Abstract

This work reports the processing and properties of a new chalcogenide glass film that can be photo-patterned by multiphoton lithography (MPL) with enhanced post-fabrication stability. Thermally evaporated germanium-doped arsenic selenide [Ge5(As2Se3)95] thin films were photo-patterned using the output of a mode-locked titanium:sapphire laser. The morphology, chemical structure, and optical properties of the material were studied before and after photo-patterning and compared for their long-term aging behavior and stability to previously investigated arsenic trisulfide (As2S3) films fabricated using similar MPL conditions. Relative to As2S3, thermally deposited Ge5(As2Se3)95 is found to offer higher photo-sensitivity and greater chemical stability after photo-patterning, as evidenced by lack of age-induced crystallization and reduced feature degradation over a four year aging period. These findings demonstrate the suitability of a new photo-patternable material for the creation of robust, long-lived functional infrared anti-reflective coatings and meta-optics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films

P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang
Opt. Express 18(22) 22944-22957 (2010)

Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films

Yi Zou, Hongtao Lin, Okechukwu Ogbuu, Lan Li, Sylvain Danto, Spencer Novak, Jacklyn Novak, J. David Musgraves, Kathleen Richardson, and Juejun Hu
Opt. Mater. Express 2(12) 1723-1732 (2012)

High efficiency and stability gratings recorded in GeAsS thin films

K. Palanjyan, Y. Ledemi, Y. Messaddeq, R. Vallée, and T. Galstian
Opt. Mater. Express 6(5) 1604-1612 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. Hand, “Remote sensing. Carbon-mapping satellite will monitor plants’ faint glow,” Science 344(6189), 1211–1212 (2014).
    [Crossref] [PubMed]
  2. W. Zhang, Y. Shi, R. Hu, Y. Zeng, and M. Yan, “Application status and development trend of infrared imaging system,” presented at International Symposium on Photoelectronic Detection and Imaging, Beijing, China, 25–27 Jun. 2013.
    [Crossref]
  3. A. Ashcroft, L. Richardson, R. Ash, P. Thorne, D. Isgar, D. Jeckells, M. Stevens, T. Davey, and A. Malik, “A miniature ruggedized fast frame rate infra-red sensor module for hostile fire detection and industrial applications,” presented at Infrared Technology and Applications XXXIX, Baltimore, Maryland, USA, 29 Apr. - 3 May 2013.
  4. D. H. Cha, Y. Hwang, J.-H. Kim, and H.-J. Kim, “Fabrication and evaluation of chalcogenide glass molding lens for car night-vision system,” presented at Integrated Optics: Physics and Simulations, Prague, Czech Republic, 15–18 Apr. 2013
  5. W. V. Moreshead, J. Novak, and A. Symmons, “An investigation of material properties for a selection of chalcogenide glasses for precision glass molding,” Proc. SPIE 8541, 854102 (2012).
    [Crossref]
  6. A. Zelazny, R. Benson, J. Deegan, K. Walsh, D. W. Schmidt, and R. Howe, “Optical methods for the optimization of system SWaP-C using aspheric components and advanced optical polymers,” presented at Infrared Technology and Applications XXXIX, Baltimore, Maryland, 29 Apr. - 3 May 2013.
    [Crossref]
  7. G.-M. Ryu, G.-J. Lee, S.-W. Hyun, H.-Y. Sung, E. Chung, and G.-H. Kim, “A study on ultra precision machining technique for Al6061-T6 to fabricate space infrared optics,” presented at Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, Montréal, Quebec, Canada, 22–27 Jun. 2014.
  8. X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326, 519–523 (2003).
    [Crossref]
  9. H. Cha, H. J. Kim, H. S. Park, Y. Hwang, J. H. Kim, J. H. Hong, and K. S. Lee, “Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications,” Appl. Opt. 49(9), 1607–1613 (2010).
    [Crossref] [PubMed]
  10. H. Cha, H.-J. Kim, Y. Hwang, J. C. Jeong, and J.-H. Kim, “Fabrication of molded chalcogenide-glass lens for thermal imaging applications,” Appl. Opt. 51(23), 5649–5656 (2012).
    [Crossref] [PubMed]
  11. J. L. Adam and X. Zhang, eds., Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead Publishing Limited, Cambridge, 2014).
  12. K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcogenide glass lenses,” J. Non-Cryst. Solids 357(11-13), 2484–2488 (2011).
    [Crossref]
  13. B. Gleason, P. Wachtel, D. J. Musgraves, and K. Richardson, “Using design of experiments to improve precision molding of chalcogenides,” Int. J. Experimental Design and Process Optimisation 3, 263–275 (2013).
    [Crossref]
  14. B. Gleason, “Designing Optical Properties in Infrared Glass,” Ph.D. dissertation (Clemson University, Clemson, South Carolina, USA, 2015).
  15. S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
    [Crossref]
  16. C. M. Schwarz, S. Labh, J. E. Barker, R. J. Sapia, G. D. Richardson, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses,” Proc. SPIE 9759, 975916 (2016).
    [Crossref]
  17. C. M. Schwarz, H. E. Williams, C. N. Grabill, A. M. Lewis, S. M. Kuebler, B. Gleason, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, C. Drake, and C. Rivero-Baleine, “Processing and properties of arsenic trisulfide chalcogenide glasses for direct laser writing of 3D micro structures,” Proc. SPIE 8974, 89740P (2014).
    [Crossref]
  18. C. M. Schwarz, C. N. Grabill, B. Gleason, S. Novak, A. M. Lewis, G. D. Richardson, C. Rivero-Baleine, K. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of micro-structures created by direct laser writing in multi-layered chalcogenide glass,” Proc. SPIE 9374, 937403 (2015).
    [Crossref]
  19. S. M. Kuebler and M. Rumi, “Nonlinear optics–applications: three-dimensional microfabrication,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel, eds. (Elsevier, Oxford, 2004).
  20. P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelectron. Adv. Mater. 7(4), 1759–1764 (2005).
  21. R. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
    [Crossref]
  22. J. K. Park, J. H. Lee, S. Y. Shin, J. H. Yi, W. H. Lee, B. J. Park, J. H. Choi, N. Y. Kim, and Y. G. Choi, “Compositional dependence of hardness of Ge-Sb-Se glass for molded lens applications,” Arch. Metall. Mater. 60(2), 1205–1208 (2015).
    [Crossref]
  23. X. Su, R. Wang, B. Luther-Davies, and L. Wang, “The dependence of photosensitivity on composition for thin films of GexAsySe1-x-y chalcogenide glasses,” Appl. Phys., A Mater. Sci. Process. 113(3), 575–581 (2013).
    [Crossref]
  24. T. Wagner, S. O. Kasap, M. Vlcek, A. Sklenar, and A. Stroncki, “Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of AsxS100-x glasses,” J. Non-Cryst. Solids 2000, 964–968 (1988).
  25. D. J. Musgraves, P. Wachtel, S. Novak, J. Wilkinson, and K. Richardson, “Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system,” J. Appl. Phys. 110(063503), 1–6 (2011).
  26. A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
    [Crossref] [PubMed]
  27. R. Y. Golovchak, A. Kozdras, and O. Shpotyuk, “Physical ageing in glassy As–Se induced by above-bandgap photoexposure,” Solid State Commun. 145(9-10), 423–426 (2008).
    [Crossref]
  28. R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. Shpotyuk, and V. M. Novotortsev, “Physical aging of chalcogenide glasses,” Inorg. Mater. 46(8), 911–913 (2010).
    [Crossref]
  29. A. Kozdras, R. Golovchak, O. Shpotyuk, S. Szymura, A. Saiter, and J.-M. Saiter, “Light-assisted physical aging in chalcogenide glasses: Dependence on the wavelength of incident photons,” J. Mater. Res. 26(18), 2420–2427 (2011).
    [Crossref]
  30. Amorphous Materials, Inc., retrieved May 2018, http://www.amorphousmaterials.com/ .
  31. K. Tanaka, Y. Kasanuki, and A. Odajima, “Physical properties and photoinduced changes of amorphous Ge-S films,” Thin Solid Films 117(4), 251–260 (1984).
    [Crossref]
  32. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37(3), 392–394 (2012).
    [Crossref] [PubMed]
  33. P. Khan, H. Jain, and K. V. Adarsh, “Role of Ge:As ratio in controlling the light-induced response of a-GexAs35-xSe65 thin films,” Sci. Rep. 4, 4029 (2014).
    [PubMed]
  34. C. M. Schwarz, C. N. Grabill, G. D. Richardson, S. Labh, A. M. Lewis, A. Vyas, B. Gleason, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography,” J. Micro/Nanolith. MEMS MOEMS 16(2), 023508 (2017).
    [Crossref]
  35. H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
    [Crossref]
  36. L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form µ-optics 3D-printed via ultrafast laser lithography,” Materials (Basel) 10(1), 12 (2017).
    [Crossref] [PubMed]
  37. Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
    [Crossref] [PubMed]
  38. M. Manevich, M. Klebanov, V. Lyubin, J. Varshal, J. Border, and N. Eisenberg, “Gap micro-lithography for chalcogenide micro-lens array fabrication,” Chalcogenide Lett. 5, 61–64 (2008).
  39. R. Naik, S. Jena, R. Ganesan, and N. K. Sahoo, “Photo-induced optical bleaching in Ge12Sb25S63 amorphous chalcogenide thin films: effect of 532 nm laser illumination,” Laser Phys. 25(3), 1–8 (2015).
    [Crossref]
  40. M. Olivier, P. Nemec, G. Boudebs, R. Boidin, C. Focsa, and V. Nazabal, “Photosensitivity of pulsed laser deposited Ge-Sb-Se thin films,” Opt. Mater. Express 5(4), 781–793 (2015).
    [Crossref]
  41. M. S. Iovu, E. I. Kamitsos, C. P. E. Varsamis, P. Boolchand, and M. Popescu, “Raman spectra of AsxSe100-x and As40Se60 glasses doped with metals,” Chalcogenide Lett. 2(3), 21–25 (2005).
  42. R. A. Synowicki and T. E. Tiwald, “Optical properties of bulk c-ZrO2, c-MgO and a-As2S3 determined by variable angle spectroscopic ellipsometry,” Thin Film Solids 455–456, 248–255 (2004).
    [Crossref]
  43. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
    [Crossref]
  44. S. Noehte, J. Ackermann, K. Schwartz, C. Dietrich, and R. Männer, “Optical grating studies in a-As2S3 films using scanning force microscopy,” (Universität Mannheim, Mannheim, Germany, 1995).
  45. R. J. Weiblen, C. R. Menyuk, L. E. Busse, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Optimized moth-eye anti-reflective structures for As2S3 chalcogenide optical fibers,” Opt. Express 24(10), 10172–10187 (2016).
    [Crossref] [PubMed]
  46. H. E. Williams, “Photophysical and Photochemical Factors Affecting Multi-Photon Direct Laser Writing Using the Cross-Linkable Epoxide SU-8,” PhD dissertation (University of Central Florida, Orlando, FL, USA, 2013).
  47. V. Kaur, S. K. Tripathi, and S. Prakash, “The electronic structure of As2S3,” presented at International Conference on Condensed Matter and Applied Physics, Bikaner, Rajasthan, 30 - 31 Oct. 2015.
  48. A. Zakery and S. R. Elliot, Optical Nonlinearities in Chalcogenide Glasses and their Applications Springer Series in Optical Science (Springer, 2007), Vol. 135.
  49. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29(7), 748–750 (2004).
    [Crossref] [PubMed]
  50. D. C. Ghosh and R. Biswas, “Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii,” Int. J. Mol. Sci. 3(2), 87–113 (2002).
    [Crossref]
  51. M. Olivier, J. C. Tchahame, P. Nemec, M. Chauvet, V. Besse, C. Cassagne, G. Boudebs, G. Renversez, R. Boidin, E. Baudet, and N. Nazabal, “Structure, nonlinear properties, and photosensitivity of (GeSe2)100-x(Sb2Se3)x glasses,” Opt. Mater. Express 4(3), 525–540 (2014).
    [Crossref]
  52. J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, 3rd ed. (Harper and Rowe, New York, 1983).
  53. P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express 18(22), 22944–22957 (2010).
    [Crossref] [PubMed]
  54. C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (John Wiley & Sons Ltd., West Sussex, 2007).

