+ and La3+.
Fig. 2
Fig. 2 (a) XRD patterns and (b) Unit cell parameters a (Å), b (Å), c (Å) and v (Å3) vs of Sr2CaWO6 doped with Er3+ and Y3+.
Fig. 3
Fig. 3 (a) XRD patterns and (b) Unit cell parameters a (Å), b (Å), c (Å) and v (Å3) vs of Sr2CaWO6 doped with Er3+ and Al3+.
Fig. 4
Fig. 4 The schematic views of unit cell of Sr2CaWO6 structure along a-direction.
Fig. 5
Fig. 5 La3+ concentration dependent (a) upconversion spectra, (b) the intensity ratios of the 552 nm to 564 nm emissions of Sr2CaWO6: Er3+, La3+, (c) total emission intensity, and (d) the intensity ratios of the red to green emissions of Sr2CaWO6: Er3+, La3+.
Fig. 6
Fig. 6 Y3+ concentration dependent (a) upconversion spectra, (b) the intensity ratios of the 552 nm to 564 nm emissions of Sr2CaWO6: Er3+, Y3+, (c) total emission intensity, and (d) the intensity ratios of the red to green emissions of Sr2CaWO6: Er3+, Y3+.
Fig. 7
Fig. 7 Al3+ concentration dependent (a) upconversion spectra, (b) the intensity ratios of the 552 nm to 564 nm emissions of Sr2CaWO6: Er3+, Al3+, (c) total emission intensity, and (d) the intensity ratios of the red to green emissions of Sr2CaWO6: Er3+, Al3+.
Fig. 8
Fig. 8 Temperature dependent FIR of 524 nm and 552 nm emissions of (a) Er3+ doped, (b) Er3+-La3+ co-doped, (c) Er3+-Y3+ co-doped, and (d) Er3+-Al3+ co-doped Sr2CaWO6.
Fig. 9
Fig. 9 Doping dependent δ values in (a) Er3+ doped Sr2CaWO6, (b, c, d, e, f, g) Er3+-xLa3+ (x = 0.01, 0.03, 0.05, 0.07, 0.10 and 0.15mol%) co-doped Sr2CaWO6, (h, i, j, k, l, m) Er3+-yY3+ (y = 0.01, 0.03, 0.05, 0.07, 0.10 and 0.15mol%) co-doped Sr2CaWO6, and (n, o, p, q, r, s) Er3+-zAl3+ (z = 0.01, 0.03, 0.05, 0.07, 0.10 and 0.15mol%) co-doped Sr2CaWO6.
Fig. 10
Fig. 10 Temperature dependent relationship between the LnFIR and 1/T of (a) Er3+ doped, (b) Er3+-La3+ co-doped, (c) Er3+-Y3+ co-doped, and (d) Er3+-Al3+ co-doped Sr2CaWO6.
Fig. 11
Fig. 11 Optical temperature sensitivities SR and SA as a function of temperature for various dopant ions. (a) Er3+-La3+, (b) Er3+-Y3+, and (c) Er3+-Al3+ co-doped Sr2CaWO6. (d) Temperature dependent SA.
Fig. 12
Fig. 12 Log–log plots of intensity and pumping power for green emission in (a) Er3+ doped Sr2CaWO6, (b) Er3+-0.15mol%La3+ doped Sr2CaWO6, (c) Er3+-0.15mol%Y3+ doped Sr2CaWO6, (d)Er3+-0.05%Al3+ doped Sr2CaWO6 at different temperatures.
Fig. 13
Fig. 13 The LnFIR as a function of 1/T for various excitation powers for (a) Er3+ doped Sr2CaWO6, (b) Er3+-0.15%La3+ doped Sr2CaWO6, (c) Er3+-0.15%Y3+ doped Sr2CaWO6 and (d) Er3+-0.05%Al3+ doped Sr2CaWO6.
Fig. 14
Fig. 14 Excitation powers dependent SR and SA of Er3+ doped Sr2CaWO6 and Er3+- La3+, Y3+ and Al3+ doped Sr2CaWO6.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

F I R = A e Δ E / K T
S R = d F I R d T = F I R Δ E k T 2
S A = 1 F I R d F I R d T = Δ E K T 2
δ = | Δ E f Δ E m | / Δ E m
L n F I R = a / T + b
S R = d F I R d T = a T 2 e b T a T
S A = 1 F I R d F I R d T = a T 2
I P n

Metrics