Abstract

The crystallographic anisotropy of the lateral selective thermal oxidation of AlGaAs alloys is experimentally studied. The anisotropic behavior of this oxidation process, used primarily for building a lateral confinement in vertical surface emitting lasers (VCSEL), is quantified by varying different process parameters and the geometrical shapes of laterally oxidized mesa structures. This experimental study aims to have a better control of the oxide aperture shape used in oxide-confined photonics devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modelling anisotropic lateral oxidation from circular mesas

Stephane Calvez, Gaël Lafleur, Alexandre Arnoult, Antoine Monmayrant, Henri Camon, and Guilhem Almuneau
Opt. Mater. Express 8(7) 1762-1773 (2018)

Oxide confinement and high contrast grating mirrors for Mid-infrared VCSELs

Youness Laaroussi, Christyves Chevallier, Frédéric Genty, Nicolas Fressengeas, Laurent Cerutti, Thierry Taliercio, Olivier Gauthier-Lafaye, Pierre-François Calmon, Benjamin Reig, Joel Jacquet, and Guilhem Almuneau
Opt. Mater. Express 3(10) 1576-1585 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dallesasse and N. Holonyak., “Native‐oxide stripe‐geometry AlxGa1-xAs‐GaAs quantum well heterostructure lasers,” Appl. Phys. Lett. 58(4), 394–396 (1991).
    [Crossref]
  2. P. D. Floyd, B. J. Thibeault, L. A. Coldren, and J. L. Mertz, “Scalable etched-pillar, AlAs-oxide defined vertical cavity lasers,” Electron. Lett. 32(2), 114–116 (1996).
    [Crossref]
  3. K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
    [Crossref]
  4. K. H. Ha, Y. H. Lee, H. K. Shin, K. H. Lee, and S. M. Whang, “Polarisation anisotropy in asymmetric oxide aperture VCSELs,” Electron. Lett. 34(14), 1401–1402 (1998).
    [Crossref]
  5. P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Sel. Top. Quantum Electron. 11(1), 107–116 (2005).
    [Crossref]
  6. C. L. Chua, R. L. Thornton, D. W. Treat, and R. M. Donaldson, “Anisotropic apertures for polarization-stable laterally oxidized vertical-cavity lasers,” Appl. Phys. Lett. 73(12), 1631–1633 (1998).
    [Crossref]
  7. S. Weidenfeld, M. Eichfelder, M. Wiesner, W. M. Schulz, R. Rosbach, M. Jetter, and P. Michler, “Transverse-mode analysis of red-emitting highly polarized vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 17(3), 724–729 (2011).
    [Crossref]
  8. P. Nyakas, Z. Puskás, T. Kárpáti, T. Veszprémi, G. Zsombok, G. Varga, and N. Hashizume, “Optical simulation of vertical-cavity surface-emitting lasers with non-cylindrical oxide confinement,” Opt. Commun. 250(4–6), 389–397 (2005).
    [Crossref]
  9. P. Nyakas, “Full-vectorial three-dimensional finite element optical simulation of vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 25(9), 2427–2434 (2007).
    [Crossref]
  10. P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsässer, “Influence of anisotropies on transverse modes in oxide-confined VCSELs,” IEEE J. Quantum Electron. 38(1), 73–84 (2002).
    [Crossref]
  11. P. O. Vaccaro, K. Koizumi, K. Fujita, and T. Ohachi, “AlAs oxidation process in GaAs/AlGaAs/AlAs heterostructures grown by molecular beam epitaxy on GaAs (n11) A substrates,” Microelectronics J. 30(4–5), 387–391 (1999).
    [Crossref]
  12. J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in AlxGa1-xAs-AlAs-GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
    [Crossref]
  13. W. Ranke, Y. R. Xing, and G. D. Shen, “Orientation dependence of oxygen absorption on a cylindrical GaAs crystal,” J. Vac. Sci. Technol. 21(2), 426–428 (1982).
    [Crossref]
  14. F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
    [Crossref]
  15. G. Almuneau, R. Bossuyt, P. Collière, L. Bouscayrol, M. Condé, I. Suarez, V. Bardinal, and C. Fontaine, “Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs,” Semicond. Sci. Technol. 23(10), 105021 (2008).
    [Crossref]
  16. A. C. Alonzo, X.-C. Cheng, and T. C. McGill, “Effect of cylindrical geometry on the wet thermal oxidation of AlAs,” J. Appl. Phys. 84(12), 6901–6905 (1998).
    [Crossref]
  17. S. P. Nabanja, L. A. Kolodziejski, and G. S. Petrich, “Lateral oxidation of AlAs for circular and inverted mesa saturable Bragg reflectors,” IEEE J. Quantum Electron. 49(9), 731–738 (2013).
    [Crossref]
  18. M. Osinski, T. Svimonishvili, G. A. Smolyakov, V. A. Smagley, P. Mackowiak, and W. Nakwaski, “Temperature and thickness dependence of steam oxidation of AlAs in cylindrical mesa structures,” IEEE Photonics Technol. Lett. 13(7), 687–689 (2001).
    [Crossref]
  19. P. C. Ku and C. J. Chang-Hasnain, “Thermal oxidation of AlGaAs: modeling and process control,” IEEE J. Quantum Electron. 39(4), 577–585 (2003).
    [Crossref]
  20. K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
    [Crossref]
  21. S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
    [Crossref]