2017 (2)

C. M. Schwarz, C. N. Grabill, G. D. Richardson, S. Labh, A. M. Lewis, A. Vyas, B. Gleason, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography,” J. Micro/Nanolith. MEMS MOEMS 16(2), 023508 (2017).
[Crossref]

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form µ-optics 3D-printed via ultrafast laser lithography,” Materials (Basel) 10(1), 12 (2017).
[Crossref] [PubMed]

2016 (2)

C. M. Schwarz, S. Labh, J. E. Barker, R. J. Sapia, G. D. Richardson, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses,” Proc. SPIE 9759, 975916 (2016).
[Crossref]

R. J. Weiblen, C. R. Menyuk, L. E. Busse, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Optimized moth-eye anti-reflective structures for As2S3 chalcogenide optical fibers,” Opt. Express 24(10), 10172–10187 (2016).
[Crossref] [PubMed]

2015 (4)

M. Olivier, P. Nemec, G. Boudebs, R. Boidin, C. Focsa, and V. Nazabal, “Photosensitivity of pulsed laser deposited Ge-Sb-Se thin films,” Opt. Mater. Express 5(4), 781–793 (2015).
[Crossref]

C. M. Schwarz, C. N. Grabill, B. Gleason, S. Novak, A. M. Lewis, G. D. Richardson, C. Rivero-Baleine, K. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of micro-structures created by direct laser writing in multi-layered chalcogenide glass,” Proc. SPIE 9374, 937403 (2015).
[Crossref]

J. K. Park, J. H. Lee, S. Y. Shin, J. H. Yi, W. H. Lee, B. J. Park, J. H. Choi, N. Y. Kim, and Y. G. Choi, “Compositional dependence of hardness of Ge-Sb-Se glass for molded lens applications,” Arch. Metall. Mater. 60(2), 1205–1208 (2015).
[Crossref]

R. Naik, S. Jena, R. Ganesan, and N. K. Sahoo, “Photo-induced optical bleaching in Ge12Sb25S63 amorphous chalcogenide thin films: effect of 532 nm laser illumination,” Laser Phys. 25(3), 1–8 (2015).
[Crossref]

2014 (4)

P. Khan, H. Jain, and K. V. Adarsh, “Role of Ge:As ratio in controlling the light-induced response of a-GexAs35-xSe65 thin films,” Sci. Rep. 4, 4029 (2014).
[PubMed]

M. Olivier, J. C. Tchahame, P. Nemec, M. Chauvet, V. Besse, C. Cassagne, G. Boudebs, G. Renversez, R. Boidin, E. Baudet, and N. Nazabal, “Structure, nonlinear properties, and photosensitivity of (GeSe2)100-x(Sb2Se3)x glasses,” Opt. Mater. Express 4(3), 525–540 (2014).
[Crossref]

C. M. Schwarz, H. E. Williams, C. N. Grabill, A. M. Lewis, S. M. Kuebler, B. Gleason, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, C. Drake, and C. Rivero-Baleine, “Processing and properties of arsenic trisulfide chalcogenide glasses for direct laser writing of 3D micro structures,” Proc. SPIE 8974, 89740P (2014).
[Crossref]

E. Hand, “Remote sensing. Carbon-mapping satellite will monitor plants’ faint glow,” Science 344(6189), 1211–1212 (2014).
[Crossref] [PubMed]

2013 (3)

B. Gleason, P. Wachtel, D. J. Musgraves, and K. Richardson, “Using design of experiments to improve precision molding of chalcogenides,” Int. J. Experimental Design and Process Optimisation 3, 263–275 (2013).
[Crossref]

X. Su, R. Wang, B. Luther-Davies, and L. Wang, “The dependence of photosensitivity on composition for thin films of GexAsySe1-x-y chalcogenide glasses,” Appl. Phys., A Mater. Sci. Process. 113(3), 575–581 (2013).
[Crossref]

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (3)

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcogenide glass lenses,” J. Non-Cryst. Solids 357(11-13), 2484–2488 (2011).
[Crossref]

D. J. Musgraves, P. Wachtel, S. Novak, J. Wilkinson, and K. Richardson, “Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system,” J. Appl. Phys. 110(063503), 1–6 (2011).

A. Kozdras, R. Golovchak, O. Shpotyuk, S. Szymura, A. Saiter, and J.-M. Saiter, “Light-assisted physical aging in chalcogenide glasses: Dependence on the wavelength of incident photons,” J. Mater. Res. 26(18), 2420–2427 (2011).
[Crossref]

2010 (3)

2008 (4)

A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[Crossref] [PubMed]

M. Manevich, M. Klebanov, V. Lyubin, J. Varshal, J. Border, and N. Eisenberg, “Gap micro-lithography for chalcogenide micro-lens array fabrication,” Chalcogenide Lett. 5, 61–64 (2008).

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
[Crossref]

R. Y. Golovchak, A. Kozdras, and O. Shpotyuk, “Physical ageing in glassy As–Se induced by above-bandgap photoexposure,” Solid State Commun. 145(9-10), 423–426 (2008).
[Crossref]

2006 (1)

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

2005 (2)

P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelectron. Adv. Mater. 7(4), 1759–1764 (2005).

M. S. Iovu, E. I. Kamitsos, C. P. E. Varsamis, P. Boolchand, and M. Popescu, “Raman spectra of AsxSe100-x and As40Se60 glasses doped with metals,” Chalcogenide Lett. 2(3), 21–25 (2005).

2004 (3)

R. A. Synowicki and T. E. Tiwald, “Optical properties of bulk c-ZrO2, c-MgO and a-As2S3 determined by variable angle spectroscopic ellipsometry,” Thin Film Solids 455–456, 248–255 (2004).
[Crossref]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29(7), 748–750 (2004).
[Crossref] [PubMed]

R. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[Crossref]

2003 (2)

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326, 519–523 (2003).
[Crossref]

H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

2002 (1)

D. C. Ghosh and R. Biswas, “Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii,” Int. J. Mol. Sci. 3(2), 87–113 (2002).
[Crossref]

1988 (1)

T. Wagner, S. O. Kasap, M. Vlcek, A. Sklenar, and A. Stroncki, “Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of AsxS100-x glasses,” J. Non-Cryst. Solids 2000, 964–968 (1988).

1984 (1)

K. Tanaka, Y. Kasanuki, and A. Odajima, “Physical properties and photoinduced changes of amorphous Ge-S films,” Thin Solid Films 117(4), 251–260 (1984).
[Crossref]

Adarsh, K. V.

P. Khan, H. Jain, and K. V. Adarsh, “Role of Ge:As ratio in controlling the light-induced response of a-GexAs35-xSe65 thin films,” Sci. Rep. 4, 4029 (2014).
[PubMed]

Agarwal, A.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
[Crossref]

Aggarwal, I. D.

Allen, P. J.

P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelectron. Adv. Mater. 7(4), 1759–1764 (2005).

Arezki, B.

Barker, J. E.

C. M. Schwarz, S. Labh, J. E. Barker, R. J. Sapia, G. D. Richardson, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses,” Proc. SPIE 9759, 975916 (2016).
[Crossref]

Baudet, E.

Bellec, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326, 519–523 (2003).
[Crossref]

Besse, V.

Biswas, R.

D. C. Ghosh and R. Biswas, “Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii,” Int. J. Mol. Sci. 3(2), 87–113 (2002).
[Crossref]

Boidin, R.

Boolchand, P.

M. S. Iovu, E. I. Kamitsos, C. P. E. Varsamis, P. Boolchand, and M. Popescu, “Raman spectra of AsxSe100-x and As40Se60 glasses doped with metals,” Chalcogenide Lett. 2(3), 21–25 (2005).

Border, J.

M. Manevich, M. Klebanov, V. Lyubin, J. Varshal, J. Border, and N. Eisenberg, “Gap micro-lithography for chalcogenide micro-lens array fabrication,” Chalcogenide Lett. 5, 61–64 (2008).

Boudebs, G.

Bryce, R.

R. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[Crossref]

Busse, L. E.

Carlie, N.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
[Crossref]

Cassagne, C.

Cathelinaud, M.

Cha, H.

Chao, C. L.

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcogenide glass lenses,” J. Non-Cryst. Solids 357(11-13), 2484–2488 (2011).
[Crossref]

Chauvet, M.

Chien, H. H.

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcogenide glass lenses,” J. Non-Cryst. Solids 357(11-13), 2484–2488 (2011).
[Crossref]

Choi, J. H.

J. K. Park, J. H. Lee, S. Y. Shin, J. H. Yi, W. H. Lee, B. J. Park, J. H. Choi, N. Y. Kim, and Y. G. Choi, “Compositional dependence of hardness of Ge-Sb-Se glass for molded lens applications,” Arch. Metall. Mater. 60(2), 1205–1208 (2015).
[Crossref]

Choi, Y. G.

J. K. Park, J. H. Lee, S. Y. Shin, J. H. Yi, W. H. Lee, B. J. Park, J. H. Choi, N. Y. Kim, and Y. G. Choi, “Compositional dependence of hardness of Ge-Sb-Se glass for molded lens applications,” Arch. Metall. Mater. 60(2), 1205–1208 (2015).
[Crossref]

Chon, J. W. M.

H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

DeCorby, R. G.

R. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[Crossref]

Deubel, M.

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Drake, C.

C. M. Schwarz, H. E. Williams, C. N. Grabill, A. M. Lewis, S. M. Kuebler, B. Gleason, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, C. Drake, and C. Rivero-Baleine, “Processing and properties of arsenic trisulfide chalcogenide glasses for direct laser writing of 3D micro structures,” Proc. SPIE 8974, 89740P (2014).
[Crossref]

Dwivedi, P. K.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

R. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[Crossref]

Eisenberg, N.

M. Manevich, M. Klebanov, V. Lyubin, J. Varshal, J. Border, and N. Eisenberg, “Gap micro-lithography for chalcogenide micro-lens array fabrication,” Chalcogenide Lett. 5, 61–64 (2008).

Fedus, K.

Focsa, C.

Fu, W. Y.

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcogenide glass lenses,” J. Non-Cryst. Solids 357(11-13), 2484–2488 (2011).
[Crossref]

Gailevicius, D.

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form µ-optics 3D-printed via ultrafast laser lithography,” Materials (Basel) 10(1), 12 (2017).
[Crossref] [PubMed]

Ganesan, R.

R. Naik, S. Jena, R. Ganesan, and N. K. Sahoo, “Photo-induced optical bleaching in Ge12Sb25S63 amorphous chalcogenide thin films: effect of 532 nm laser illumination,” Laser Phys. 25(3), 1–8 (2015).
[Crossref]

Ghosh, D. C.

D. C. Ghosh and R. Biswas, “Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii,” Int. J. Mol. Sci. 3(2), 87–113 (2002).
[Crossref]

Gleason, B.

C. M. Schwarz, C. N. Grabill, G. D. Richardson, S. Labh, A. M. Lewis, A. Vyas, B. Gleason, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography,” J. Micro/Nanolith. MEMS MOEMS 16(2), 023508 (2017).
[Crossref]

C. M. Schwarz, C. N. Grabill, B. Gleason, S. Novak, A. M. Lewis, G. D. Richardson, C. Rivero-Baleine, K. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of micro-structures created by direct laser writing in multi-layered chalcogenide glass,” Proc. SPIE 9374, 937403 (2015).
[Crossref]

C. M. Schwarz, H. E. Williams, C. N. Grabill, A. M. Lewis, S. M. Kuebler, B. Gleason, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, C. Drake, and C. Rivero-Baleine, “Processing and properties of arsenic trisulfide chalcogenide glasses for direct laser writing of 3D micro structures,” Proc. SPIE 8974, 89740P (2014).
[Crossref]

B. Gleason, P. Wachtel, D. J. Musgraves, and K. Richardson, “Using design of experiments to improve precision molding of chalcogenides,” Int. J. Experimental Design and Process Optimisation 3, 263–275 (2013).
[Crossref]

Golovchak, R.

A. Kozdras, R. Golovchak, O. Shpotyuk, S. Szymura, A. Saiter, and J.-M. Saiter, “Light-assisted physical aging in chalcogenide glasses: Dependence on the wavelength of incident photons,” J. Mater. Res. 26(18), 2420–2427 (2011).
[Crossref]

Golovchak, R. Y.

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. Shpotyuk, and V. M. Novotortsev, “Physical aging of chalcogenide glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

R. Y. Golovchak, A. Kozdras, and O. Shpotyuk, “Physical ageing in glassy As–Se induced by above-bandgap photoexposure,” Solid State Commun. 145(9-10), 423–426 (2008).
[Crossref]

Grabill, C. N.