2015 (1)

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

2014 (1)

F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
[Crossref]

2013 (1)

S. P. Nabanja, L. A. Kolodziejski, and G. S. Petrich, “Lateral oxidation of AlAs for circular and inverted mesa saturable Bragg reflectors,” IEEE J. Quantum Electron. 49(9), 731–738 (2013).
[Crossref]

2011 (1)

S. Weidenfeld, M. Eichfelder, M. Wiesner, W. M. Schulz, R. Rosbach, M. Jetter, and P. Michler, “Transverse-mode analysis of red-emitting highly polarized vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 17(3), 724–729 (2011).
[Crossref]

2008 (1)

G. Almuneau, R. Bossuyt, P. Collière, L. Bouscayrol, M. Condé, I. Suarez, V. Bardinal, and C. Fontaine, “Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs,” Semicond. Sci. Technol. 23(10), 105021 (2008).
[Crossref]

2007 (1)

2005 (2)

P. Nyakas, Z. Puskás, T. Kárpáti, T. Veszprémi, G. Zsombok, G. Varga, and N. Hashizume, “Optical simulation of vertical-cavity surface-emitting lasers with non-cylindrical oxide confinement,” Opt. Commun. 250(4–6), 389–397 (2005).
[Crossref]

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Sel. Top. Quantum Electron. 11(1), 107–116 (2005).
[Crossref]

2003 (1)

P. C. Ku and C. J. Chang-Hasnain, “Thermal oxidation of AlGaAs: modeling and process control,” IEEE J. Quantum Electron. 39(4), 577–585 (2003).
[Crossref]

2002 (1)

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsässer, “Influence of anisotropies on transverse modes in oxide-confined VCSELs,” IEEE J. Quantum Electron. 38(1), 73–84 (2002).
[Crossref]

2001 (1)

M. Osinski, T. Svimonishvili, G. A. Smolyakov, V. A. Smagley, P. Mackowiak, and W. Nakwaski, “Temperature and thickness dependence of steam oxidation of AlAs in cylindrical mesa structures,” IEEE Photonics Technol. Lett. 13(7), 687–689 (2001).
[Crossref]

1999 (1)

P. O. Vaccaro, K. Koizumi, K. Fujita, and T. Ohachi, “AlAs oxidation process in GaAs/AlGaAs/AlAs heterostructures grown by molecular beam epitaxy on GaAs (n11) A substrates,” Microelectronics J. 30(4–5), 387–391 (1999).
[Crossref]

1998 (3)

A. C. Alonzo, X.-C. Cheng, and T. C. McGill, “Effect of cylindrical geometry on the wet thermal oxidation of AlAs,” J. Appl. Phys. 84(12), 6901–6905 (1998).
[Crossref]

C. L. Chua, R. L. Thornton, D. W. Treat, and R. M. Donaldson, “Anisotropic apertures for polarization-stable laterally oxidized vertical-cavity lasers,” Appl. Phys. Lett. 73(12), 1631–1633 (1998).
[Crossref]

K. H. Ha, Y. H. Lee, H. K. Shin, K. H. Lee, and S. M. Whang, “Polarisation anisotropy in asymmetric oxide aperture VCSELs,” Electron. Lett. 34(14), 1401–1402 (1998).
[Crossref]

1997 (2)

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

1996 (1)