C. M. Schwarz, C. N. Grabill, G. D. Richardson, S. Labh, A. M. Lewis, A. Vyas, B. Gleason, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography,” J. Micro/Nanolith. MEMS MOEMS 16(2), 023508 (2017).
[Crossref]

C. M. Schwarz, C. N. Grabill, B. Gleason, S. Novak, A. M. Lewis, G. D. Richardson, C. Rivero-Baleine, K. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of micro-structures created by direct laser writing in multi-layered chalcogenide glass,” Proc. SPIE 9374, 937403 (2015).
[Crossref]

C. M. Schwarz, H. E. Williams, C. N. Grabill, A. M. Lewis, S. M. Kuebler, B. Gleason, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, C. Drake, and C. Rivero-Baleine, “Processing and properties of arsenic trisulfide chalcogenide glasses for direct laser writing of 3D micro structures,” Proc. SPIE 8974, 89740P (2014).
[Crossref]

Gu, M.

H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

Guimond, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326, 519–523 (2003).
[Crossref]

Hand, E.

E. Hand, “Remote sensing. Carbon-mapping satellite will monitor plants’ faint glow,” Science 344(6189), 1211–1212 (2014).
[Crossref] [PubMed]

Haugen, C. J.

R. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[Crossref]

Hô, N.

Hong, J. H.

Hu, J.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
[Crossref]

Huang, S. W.

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcogenide glass lenses,” J. Non-Cryst. Solids 357(11-13), 2484–2488 (2011).
[Crossref]

Hwang, Y.

Iovu, M. S.

M. S. Iovu, E. I. Kamitsos, C. P. E. Varsamis, P. Boolchand, and M. Popescu, “Raman spectra of AsxSe100-x and As40Se60 glasses doped with metals,” Chalcogenide Lett. 2(3), 21–25 (2005).

Jain, H.

P. Khan, H. Jain, and K. V. Adarsh, “Role of Ge:As ratio in controlling the light-induced response of a-GexAs35-xSe65 thin films,” Sci. Rep. 4, 4029 (2014).
[PubMed]

Jena, S.

R. Naik, S. Jena, R. Ganesan, and N. K. Sahoo, “Photo-induced optical bleaching in Ge12Sb25S63 amorphous chalcogenide thin films: effect of 532 nm laser illumination,” Laser Phys. 25(3), 1–8 (2015).
[Crossref]

Jeong, J. C.

Jha, A.

John, S.

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Johnson, B. R.

P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelectron. Adv. Mater. 7(4), 1759–1764 (2005).

Jonušauskas, L.

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form µ-optics 3D-printed via ultrafast laser lithography,” Materials (Basel) 10(1), 12 (2017).
[Crossref] [PubMed]

Jose, G.

Juodkazis, S.

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form µ-optics 3D-printed via ultrafast laser lithography,” Materials (Basel) 10(1), 12 (2017).
[Crossref] [PubMed]

Kamitsos, E. I.

M. S. Iovu, E. I. Kamitsos, C. P. E. Varsamis, P. Boolchand, and M. Popescu, “Raman spectra of AsxSe100-x and As40Se60 glasses doped with metals,” Chalcogenide Lett. 2(3), 21–25 (2005).

Kar, A.

Kasanuki, Y.

K. Tanaka, Y. Kasanuki, and A. Odajima, “Physical properties and photoinduced changes of amorphous Ge-S films,” Thin Solid Films 117(4), 251–260 (1984).
[Crossref]

Kasap, S. O.

R. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[Crossref]

T. Wagner, S. O. Kasap, M. Vlcek, A. Sklenar, and A. Stroncki, “Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of AsxS100-x glasses,” J. Non-Cryst. Solids 2000, 964–968 (1988).

Kawata, S.

H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

Kern, P.

Khan, P.

P. Khan, H. Jain, and K. V. Adarsh, “Role of Ge:As ratio in controlling the light-induced response of a-GexAs35-xSe65 thin films,” Sci. Rep. 4, 4029 (2014).
[PubMed]

Kim, H. J.

Kim, H.-J.

Kim, J. H.

Kim, J.-H.

Kim, N. Y.

J. K. Park, J. H. Lee, S. Y. Shin, J. H. Yi, W. H. Lee, B. J. Park, J. H. Choi, N. Y. Kim, and Y. G. Choi, “Compositional dependence of hardness of Ge-Sb-Se glass for molded lens applications,” Arch. Metall. Mater. 60(2), 1205–1208 (2015).
[Crossref]

Kimerling, L.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
[Crossref]

Klebanov, M.

M. Manevich, M. Klebanov, V. Lyubin, J. Varshal, J. Border, and N. Eisenberg, “Gap micro-lithography for chalcogenide micro-lens array fabrication,” Chalcogenide Lett. 5, 61–64 (2008).

Kozdras, A.

A. Kozdras, R. Golovchak, O. Shpotyuk, S. Szymura, A. Saiter, and J.-M. Saiter, “Light-assisted physical aging in chalcogenide glasses: Dependence on the wavelength of incident photons,” J. Mater. Res. 26(18), 2420–2427 (2011).
[Crossref]

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. Shpotyuk, and V. M. Novotortsev, “Physical aging of chalcogenide glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

R. Y. Golovchak, A. Kozdras, and O. Shpotyuk, “Physical ageing in glassy As–Se induced by above-bandgap photoexposure,” Solid State Commun. 145(9-10), 423–426 (2008).
[Crossref]

Kozyukhin, S. A.

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. Shpotyuk, and V. M. Novotortsev, “Physical aging of chalcogenide glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

Kuebler, S. M.

C. M. Schwarz, C. N. Grabill, G. D. Richardson, S. Labh, A. M. Lewis, A. Vyas, B. Gleason, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography,” J. Micro/Nanolith. MEMS MOEMS 16(2), 023508 (2017).
[Crossref]

C. M. Schwarz, S. Labh, J. E. Barker, R. J. Sapia, G. D. Richardson, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses,” Proc. SPIE 9759, 975916 (2016).
[Crossref]

C. M. Schwarz, C. N. Grabill, B. Gleason, S. Novak, A. M. Lewis, G. D. Richardson, C. Rivero-Baleine, K. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of micro-structures created by direct laser writing in multi-layered chalcogenide glass,” Proc. SPIE 9374, 937403 (2015).
[Crossref]

C. M. Schwarz, H. E. Williams, C. N. Grabill, A. M. Lewis, S. M. Kuebler, B. Gleason, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, C. Drake, and C. Rivero-Baleine, “Processing and properties of arsenic trisulfide chalcogenide glasses for direct laser writing of 3D micro structures,” Proc. SPIE 8974, 89740P (2014).
[Crossref]

Kumaresan, Y.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

Labadie, L.

Labh, S.

C. M. Schwarz, C. N. Grabill, G. D. Richardson, S. Labh, A. M. Lewis, A. Vyas, B. Gleason, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography,” J. Micro/Nanolith. MEMS MOEMS 16(2), 023508 (2017).
[Crossref]

C. M. Schwarz, S. Labh, J. E. Barker, R. J. Sapia, G. D. Richardson, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses,” Proc. SPIE 9759, 975916 (2016).
[Crossref]

Lee, J. H.

J. K. Park, J. H. Lee, S. Y. Shin, J. H. Yi, W. H. Lee, B. J. Park, J. H. Choi, N. Y. Kim, and Y. G. Choi, “Compositional dependence of hardness of Ge-Sb-Se glass for molded lens applications,” Arch. Metall. Mater. 60(2), 1205–1208 (2015).
[Crossref]

Lee, K. S.

Lee, W. H.

J. K. Park, J. H. Lee, S. Y. Shin, J. H. Yi, W. H. Lee, B. J. Park, J. H. Choi, N. Y. Kim, and Y. G. Choi, “Compositional dependence of hardness of Ge-Sb-Se glass for molded lens applications,” Arch. Metall. Mater. 60(2), 1205–1208 (2015).
[Crossref]

Lewis, A. M.

C. M. Schwarz, C. N. Grabill, G. D. Richardson, S. Labh, A. M. Lewis, A. Vyas, B. Gleason, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography,” J. Micro/Nanolith. MEMS MOEMS 16(2), 023508 (2017).
[Crossref]

C. M. Schwarz, C. N. Grabill, B. Gleason, S. Novak, A. M. Lewis, G. D. Richardson, C. Rivero-Baleine, K. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of micro-structures created by direct laser writing in multi-layered chalcogenide glass,” Proc. SPIE 9374, 937403 (2015).
[Crossref]

C. M. Schwarz, H. E. Williams, C. N. Grabill, A. M. Lewis, S. M. Kuebler, B. Gleason, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, C. Drake, and C. Rivero-Baleine, “Processing and properties of arsenic trisulfide chalcogenide glasses for direct laser writing of 3D micro structures,” Proc. SPIE 8974, 89740P (2014).
[Crossref]

Lopez, C.

Luther-Davies, B.

X. Su, R. Wang, B. Luther-Davies, and L. Wang, “The dependence of photosensitivity on composition for thin films of GexAsySe1-x-y chalcogenide glasses,” Appl. Phys., A Mater. Sci. Process. 113(3), 575–581 (2013).
[Crossref]

A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[Crossref] [PubMed]

Lyubin, V.

M. Manevich, M. Klebanov, V. Lyubin, J. Varshal, J. Border, and N. Eisenberg, “Gap micro-lithography for chalcogenide micro-lens array fabrication,” Chalcogenide Lett. 5, 61–64 (2008).

Ma, K. J.

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcogenide glass lenses,” J. Non-Cryst. Solids 357(11-13), 2484–2488 (2011).
[Crossref]

Madden, S.

Maeda, M.

H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

Malinauskas, M.

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form µ-optics 3D-printed via ultrafast laser lithography,” Materials (Basel) 10(1), 12 (2017).
[Crossref] [PubMed]

Manevich, M.

M. Manevich, M. Klebanov, V. Lyubin, J. Varshal, J. Border, and N. Eisenberg, “Gap micro-lithography for chalcogenide micro-lens array fabrication,” Chalcogenide Lett. 5, 61–64 (2008).

Martin, G.

Mayer, T. S.

C. M. Schwarz, C. N. Grabill, G. D. Richardson, S. Labh, A. M. Lewis, A. Vyas, B. Gleason, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography,” J. Micro/Nanolith. MEMS MOEMS 16(2), 023508 (2017).
[Crossref]

C. M. Schwarz, S. Labh, J. E. Barker, R. J. Sapia, G. D. Richardson, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses,” Proc. SPIE 9759, 975916 (2016).
[Crossref]

C. M. Schwarz, C. N. Grabill, B. Gleason, S. Novak, A. M. Lewis, G. D. Richardson, C. Rivero-Baleine, K. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of micro-structures created by direct laser writing in multi-layered chalcogenide glass,” Proc. SPIE 9374, 937403 (2015).
[Crossref]

C. M. Schwarz, H. E. Williams, C. N. Grabill, A. M. Lewis, S. M. Kuebler, B. Gleason, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, C. Drake, and C. Rivero-Baleine, “Processing and properties of arsenic trisulfide chalcogenide glasses for direct laser writing of 3D micro structures,” Proc. SPIE 8974, 89740P (2014).
[Crossref]

McMullin, J. N.

R. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[Crossref]

Menyuk, C. R.

Mikoliunaite, L.

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form µ-optics 3D-printed via ultrafast laser lithography,” Materials (Basel) 10(1), 12 (2017).
[Crossref] [PubMed]

Moreac, A.

Moreshead, W. V.

W. V. Moreshead, J. Novak, and A. Symmons, “An investigation of material properties for a selection of chalcogenide glasses for precision glass molding,” Proc. SPIE 8541, 854102 (2012).
[Crossref]

Musgraves, D. J.

B. Gleason, P. Wachtel, D. J. Musgraves, and K. Richardson, “Using design of experiments to improve precision molding of chalcogenides,” Int. J. Experimental Design and Process Optimisation 3, 263–275 (2013).
[Crossref]

D. J. Musgraves, P. Wachtel, S. Novak, J. Wilkinson, and K. Richardson, “Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system,” J. Appl. Phys. 110(063503), 1–6 (2011).

Naik, R.

R. Naik, S. Jena, R. Ganesan, and N. K. Sahoo, “Photo-induced optical bleaching in Ge12Sb25S63 amorphous chalcogenide thin films: effect of 532 nm laser illumination,” Laser Phys. 25(3), 1–8 (2015).
[Crossref]

Nakeeran, P.

R. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[Crossref]

Nazabal, N.

Nazabal, V.

Nemec, P.

Nguyen, H. T.

R. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[Crossref]

Novak, J.

W. V. Moreshead, J. Novak, and A. Symmons, “An investigation of material properties for a selection of chalcogenide glasses for precision glass molding,” Proc. SPIE 8541, 854102 (2012).
[Crossref]

Novak, S.

C. M. Schwarz, C. N. Grabill, B. Gleason, S. Novak, A. M. Lewis, G. D. Richardson, C. Rivero-Baleine, K. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of micro-structures created by direct laser writing in multi-layered chalcogenide glass,” Proc. SPIE 9374, 937403 (2015).
[Crossref]

D. J. Musgraves, P. Wachtel, S. Novak, J. Wilkinson, and K. Richardson, “Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system,” J. Appl. Phys. 110(063503), 1–6 (2011).

Novotortsev, V. M.

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. Shpotyuk, and V. M. Novotortsev, “Physical aging of chalcogenide glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

Odajima, A.

K. Tanaka, Y. Kasanuki, and A. Odajima, “Physical properties and photoinduced changes of amorphous Ge-S films,” Thin Solid Films 117(4), 251–260 (1984).
[Crossref]

Olivier, M.

Ozin, G. A.

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Park, B. J.

J. K. Park, J. H. Lee, S. Y. Shin, J. H. Yi, W. H. Lee, B. J. Park, J. H. Choi, N. Y. Kim, and Y. G. Choi, “Compositional dependence of hardness of Ge-Sb-Se glass for molded lens applications,” Arch. Metall. Mater. 60(2), 1205–1208 (2015).
[Crossref]

Park, H. S.

Park, J. K.

J. K. Park, J. H. Lee, S. Y. Shin, J. H. Yi, W. H. Lee, B. J. Park, J. H. Choi, N. Y. Kim, and Y. G. Choi, “Compositional dependence of hardness of Ge-Sb-Se glass for molded lens applications,” Arch. Metall. Mater. 60(2), 1205–1208 (2015).
[Crossref]

Perez-Willard, F.

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Petit, L.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
[Crossref]

Pogrebnyakov, A.

C. M. Schwarz, C. N. Grabill, G. D. Richardson, S. Labh, A. M. Lewis, A. Vyas, B. Gleason, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography,” J. Micro/Nanolith. MEMS MOEMS 16(2), 023508 (2017).
[Crossref]

C. M. Schwarz, S. Labh, J. E. Barker, R. J. Sapia, G. D. Richardson, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses,” Proc. SPIE 9759, 975916 (2016).
[Crossref]

C. M. Schwarz, C. N. Grabill, B. Gleason, S. Novak, A. M. Lewis, G. D. Richardson, C. Rivero-Baleine, K. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of micro-structures created by direct laser writing in multi-layered chalcogenide glass,” Proc. SPIE 9374, 937403 (2015).
[Crossref]

C. M. Schwarz, H. E. Williams, C. N. Grabill, A. M. Lewis, S. M. Kuebler, B. Gleason, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, C. Drake, and C. Rivero-Baleine, “Processing and properties of arsenic trisulfide chalcogenide glasses for direct laser writing of 3D micro structures,” Proc. SPIE 8974, 89740P (2014).
[Crossref]

Popescu, M.

M. S. Iovu, E. I. Kamitsos, C. P. E. Varsamis, P. Boolchand, and M. Popescu, “Raman spectra of AsxSe100-x and As40Se60 glasses doped with metals,” Chalcogenide Lett. 2(3), 21–25 (2005).

Prasad, A.

Psaila, N.

Rammohan, A.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

Renversez, G.

Richardson, G. D.

C. M. Schwarz, C. N. Grabill, G. D. Richardson, S. Labh, A. M. Lewis, A. Vyas, B. Gleason, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography,” J. Micro/Nanolith. MEMS MOEMS 16(2), 023508 (2017).
[Crossref]

C. M. Schwarz, S. Labh, J. E. Barker, R. J. Sapia, G. D. Richardson, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses,” Proc. SPIE 9759, 975916 (2016).
[Crossref]

C. M. Schwarz, C. N. Grabill, B. Gleason, S. Novak, A. M. Lewis, G. D. Richardson, C. Rivero-Baleine, K. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of micro-structures created by direct laser writing in multi-layered chalcogenide glass,” Proc. SPIE 9374, 937403 (2015).
[Crossref]

Richardson, K.