P. D. Floyd, B. J. Thibeault, L. A. Coldren, and J. L. Mertz, “Scalable etched-pillar, AlAs-oxide defined vertical cavity lasers,” Electron. Lett. 32(2), 114–116 (1996).
[Crossref]

1991 (1)

J. M. Dallesasse and N. Holonyak., “Native‐oxide stripe‐geometry AlxGa1-xAs‐GaAs quantum well heterostructure lasers,” Appl. Phys. Lett. 58(4), 394–396 (1991).
[Crossref]

1990 (1)

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in AlxGa1-xAs-AlAs-GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

1982 (1)

W. Ranke, Y. R. Xing, and G. D. Shen, “Orientation dependence of oxygen absorption on a cylindrical GaAs crystal,” J. Vac. Sci. Technol. 21(2), 426–428 (1982).
[Crossref]

Almuneau, G.

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
[Crossref]

G. Almuneau, R. Bossuyt, P. Collière, L. Bouscayrol, M. Condé, I. Suarez, V. Bardinal, and C. Fontaine, “Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs,” Semicond. Sci. Technol. 23(10), 105021 (2008).
[Crossref]

Alonzo, A. C.

A. C. Alonzo, X.-C. Cheng, and T. C. McGill, “Effect of cylindrical geometry on the wet thermal oxidation of AlAs,” J. Appl. Phys. 84(12), 6901–6905 (1998).
[Crossref]

Arnoult, A.

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
[Crossref]

Ashby, C. I.

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

Ashby, C. I. H.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

Bardinal, V.

G. Almuneau, R. Bossuyt, P. Collière, L. Bouscayrol, M. Condé, I. Suarez, V. Bardinal, and C. Fontaine, “Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs,” Semicond. Sci. Technol. 23(10), 105021 (2008).
[Crossref]

Bava, G. P.

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsässer, “Influence of anisotropies on transverse modes in oxide-confined VCSELs,” IEEE J. Quantum Electron. 38(1), 73–84 (2002).
[Crossref]

Blum, O.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

Bossuyt, R.

G. Almuneau, R. Bossuyt, P. Collière, L. Bouscayrol, M. Condé, I. Suarez, V. Bardinal, and C. Fontaine, “Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs,” Semicond. Sci. Technol. 23(10), 105021 (2008).
[Crossref]

Bouscayrol, L.

G. Almuneau, R. Bossuyt, P. Collière, L. Bouscayrol, M. Condé, I. Suarez, V. Bardinal, and C. Fontaine, “Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs,” Semicond. Sci. Technol. 23(10), 105021 (2008).
[Crossref]

Burnham, R. D.

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in AlxGa1-xAs-AlAs-GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

Calmon, P. F.

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

Calvez, S.

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

Chang-Hasnain, C. J.

P. C. Ku and C. J. Chang-Hasnain, “Thermal oxidation of AlGaAs: modeling and process control,” IEEE J. Quantum Electron. 39(4), 577–585 (2003).
[Crossref]

Cheng, X.-C.

A. C. Alonzo, X.-C. Cheng, and T. C. McGill, “Effect of cylindrical geometry on the wet thermal oxidation of AlAs,” J. Appl. Phys. 84(12), 6901–6905 (1998).
[Crossref]

Cherkashin, N.

F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
[Crossref]

Choquette, K. D.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

Chouchane, F.

F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
[Crossref]

Chua, C. L.

C. L. Chua, R. L. Thornton, D. W. Treat, and R. M. Donaldson, “Anisotropic apertures for polarization-stable laterally oxidized vertical-cavity lasers,” Appl. Phys. Lett. 73(12), 1631–1633 (1998).
[Crossref]

Coldren, L. A.

P. D. Floyd, B. J. Thibeault, L. A. Coldren, and J. L. Mertz, “Scalable etched-pillar, AlAs-oxide defined vertical cavity lasers,” Electron. Lett. 32(2), 114–116 (1996).
[Crossref]

Collière, P.

G. Almuneau, R. Bossuyt, P. Collière, L. Bouscayrol, M. Condé, I. Suarez, V. Bardinal, and C. Fontaine, “Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs,” Semicond. Sci. Technol. 23(10), 105021 (2008).
[Crossref]

Condé, M.

G. Almuneau, R. Bossuyt, P. Collière, L. Bouscayrol, M. Condé, I. Suarez, V. Bardinal, and C. Fontaine, “Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs,” Semicond. Sci. Technol. 23(10), 105021 (2008).
[Crossref]

Dallesasse, J. M.

J. M. Dallesasse and N. Holonyak., “Native‐oxide stripe‐geometry AlxGa1-xAs‐GaAs quantum well heterostructure lasers,” Appl. Phys. Lett. 58(4), 394–396 (1991).
[Crossref]

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in AlxGa1-xAs-AlAs-GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

Debernardi, P.

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Sel. Top. Quantum Electron. 11(1), 107–116 (2005).
[Crossref]

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsässer, “Influence of anisotropies on transverse modes in oxide-confined VCSELs,” IEEE J. Quantum Electron. 38(1), 73–84 (2002).
[Crossref]

Degen, C.

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsässer, “Influence of anisotropies on transverse modes in oxide-confined VCSELs,” IEEE J. Quantum Electron. 38(1), 73–84 (2002).
[Crossref]

Donaldson, R. M.

C. L. Chua, R. L. Thornton, D. W. Treat, and R. M. Donaldson, “Anisotropic apertures for polarization-stable laterally oxidized vertical-cavity lasers,” Appl. Phys. Lett. 73(12), 1631–1633 (1998).
[Crossref]

Eichfelder, M.

S. Weidenfeld, M. Eichfelder, M. Wiesner, W. M. Schulz, R. Rosbach, M. Jetter, and P. Michler, “Transverse-mode analysis of red-emitting highly polarized vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 17(3), 724–729 (2011).
[Crossref]

Elsässer, W.

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsässer, “Influence of anisotropies on transverse modes in oxide-confined VCSELs,” IEEE J. Quantum Electron. 38(1), 73–84 (2002).
[Crossref]

Feneberg, M.

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Sel. Top. Quantum Electron. 11(1), 107–116 (2005).
[Crossref]

Fischer, I.

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsässer, “Influence of anisotropies on transverse modes in oxide-confined VCSELs,” IEEE J. Quantum Electron. 38(1), 73–84 (2002).
[Crossref]

Floyd, P. D.

P. D. Floyd, B. J. Thibeault, L. A. Coldren, and J. L. Mertz, “Scalable etched-pillar, AlAs-oxide defined vertical cavity lasers,” Electron. Lett. 32(2), 114–116 (1996).
[Crossref]

Follstaedt, D. M.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

Fontaine, C.

F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
[Crossref]

G. Almuneau, R. Bossuyt, P. Collière, L. Bouscayrol, M. Condé, I. Suarez, V. Bardinal, and C. Fontaine, “Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs,” Semicond. Sci. Technol. 23(10), 105021 (2008).
[Crossref]

Fujita, K.

P. O. Vaccaro, K. Koizumi, K. Fujita, and T. Ohachi, “AlAs oxidation process in GaAs/AlGaAs/AlAs heterostructures grown by molecular beam epitaxy on GaAs (n11) A substrates,” Microelectronics J. 30(4–5), 387–391 (1999).
[Crossref]

Gauthier-Lafaye, O.

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

Gavrilovic, P.

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in AlxGa1-xAs-AlAs-GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

Geib, K. M.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

Ha, K. H.

K. H. Ha, Y. H. Lee, H. K. Shin, K. H. Lee, and S. M. Whang, “Polarisation anisotropy in asymmetric oxide aperture VCSELs,” Electron. Lett. 34(14), 1401–1402 (1998).
[Crossref]

Hammons, B. E.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

Hashizume, N.

P. Nyakas, Z. Puskás, T. Kárpáti, T. Veszprémi, G. Zsombok, G. Varga, and N. Hashizume, “Optical simulation of vertical-cavity surface-emitting lasers with non-cylindrical oxide confinement,” Opt. Commun. 250(4–6), 389–397 (2005).
[Crossref]

Holonyak, N.

J. M. Dallesasse and N. Holonyak., “Native‐oxide stripe‐geometry AlxGa1-xAs‐GaAs quantum well heterostructure lasers,” Appl. Phys. Lett. 58(4), 394–396 (1991).
[Crossref]

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in AlxGa1-xAs-AlAs-GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

Hou, H. Q.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

Hull, R.

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

Jalics, C.

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Sel. Top. Quantum Electron. 11(1), 107–116 (2005).
[Crossref]

Jetter, M.