C. M. Schwarz, C. N. Grabill, B. Gleason, S. Novak, A. M. Lewis, G. D. Richardson, C. Rivero-Baleine, K. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of micro-structures created by direct laser writing in multi-layered chalcogenide glass,” Proc. SPIE 9374, 937403 (2015).
[Crossref]

B. Gleason, P. Wachtel, D. J. Musgraves, and K. Richardson, “Using design of experiments to improve precision molding of chalcogenides,” Int. J. Experimental Design and Process Optimisation 3, 263–275 (2013).
[Crossref]

D. J. Musgraves, P. Wachtel, S. Novak, J. Wilkinson, and K. Richardson, “Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system,” J. Appl. Phys. 110(063503), 1–6 (2011).

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
[Crossref]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29(7), 748–750 (2004).
[Crossref] [PubMed]

Richardson, K. A.

C. M. Schwarz, C. N. Grabill, G. D. Richardson, S. Labh, A. M. Lewis, A. Vyas, B. Gleason, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography,” J. Micro/Nanolith. MEMS MOEMS 16(2), 023508 (2017).
[Crossref]

C. M. Schwarz, S. Labh, J. E. Barker, R. J. Sapia, G. D. Richardson, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses,” Proc. SPIE 9759, 975916 (2016).
[Crossref]

C. M. Schwarz, H. E. Williams, C. N. Grabill, A. M. Lewis, S. M. Kuebler, B. Gleason, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, C. Drake, and C. Rivero-Baleine, “Processing and properties of arsenic trisulfide chalcogenide glasses for direct laser writing of 3D micro structures,” Proc. SPIE 8974, 89740P (2014).
[Crossref]

Richardson, M.

Riley, B. J.

P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelectron. Adv. Mater. 7(4), 1759–1764 (2005).

Rivero, C.

Rivero-Baleine, C.

C. M. Schwarz, C. N. Grabill, G. D. Richardson, S. Labh, A. M. Lewis, A. Vyas, B. Gleason, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography,” J. Micro/Nanolith. MEMS MOEMS 16(2), 023508 (2017).
[Crossref]

C. M. Schwarz, S. Labh, J. E. Barker, R. J. Sapia, G. D. Richardson, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses,” Proc. SPIE 9759, 975916 (2016).
[Crossref]

C. M. Schwarz, C. N. Grabill, B. Gleason, S. Novak, A. M. Lewis, G. D. Richardson, C. Rivero-Baleine, K. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of micro-structures created by direct laser writing in multi-layered chalcogenide glass,” Proc. SPIE 9374, 937403 (2015).
[Crossref]

C. M. Schwarz, H. E. Williams, C. N. Grabill, A. M. Lewis, S. M. Kuebler, B. Gleason, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, C. Drake, and C. Rivero-Baleine, “Processing and properties of arsenic trisulfide chalcogenide glasses for direct laser writing of 3D micro structures,” Proc. SPIE 8974, 89740P (2014).
[Crossref]

Ródenas, A.

Sahoo, N. K.

R. Naik, S. Jena, R. Ganesan, and N. K. Sahoo, “Photo-induced optical bleaching in Ge12Sb25S63 amorphous chalcogenide thin films: effect of 532 nm laser illumination,” Laser Phys. 25(3), 1–8 (2015).
[Crossref]

Saiter, A.

A. Kozdras, R. Golovchak, O. Shpotyuk, S. Szymura, A. Saiter, and J.-M. Saiter, “Light-assisted physical aging in chalcogenide glasses: Dependence on the wavelength of incident photons,” J. Mater. Res. 26(18), 2420–2427 (2011).
[Crossref]

Saiter, J.-M.

A. Kozdras, R. Golovchak, O. Shpotyuk, S. Szymura, A. Saiter, and J.-M. Saiter, “Light-assisted physical aging in chalcogenide glasses: Dependence on the wavelength of incident photons,” J. Mater. Res. 26(18), 2420–2427 (2011).
[Crossref]

Sakalauskas, D.

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form µ-optics 3D-printed via ultrafast laser lithography,” Materials (Basel) 10(1), 12 (2017).
[Crossref] [PubMed]

Šakirzanovas, S.

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form µ-optics 3D-printed via ultrafast laser lithography,” Materials (Basel) 10(1), 12 (2017).
[Crossref] [PubMed]

Sanghera, J. S.

Sapia, R. J.

C. M. Schwarz, S. Labh, J. E. Barker, R. J. Sapia, G. D. Richardson, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses,” Proc. SPIE 9759, 975916 (2016).
[Crossref]

Schulte, A.

Schwarz, C. M.

C. M. Schwarz, C. N. Grabill, G. D. Richardson, S. Labh, A. M. Lewis, A. Vyas, B. Gleason, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography,” J. Micro/Nanolith. MEMS MOEMS 16(2), 023508 (2017).
[Crossref]

C. M. Schwarz, S. Labh, J. E. Barker, R. J. Sapia, G. D. Richardson, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses,” Proc. SPIE 9759, 975916 (2016).
[Crossref]

C. M. Schwarz, C. N. Grabill, B. Gleason, S. Novak, A. M. Lewis, G. D. Richardson, C. Rivero-Baleine, K. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of micro-structures created by direct laser writing in multi-layered chalcogenide glass,” Proc. SPIE 9374, 937403 (2015).
[Crossref]

C. M. Schwarz, H. E. Williams, C. N. Grabill, A. M. Lewis, S. M. Kuebler, B. Gleason, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, C. Drake, and C. Rivero-Baleine, “Processing and properties of arsenic trisulfide chalcogenide glasses for direct laser writing of 3D micro structures,” Proc. SPIE 8974, 89740P (2014).
[Crossref]

Sharma, A.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

Shaw, L. B.

Shin, S. Y.

J. K. Park, J. H. Lee, S. Y. Shin, J. H. Yi, W. H. Lee, B. J. Park, J. H. Choi, N. Y. Kim, and Y. G. Choi, “Compositional dependence of hardness of Ge-Sb-Se glass for molded lens applications,” Arch. Metall. Mater. 60(2), 1205–1208 (2015).
[Crossref]

Shpotyuk, O.

A. Kozdras, R. Golovchak, O. Shpotyuk, S. Szymura, A. Saiter, and J.-M. Saiter, “Light-assisted physical aging in chalcogenide glasses: Dependence on the wavelength of incident photons,” J. Mater. Res. 26(18), 2420–2427 (2011).
[Crossref]

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. Shpotyuk, and V. M. Novotortsev, “Physical aging of chalcogenide glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

R. Y. Golovchak, A. Kozdras, and O. Shpotyuk, “Physical ageing in glassy As–Se induced by above-bandgap photoexposure,” Solid State Commun. 145(9-10), 423–426 (2008).
[Crossref]

Sklenar, A.

T. Wagner, S. O. Kasap, M. Vlcek, A. Sklenar, and A. Stroncki, “Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of AsxS100-x glasses,” J. Non-Cryst. Solids 2000, 964–968 (1988).

Smith, A.

Stroncki, A.

T. Wagner, S. O. Kasap, M. Vlcek, A. Sklenar, and A. Stroncki, “Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of AsxS100-x glasses,” J. Non-Cryst. Solids 2000, 964–968 (1988).

Su, X.

X. Su, R. Wang, B. Luther-Davies, and L. Wang, “The dependence of photosensitivity on composition for thin films of GexAsySe1-x-y chalcogenide glasses,” Appl. Phys., A Mater. Sci. Process. 113(3), 575–581 (2013).
[Crossref]

Sun, H. B.

H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

Symmons, A.

W. V. Moreshead, J. Novak, and A. Symmons, “An investigation of material properties for a selection of chalcogenide glasses for precision glass molding,” Proc. SPIE 8541, 854102 (2012).
[Crossref]

Synowicki, R. A.

R. A. Synowicki and T. E. Tiwald, “Optical properties of bulk c-ZrO2, c-MgO and a-As2S3 determined by variable angle spectroscopic ellipsometry,” Thin Film Solids 455–456, 248–255 (2004).
[Crossref]

Szymura, S.

A. Kozdras, R. Golovchak, O. Shpotyuk, S. Szymura, A. Saiter, and J.-M. Saiter, “Light-assisted physical aging in chalcogenide glasses: Dependence on the wavelength of incident photons,” J. Mater. Res. 26(18), 2420–2427 (2011).
[Crossref]

Takada, K.

H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

Tanaka, K.