S. Weidenfeld, M. Eichfelder, M. Wiesner, W. M. Schulz, R. Rosbach, M. Jetter, and P. Michler, “Transverse-mode analysis of red-emitting highly polarized vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 17(3), 724–729 (2011).
[Crossref]

Kaliski, R. W.

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in AlxGa1-xAs-AlAs-GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

Kárpáti, T.

P. Nyakas, Z. Puskás, T. Kárpáti, T. Veszprémi, G. Zsombok, G. Varga, and N. Hashizume, “Optical simulation of vertical-cavity surface-emitting lasers with non-cylindrical oxide confinement,” Opt. Commun. 250(4–6), 389–397 (2005).
[Crossref]

Koizumi, K.

P. O. Vaccaro, K. Koizumi, K. Fujita, and T. Ohachi, “AlAs oxidation process in GaAs/AlGaAs/AlAs heterostructures grown by molecular beam epitaxy on GaAs (n11) A substrates,” Microelectronics J. 30(4–5), 387–391 (1999).
[Crossref]

Kolodziejski, L. A.

S. P. Nabanja, L. A. Kolodziejski, and G. S. Petrich, “Lateral oxidation of AlAs for circular and inverted mesa saturable Bragg reflectors,” IEEE J. Quantum Electron. 49(9), 731–738 (2013).
[Crossref]

Ku, P. C.

P. C. Ku and C. J. Chang-Hasnain, “Thermal oxidation of AlGaAs: modeling and process control,” IEEE J. Quantum Electron. 39(4), 577–585 (2003).
[Crossref]

Lacoste, G.

F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
[Crossref]

Lafleur, G.

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

Larrue, A.

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

Lee, K. H.

K. H. Ha, Y. H. Lee, H. K. Shin, K. H. Lee, and S. M. Whang, “Polarisation anisotropy in asymmetric oxide aperture VCSELs,” Electron. Lett. 34(14), 1401–1402 (1998).
[Crossref]

Lee, Y. H.

K. H. Ha, Y. H. Lee, H. K. Shin, K. H. Lee, and S. M. Whang, “Polarisation anisotropy in asymmetric oxide aperture VCSELs,” Electron. Lett. 34(14), 1401–1402 (1998).
[Crossref]

Mackowiak, P.

M. Osinski, T. Svimonishvili, G. A. Smolyakov, V. A. Smagley, P. Mackowiak, and W. Nakwaski, “Temperature and thickness dependence of steam oxidation of AlAs in cylindrical mesa structures,” IEEE Photonics Technol. Lett. 13(7), 687–689 (2001).
[Crossref]

Mathes, D.

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

McGill, T. C.

A. C. Alonzo, X.-C. Cheng, and T. C. McGill, “Effect of cylindrical geometry on the wet thermal oxidation of AlAs,” J. Appl. Phys. 84(12), 6901–6905 (1998).
[Crossref]

Mertz, J. L.

P. D. Floyd, B. J. Thibeault, L. A. Coldren, and J. L. Mertz, “Scalable etched-pillar, AlAs-oxide defined vertical cavity lasers,” Electron. Lett. 32(2), 114–116 (1996).
[Crossref]

Michalzik, R.

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Sel. Top. Quantum Electron. 11(1), 107–116 (2005).
[Crossref]

Michler, P.

S. Weidenfeld, M. Eichfelder, M. Wiesner, W. M. Schulz, R. Rosbach, M. Jetter, and P. Michler, “Transverse-mode analysis of red-emitting highly polarized vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 17(3), 724–729 (2011).
[Crossref]

Nabanja, S. P.

S. P. Nabanja, L. A. Kolodziejski, and G. S. Petrich, “Lateral oxidation of AlAs for circular and inverted mesa saturable Bragg reflectors,” IEEE J. Quantum Electron. 49(9), 731–738 (2013).
[Crossref]

Nakwaski, W.

M. Osinski, T. Svimonishvili, G. A. Smolyakov, V. A. Smagley, P. Mackowiak, and W. Nakwaski, “Temperature and thickness dependence of steam oxidation of AlAs in cylindrical mesa structures,” IEEE Photonics Technol. Lett. 13(7), 687–689 (2001).
[Crossref]

Nam, D. W.

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in AlxGa1-xAs-AlAs-GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

Nyakas, P.

P. Nyakas, “Full-vectorial three-dimensional finite element optical simulation of vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 25(9), 2427–2434 (2007).
[Crossref]

P. Nyakas, Z. Puskás, T. Kárpáti, T. Veszprémi, G. Zsombok, G. Varga, and N. Hashizume, “Optical simulation of vertical-cavity surface-emitting lasers with non-cylindrical oxide confinement,” Opt. Commun. 250(4–6), 389–397 (2005).
[Crossref]

Ohachi, T.

P. O. Vaccaro, K. Koizumi, K. Fujita, and T. Ohachi, “AlAs oxidation process in GaAs/AlGaAs/AlAs heterostructures grown by molecular beam epitaxy on GaAs (n11) A substrates,” Microelectronics J. 30(4–5), 387–391 (1999).
[Crossref]

Osinski, M.

M. Osinski, T. Svimonishvili, G. A. Smolyakov, V. A. Smagley, P. Mackowiak, and W. Nakwaski, “Temperature and thickness dependence of steam oxidation of AlAs in cylindrical mesa structures,” IEEE Photonics Technol. Lett. 13(7), 687–689 (2001).
[Crossref]

Ostermann, J. M.

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Sel. Top. Quantum Electron. 11(1), 107–116 (2005).
[Crossref]

Petrich, G. S.

S. P. Nabanja, L. A. Kolodziejski, and G. S. Petrich, “Lateral oxidation of AlAs for circular and inverted mesa saturable Bragg reflectors,” IEEE J. Quantum Electron. 49(9), 731–738 (2013).
[Crossref]

Puskás, Z.

P. Nyakas, Z. Puskás, T. Kárpáti, T. Veszprémi, G. Zsombok, G. Varga, and N. Hashizume, “Optical simulation of vertical-cavity surface-emitting lasers with non-cylindrical oxide confinement,” Opt. Commun. 250(4–6), 389–397 (2005).
[Crossref]

Ranke, W.

W. Ranke, Y. R. Xing, and G. D. Shen, “Orientation dependence of oxygen absorption on a cylindrical GaAs crystal,” J. Vac. Sci. Technol. 21(2), 426–428 (1982).
[Crossref]

Rosbach, R.

S. Weidenfeld, M. Eichfelder, M. Wiesner, W. M. Schulz, R. Rosbach, M. Jetter, and P. Michler, “Transverse-mode analysis of red-emitting highly polarized vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 17(3), 724–729 (2011).
[Crossref]

Schulz, W. M.

S. Weidenfeld, M. Eichfelder, M. Wiesner, W. M. Schulz, R. Rosbach, M. Jetter, and P. Michler, “Transverse-mode analysis of red-emitting highly polarized vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 17(3), 724–729 (2011).
[Crossref]

Shen, G. D.

W. Ranke, Y. R. Xing, and G. D. Shen, “Orientation dependence of oxygen absorption on a cylindrical GaAs crystal,” J. Vac. Sci. Technol. 21(2), 426–428 (1982).
[Crossref]

Shin, H. K.

K. H. Ha, Y. H. Lee, H. K. Shin, K. H. Lee, and S. M. Whang, “Polarisation anisotropy in asymmetric oxide aperture VCSELs,” Electron. Lett. 34(14), 1401–1402 (1998).
[Crossref]

Smagley, V. A.

M. Osinski, T. Svimonishvili, G. A. Smolyakov, V. A. Smagley, P. Mackowiak, and W. Nakwaski, “Temperature and thickness dependence of steam oxidation of AlAs in cylindrical mesa structures,” IEEE Photonics Technol. Lett. 13(7), 687–689 (2001).
[Crossref]

Smolyakov, G. A.

M. Osinski, T. Svimonishvili, G. A. Smolyakov, V. A. Smagley, P. Mackowiak, and W. Nakwaski, “Temperature and thickness dependence of steam oxidation of AlAs in cylindrical mesa structures,” IEEE Photonics Technol. Lett. 13(7), 687–689 (2001).
[Crossref]

Suarez, I.

G. Almuneau, R. Bossuyt, P. Collière, L. Bouscayrol, M. Condé, I. Suarez, V. Bardinal, and C. Fontaine, “Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs,” Semicond. Sci. Technol. 23(10), 105021 (2008).
[Crossref]

Svimonishvili, T.