K. Tanaka, Y. Kasanuki, and A. Odajima, “Physical properties and photoinduced changes of amorphous Ge-S films,” Thin Solid Films 117(4), 251–260 (1984).
[Crossref]

Tarasov, V.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
[Crossref]

Tchahame, J. C.

Thomson, R.

Tiwald, T. E.

R. A. Synowicki and T. E. Tiwald, “Optical properties of bulk c-ZrO2, c-MgO and a-As2S3 determined by variable angle spectroscopic ellipsometry,” Thin Film Solids 455–456, 248–255 (2004).
[Crossref]

Vallée, R.

Varsamis, C. P. E.

M. S. Iovu, E. I. Kamitsos, C. P. E. Varsamis, P. Boolchand, and M. Popescu, “Raman spectra of AsxSe100-x and As40Se60 glasses doped with metals,” Chalcogenide Lett. 2(3), 21–25 (2005).

Varshal, J.

M. Manevich, M. Klebanov, V. Lyubin, J. Varshal, J. Border, and N. Eisenberg, “Gap micro-lithography for chalcogenide micro-lens array fabrication,” Chalcogenide Lett. 5, 61–64 (2008).

Vlcek, M.

T. Wagner, S. O. Kasap, M. Vlcek, A. Sklenar, and A. Stroncki, “Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of AsxS100-x glasses,” J. Non-Cryst. Solids 2000, 964–968 (1988).

von Freymann, G.

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Vyas, A.

C. M. Schwarz, C. N. Grabill, G. D. Richardson, S. Labh, A. M. Lewis, A. Vyas, B. Gleason, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography,” J. Micro/Nanolith. MEMS MOEMS 16(2), 023508 (2017).
[Crossref]

Wachtel, P.

B. Gleason, P. Wachtel, D. J. Musgraves, and K. Richardson, “Using design of experiments to improve precision molding of chalcogenides,” Int. J. Experimental Design and Process Optimisation 3, 263–275 (2013).
[Crossref]

D. J. Musgraves, P. Wachtel, S. Novak, J. Wilkinson, and K. Richardson, “Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system,” J. Appl. Phys. 110(063503), 1–6 (2011).

Wagner, T.

T. Wagner, S. O. Kasap, M. Vlcek, A. Sklenar, and A. Stroncki, “Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of AsxS100-x glasses,” J. Non-Cryst. Solids 2000, 964–968 (1988).

Wang, L.

X. Su, R. Wang, B. Luther-Davies, and L. Wang, “The dependence of photosensitivity on composition for thin films of GexAsySe1-x-y chalcogenide glasses,” Appl. Phys., A Mater. Sci. Process. 113(3), 575–581 (2013).
[Crossref]

Wang, R.

X. Su, R. Wang, B. Luther-Davies, and L. Wang, “The dependence of photosensitivity on composition for thin films of GexAsySe1-x-y chalcogenide glasses,” Appl. Phys., A Mater. Sci. Process. 113(3), 575–581 (2013).
[Crossref]

Wang, R.-P.

Wegener, M.

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Weiblen, R. J.

Wilkinson, J.

D. J. Musgraves, P. Wachtel, S. Novak, J. Wilkinson, and K. Richardson, “Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system,” J. Appl. Phys. 110(063503), 1–6 (2011).

Williams, H. E.

C. M. Schwarz, H. E. Williams, C. N. Grabill, A. M. Lewis, S. M. Kuebler, B. Gleason, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, C. Drake, and C. Rivero-Baleine, “Processing and properties of arsenic trisulfide chalcogenide glasses for direct laser writing of 3D micro structures,” Proc. SPIE 8974, 89740P (2014).
[Crossref]

Wong, S.

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Yi, J. H.

J. K. Park, J. H. Lee, S. Y. Shin, J. H. Yi, W. H. Lee, B. J. Park, J. H. Choi, N. Y. Kim, and Y. G. Choi, “Compositional dependence of hardness of Ge-Sb-Se glass for molded lens applications,” Arch. Metall. Mater. 60(2), 1205–1208 (2015).
[Crossref]

Zha, C.-J.

Zhang, S.

Zhang, X. H.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326, 519–523 (2003).
[Crossref]

Zhang, X.-H.

Zoubir, A.

ACS Appl. Mater. Interfaces (1)

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83(5), 819–821 (2003).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

X. Su, R. Wang, B. Luther-Davies, and L. Wang, “The dependence of photosensitivity on composition for thin films of GexAsySe1-x-y chalcogenide glasses,” Appl. Phys., A Mater. Sci. Process. 113(3), 575–581 (2013).
[Crossref]

Arch. Metall. Mater. (1)

J. K. Park, J. H. Lee, S. Y. Shin, J. H. Yi, W. H. Lee, B. J. Park, J. H. Choi, N. Y. Kim, and Y. G. Choi, “Compositional dependence of hardness of Ge-Sb-Se glass for molded lens applications,” Arch. Metall. Mater. 60(2), 1205–1208 (2015).
[Crossref]

Chalcogenide Lett. (2)

M. Manevich, M. Klebanov, V. Lyubin, J. Varshal, J. Border, and N. Eisenberg, “Gap micro-lithography for chalcogenide micro-lens array fabrication,” Chalcogenide Lett. 5, 61–64 (2008).

M. S. Iovu, E. I. Kamitsos, C. P. E. Varsamis, P. Boolchand, and M. Popescu, “Raman spectra of AsxSe100-x and As40Se60 glasses doped with metals,” Chalcogenide Lett. 2(3), 21–25 (2005).

Inorg. Mater. (1)

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. Shpotyuk, and V. M. Novotortsev, “Physical aging of chalcogenide glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

Int. J. Experimental Design and Process Optimisation (1)

B. Gleason, P. Wachtel, D. J. Musgraves, and K. Richardson, “Using design of experiments to improve precision molding of chalcogenides,” Int. J. Experimental Design and Process Optimisation 3, 263–275 (2013).
[Crossref]

Int. J. Mol. Sci. (1)

D. C. Ghosh and R. Biswas, “Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii,” Int. J. Mol. Sci. 3(2), 87–113 (2002).
[Crossref]

J. Appl. Phys. (1)

D. J. Musgraves, P. Wachtel, S. Novak, J. Wilkinson, and K. Richardson, “Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system,” J. Appl. Phys. 110(063503), 1–6 (2011).

J. Mater. Res. (1)

A. Kozdras, R. Golovchak, O. Shpotyuk, S. Szymura, A. Saiter, and J.-M. Saiter, “Light-assisted physical aging in chalcogenide glasses: Dependence on the wavelength of incident photons,” J. Mater. Res. 26(18), 2420–2427 (2011).
[Crossref]

J. Micro/Nanolith. MEMS MOEMS (1)

C. M. Schwarz, C. N. Grabill, G. D. Richardson, S. Labh, A. M. Lewis, A. Vyas, B. Gleason, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography,” J. Micro/Nanolith. MEMS MOEMS 16(2), 023508 (2017).
[Crossref]

J. Non-Cryst. Solids (3)

T. Wagner, S. O. Kasap, M. Vlcek, A. Sklenar, and A. Stroncki, “Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of AsxS100-x glasses,” J. Non-Cryst. Solids 2000, 964–968 (1988).

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326, 519–523 (2003).
[Crossref]

K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcogenide glass lenses,” J. Non-Cryst. Solids 357(11-13), 2484–2488 (2011).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelectron. Adv. Mater. 7(4), 1759–1764 (2005).