M. Osinski, T. Svimonishvili, G. A. Smolyakov, V. A. Smagley, P. Mackowiak, and W. Nakwaski, “Temperature and thickness dependence of steam oxidation of AlAs in cylindrical mesa structures,” IEEE Photonics Technol. Lett. 13(7), 687–689 (2001).
[Crossref]

Thibeault, B. J.

P. D. Floyd, B. J. Thibeault, L. A. Coldren, and J. L. Mertz, “Scalable etched-pillar, AlAs-oxide defined vertical cavity lasers,” Electron. Lett. 32(2), 114–116 (1996).
[Crossref]

Thornton, R. L.

C. L. Chua, R. L. Thornton, D. W. Treat, and R. M. Donaldson, “Anisotropic apertures for polarization-stable laterally oxidized vertical-cavity lasers,” Appl. Phys. Lett. 73(12), 1631–1633 (1998).
[Crossref]

Treat, D. W.

C. L. Chua, R. L. Thornton, D. W. Treat, and R. M. Donaldson, “Anisotropic apertures for polarization-stable laterally oxidized vertical-cavity lasers,” Appl. Phys. Lett. 73(12), 1631–1633 (1998).
[Crossref]

Twesten, R. D.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

Vaccaro, P. O.

P. O. Vaccaro, K. Koizumi, K. Fujita, and T. Ohachi, “AlAs oxidation process in GaAs/AlGaAs/AlAs heterostructures grown by molecular beam epitaxy on GaAs (n11) A substrates,” Microelectronics J. 30(4–5), 387–391 (1999).
[Crossref]

Varga, G.

P. Nyakas, Z. Puskás, T. Kárpáti, T. Veszprémi, G. Zsombok, G. Varga, and N. Hashizume, “Optical simulation of vertical-cavity surface-emitting lasers with non-cylindrical oxide confinement,” Opt. Commun. 250(4–6), 389–397 (2005).
[Crossref]

Vesely, E. J.

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in AlxGa1-xAs-AlAs-GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

Veszprémi, T.

P. Nyakas, Z. Puskás, T. Kárpáti, T. Veszprémi, G. Zsombok, G. Varga, and N. Hashizume, “Optical simulation of vertical-cavity surface-emitting lasers with non-cylindrical oxide confinement,” Opt. Commun. 250(4–6), 389–397 (2005).
[Crossref]

Weidenfeld, S.

S. Weidenfeld, M. Eichfelder, M. Wiesner, W. M. Schulz, R. Rosbach, M. Jetter, and P. Michler, “Transverse-mode analysis of red-emitting highly polarized vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 17(3), 724–729 (2011).
[Crossref]

Whang, S. M.

K. H. Ha, Y. H. Lee, H. K. Shin, K. H. Lee, and S. M. Whang, “Polarisation anisotropy in asymmetric oxide aperture VCSELs,” Electron. Lett. 34(14), 1401–1402 (1998).
[Crossref]

Wiesner, M.

S. Weidenfeld, M. Eichfelder, M. Wiesner, W. M. Schulz, R. Rosbach, M. Jetter, and P. Michler, “Transverse-mode analysis of red-emitting highly polarized vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 17(3), 724–729 (2011).
[Crossref]

Xing, Y. R.

W. Ranke, Y. R. Xing, and G. D. Shen, “Orientation dependence of oxygen absorption on a cylindrical GaAs crystal,” J. Vac. Sci. Technol. 21(2), 426–428 (1982).
[Crossref]

Zsombok, G.

P. Nyakas, Z. Puskás, T. Kárpáti, T. Veszprémi, G. Zsombok, G. Varga, and N. Hashizume, “Optical simulation of vertical-cavity surface-emitting lasers with non-cylindrical oxide confinement,” Opt. Commun. 250(4–6), 389–397 (2005).
[Crossref]

Appl. Phys. Lett. (4)

J. M. Dallesasse and N. Holonyak., “Native‐oxide stripe‐geometry AlxGa1-xAs‐GaAs quantum well heterostructure lasers,” Appl. Phys. Lett. 58(4), 394–396 (1991).
[Crossref]

C. L. Chua, R. L. Thornton, D. W. Treat, and R. M. Donaldson, “Anisotropic apertures for polarization-stable laterally oxidized vertical-cavity lasers,” Appl. Phys. Lett. 73(12), 1631–1633 (1998).
[Crossref]

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in AlxGa1-xAs-AlAs-GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
[Crossref]

Electron. Lett. (2)

P. D. Floyd, B. J. Thibeault, L. A. Coldren, and J. L. Mertz, “Scalable etched-pillar, AlAs-oxide defined vertical cavity lasers,” Electron. Lett. 32(2), 114–116 (1996).
[Crossref]

K. H. Ha, Y. H. Lee, H. K. Shin, K. H. Lee, and S. M. Whang, “Polarisation anisotropy in asymmetric oxide aperture VCSELs,” Electron. Lett. 34(14), 1401–1402 (1998).
[Crossref]

IEEE J. Quantum Electron. (3)

P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsässer, “Influence of anisotropies on transverse modes in oxide-confined VCSELs,” IEEE J. Quantum Electron. 38(1), 73–84 (2002).
[Crossref]

S. P. Nabanja, L. A. Kolodziejski, and G. S. Petrich, “Lateral oxidation of AlAs for circular and inverted mesa saturable Bragg reflectors,” IEEE J. Quantum Electron. 49(9), 731–738 (2013).
[Crossref]

P. C. Ku and C. J. Chang-Hasnain, “Thermal oxidation of AlGaAs: modeling and process control,” IEEE J. Quantum Electron. 39(4), 577–585 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

S. Weidenfeld, M. Eichfelder, M. Wiesner, W. M. Schulz, R. Rosbach, M. Jetter, and P. Michler, “Transverse-mode analysis of red-emitting highly polarized vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 17(3), 724–729 (2011).
[Crossref]

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Sel. Top. Quantum Electron. 11(1), 107–116 (2005).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Osinski, T. Svimonishvili, G. A. Smolyakov, V. A. Smagley, P. Mackowiak, and W. Nakwaski, “Temperature and thickness dependence of steam oxidation of AlAs in cylindrical mesa structures,” IEEE Photonics Technol. Lett. 13(7), 687–689 (2001).
[Crossref]

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

J. Appl. Phys. (1)

A. C. Alonzo, X.-C. Cheng, and T. C. McGill, “Effect of cylindrical geometry on the wet thermal oxidation of AlAs,” J. Appl. Phys. 84(12), 6901–6905 (1998).
[Crossref]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. (1)

W. Ranke, Y. R. Xing, and G. D. Shen, “Orientation dependence of oxygen absorption on a cylindrical GaAs crystal,” J. Vac. Sci. Technol. 21(2), 426–428 (1982).
[Crossref]

Microelectronics J. (1)

P. O. Vaccaro, K. Koizumi, K. Fujita, and T. Ohachi, “AlAs oxidation process in GaAs/AlGaAs/AlAs heterostructures grown by molecular beam epitaxy on GaAs (n11) A substrates,” Microelectronics J. 30(4–5), 387–391 (1999).
[Crossref]

Opt. Commun. (1)

P. Nyakas, Z. Puskás, T. Kárpáti, T. Veszprémi, G. Zsombok, G. Varga, and N. Hashizume, “Optical simulation of vertical-cavity surface-emitting lasers with non-cylindrical oxide confinement,” Opt. Commun. 250(4–6), 389–397 (2005).
[Crossref]

Semicond. Sci. Technol. (1)

G. Almuneau, R. Bossuyt, P. Collière, L. Bouscayrol, M. Condé, I. Suarez, V. Bardinal, and C. Fontaine, “Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs,” Semicond. Sci. Technol. 23(10), 105021 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 In situ top images of laterally oxidized circular mesas during the oxidation process at three different process times. The mesa diameter is 60µm, and the oxidized zones appear in white.
Fig. 2
Fig. 2 left: Evolution during the process time of the oxidation depth along the <110> and <100> crystallographic directions for oxidations of a 70-nm-thick AlAs layer carried out from 30µm-radius mesa at a temperature of 400 and 420°C, a pressure of 500 mbar and a water flow of 5 g/h, and, right, associated anisotropy analysis in terms of square fraction.
Fig. 3
Fig. 3 Oxidation depth evolution (a), and square fraction (s) against inverted radius of the mesa (b) (negative values of the radius is taken for etched holes)
Fig. 4
Fig. 4 Square fraction (anisotropy) of the oxide aperture (diameter around 6µm) obtained from a 35-µm-diameter Al0.98Ga0.02As circular mesa versus process temperature, and (inset) versus water flow for a process temperature of 420°C .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

s= | r <100> r <110> | r <flat> . (1 1 2 ) ,

Metrics