J. Vac. Sci. Technol. A (1)

R. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[Crossref]

Laser Phys. (1)

R. Naik, S. Jena, R. Ganesan, and N. K. Sahoo, “Photo-induced optical bleaching in Ge12Sb25S63 amorphous chalcogenide thin films: effect of 532 nm laser illumination,” Laser Phys. 25(3), 1–8 (2015).
[Crossref]

Materials (Basel) (1)

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form µ-optics 3D-printed via ultrafast laser lithography,” Materials (Basel) 10(1), 12 (2017).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
[Crossref]

Opt. Mater. Express (2)

Proc. SPIE (4)

C. M. Schwarz, S. Labh, J. E. Barker, R. J. Sapia, G. D. Richardson, C. Rivero-Baleine, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses,” Proc. SPIE 9759, 975916 (2016).
[Crossref]

C. M. Schwarz, H. E. Williams, C. N. Grabill, A. M. Lewis, S. M. Kuebler, B. Gleason, K. A. Richardson, A. Pogrebnyakov, T. S. Mayer, C. Drake, and C. Rivero-Baleine, “Processing and properties of arsenic trisulfide chalcogenide glasses for direct laser writing of 3D micro structures,” Proc. SPIE 8974, 89740P (2014).
[Crossref]

C. M. Schwarz, C. N. Grabill, B. Gleason, S. Novak, A. M. Lewis, G. D. Richardson, C. Rivero-Baleine, K. Richardson, A. Pogrebnyakov, T. S. Mayer, and S. M. Kuebler, “Fabrication and characterization of micro-structures created by direct laser writing in multi-layered chalcogenide glass,” Proc. SPIE 9374, 937403 (2015).
[Crossref]

W. V. Moreshead, J. Novak, and A. Symmons, “An investigation of material properties for a selection of chalcogenide glasses for precision glass molding,” Proc. SPIE 8541, 854102 (2012).
[Crossref]

Sci. Rep. (1)

P. Khan, H. Jain, and K. V. Adarsh, “Role of Ge:As ratio in controlling the light-induced response of a-GexAs35-xSe65 thin films,” Sci. Rep. 4, 4029 (2014).
[PubMed]

Science (1)

E. Hand, “Remote sensing. Carbon-mapping satellite will monitor plants’ faint glow,” Science 344(6189), 1211–1212 (2014).
[Crossref] [PubMed]

Solid State Commun. (1)

R. Y. Golovchak, A. Kozdras, and O. Shpotyuk, “Physical ageing in glassy As–Se induced by above-bandgap photoexposure,” Solid State Commun. 145(9-10), 423–426 (2008).
[Crossref]

Thin Film Solids (1)

R. A. Synowicki and T. E. Tiwald, “Optical properties of bulk c-ZrO2, c-MgO and a-As2S3 determined by variable angle spectroscopic ellipsometry,” Thin Film Solids 455–456, 248–255 (2004).
[Crossref]

Thin Solid Films (1)

K. Tanaka, Y. Kasanuki, and A. Odajima, “Physical properties and photoinduced changes of amorphous Ge-S films,” Thin Solid Films 117(4), 251–260 (1984).
[Crossref]

Other (15)

Amorphous Materials, Inc., retrieved May 2018, http://www.amorphousmaterials.com/ .

W. Zhang, Y. Shi, R. Hu, Y. Zeng, and M. Yan, “Application status and development trend of infrared imaging system,” presented at International Symposium on Photoelectronic Detection and Imaging, Beijing, China, 25–27 Jun. 2013.
[Crossref]

A. Ashcroft, L. Richardson, R. Ash, P. Thorne, D. Isgar, D. Jeckells, M. Stevens, T. Davey, and A. Malik, “A miniature ruggedized fast frame rate infra-red sensor module for hostile fire detection and industrial applications,” presented at Infrared Technology and Applications XXXIX, Baltimore, Maryland, USA, 29 Apr. - 3 May 2013.

D. H. Cha, Y. Hwang, J.-H. Kim, and H.-J. Kim, “Fabrication and evaluation of chalcogenide glass molding lens for car night-vision system,” presented at Integrated Optics: Physics and Simulations, Prague, Czech Republic, 15–18 Apr. 2013

A. Zelazny, R. Benson, J. Deegan, K. Walsh, D. W. Schmidt, and R. Howe, “Optical methods for the optimization of system SWaP-C using aspheric components and advanced optical polymers,” presented at Infrared Technology and Applications XXXIX, Baltimore, Maryland, 29 Apr. - 3 May 2013.
[Crossref]

G.-M. Ryu, G.-J. Lee, S.-W. Hyun, H.-Y. Sung, E. Chung, and G.-H. Kim, “A study on ultra precision machining technique for Al6061-T6 to fabricate space infrared optics,” presented at Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, Montréal, Quebec, Canada, 22–27 Jun. 2014.

J. L. Adam and X. Zhang, eds., Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead Publishing Limited, Cambridge, 2014).

S. M. Kuebler and M. Rumi, “Nonlinear optics–applications: three-dimensional microfabrication,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel, eds. (Elsevier, Oxford, 2004).

B. Gleason, “Designing Optical Properties in Infrared Glass,” Ph.D. dissertation (Clemson University, Clemson, South Carolina, USA, 2015).

H. E. Williams, “Photophysical and Photochemical Factors Affecting Multi-Photon Direct Laser Writing Using the Cross-Linkable Epoxide SU-8,” PhD dissertation (University of Central Florida, Orlando, FL, USA, 2013).

V. Kaur, S. K. Tripathi, and S. Prakash, “The electronic structure of As2S3,” presented at International Conference on Condensed Matter and Applied Physics, Bikaner, Rajasthan, 30 - 31 Oct. 2015.

A. Zakery and S. R. Elliot, Optical Nonlinearities in Chalcogenide Glasses and their Applications Springer Series in Optical Science (Springer, 2007), Vol. 135.

J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, 3rd ed. (Harper and Rowe, New York, 1983).

C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (John Wiley & Sons Ltd., West Sussex, 2007).

S. Noehte, J. Ackermann, K. Schwartz, C. Dietrich, and R. Männer, “Optical grating studies in a-As2S3 films using scanning force microscopy,” (Universität Mannheim, Mannheim, Germany, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Top-view and (b) profile SEM image of a pristine Ge5(As2Se3)95 film. (c) Example of a surface profile interferogram (area = 0.371 mm2) obtained for a Ge5(As2Se3)95 using white-light interferometry. The circles are small voids which are most likely a result of non-optimized deposition conditions.
Fig. 2
Fig. 2 (a) Top-view of a dose array patterned in a Ge5(As2Se3)95 film at average powers ranging from 0.050 mW – 2.7 mW (bottom row) and 0.020 mW – 0.20 mW (top row). The fiduciary marker sits just below each individual array with small marks indicating its location. (b) Expanded top-view of an array patterned at 0.10 mW. (c) Expanded profile view of the array patterned at 0.10 mW.
Fig. 3
Fig. 3 Widths of nano-fabricated features measured in the x- (open circles) and y-direction (filled circles) versus average laser power and peak irradiance for structures patterned in the Ge5(As2Se3)95 film.
Fig. 4
Fig. 4 Raman spectra of Ge5(As2Se3)95 in bulk form (solid line), as a thermally deposited film (dashed line), and as a UV-exposed film (dotted line).
Fig. 5
Fig. 5 Optical properties of the pristine Ge5(As2Se3)95 film, as measured by ellipsometry. The extinction coefficient κ (not shown) has values at or near zero (κ 0.13).
Fig. 6
Fig. 6 (a) Top-down and (b) side-view SEM images of nano-pillars fabricated by MPL in thermally deposited As2S3. (c) Top-down and (d) side-view images of the same structures after storing for three months in the dark and ambient air. (e) Top-down As2S3 dose array pillar micro-structures after three months showing excess material in array and on substrate surface. (f) Side-view As2S3 dose array pillar micro-structures after three months showing excess material in array and on substrate surface. (g) As-deposited As2S3 film. (h) As-deposited film after three months showing excess material and crystallization.
Fig. 7
Fig. 7 (a) Top-view of a dose array patterned at average powers ranging from 0.050 mW – 2.7 mW (bottom row) and 0.020 mW – 0.20 mW (top row). The fiduciary marker sits just below each individual array with small marks indicating its location. (b) Expanded top-view of an array patterned at 0.10 mW. (c) Expanded profile view of the array patterned at 0.10 mW. (d) Top-view of a dose array patterned at average powers ranging from 0.050 mW – 2.7 mW (bottom row) and 0.020 mW – 0.20 mW (top row) after four years. (e) Expanded top-view of an array patterned at 0.10 mW after four years. (f) Expanded profile view of the array patterned at 0.10 mW after four years of aging.
Fig. 8
Fig. 8 Raman spectrum of a pad of laser-patterned and etched Ge5(As2Se3)95 after four years of aging. The band due to the substrate (300 cm−1) appears stronger relative to that seen in Fig. 4 because etching after laser-exposed removes some Ge5(As2Se3)95.

Tables (3)

Tables Icon

Table 1 EDX measurements of Ge5(As2Se3)95 film and comparison to bulk glass used for thermal deposition.

Tables Icon

Table 2 Assignment of peaks observed by Raman spectroscopy for thermally deposited chalcogenides.

Tables Icon

Table 3 EDX measurements of Ge5(As2Se3)95 film and four year old laser-exposed pad.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I P = 2 P f ω 2 π τ
Etch Rate = Film Thickness Etch Duration
Feature-width = r o 2ln P P Th

Metrics