Abstract

To achieve a size-dependent detection sensitivity of spherical nanoparticles, we propose a one-dimensional array of double-bent Au strips as a nanoplasmonic sensor and also as a size-filtering device. Electromagnetic simulations and measured absorbance spectra demonstrate that local plasmonic fields developed at the double-bent Au strips differentiate plasmonic responses for 100 nm- and 200 nm-sized spherical particles. Our results highlight the potential of the double-bent Au strip array as a sensing platform providing size-dependent sensitivity for spherical analytes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of field–analyte interaction at metallic nanogap arrays for sensitive localized surface plasmon resonance detection

Rabiatul Adawiah Awang, Sherif Hamdy El-Gohary, Nak-Hyeon Kim, and Kyung Min Byun
Appl. Opt. 51(31) 7437-7442 (2012)

Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy

Maysamreza Chamanzar, Zhixuan Xia, Siva Yegnanarayanan, and Ali Adibi
Opt. Express 21(26) 32086-32098 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
    [Crossref] [PubMed]
  2. V. Zielasek, B. Jürgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, and M. Bäumer, “Gold Catalysts: Nanoporous Gold Foams,” Angew. Chem. Int. Ed. Engl. 45(48), 8241–8244 (2006).
    [Crossref] [PubMed]
  3. E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev. 38(6), 1759–1782 (2009).
    [Crossref] [PubMed]
  4. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  5. K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  6. H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
    [Crossref] [PubMed]
  7. W. Zhou, X. Gao, D. Liu, and X. Chen, “Gold Nanoparticles for In Vitro Diagnostics,” Chem. Rev. 115(19), 10575–10636 (2015).
    [Crossref] [PubMed]
  8. J.-S. Wi, J. G. Son, S. W. Han, and T. G. Lee, “Nanoparticles inside nanodishes for plasmon excitations,” Appl. Phys. Lett. 107(20), 203102 (2015).
    [Crossref]
  9. J. Park, H. Kang, Y. H. Kim, S.-W. Lee, T. G. Lee, and J.-S. Wi, “Physically-synthesized gold nanoparticles containing multiple nanopores for enhanced photothermal conversion and photoacoustic imaging,” Nanoscale 8(34), 15514–15520 (2016).
    [Crossref] [PubMed]
  10. J.-S. Wi, J. Park, H. Kang, D. Jung, S.-W. Lee, and T. G. Lee, “Stacked Gold Nanodisks for Bimodal Photoacoustic and Optical Coherence Imaging,” ACS Nano 11(6), 6225–6232 (2017).
    [Crossref] [PubMed]
  11. S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color Imaging via Nearest Neighbor Hole Coupling in Plasmonic Color Filters Integrated onto a Complementary Metal-Oxide Semiconductor Image Sensor,” ACS Nano 7(11), 10038–10047 (2013).
    [Crossref] [PubMed]
  12. I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi‐Spectral Materials: Hybridisation of Optical Plasmonic Filters and a Terahertz Metamaterial Absorber,” Adv. Optical Mater. 2(2), 149–153 (2014).
    [Crossref]
  13. J. Fu, P. Mao, and J. Han, “Artificial molecular sieves and filters: a new paradigm for biomolecule separation,” Trends Biotechnol. 26(6), 311–320 (2008).
    [Crossref] [PubMed]
  14. S. El-Safty and M. A. Shenashen, “Size-selective separations of biological macromolecules on mesocylinder silica arrays,” Anal. Chim. Acta 694(1-2), 151–161 (2011).
    [Crossref] [PubMed]
  15. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
    [Crossref] [PubMed]
  16. F. Fernandez-Trillo, L. M. Grover, A. Stephenson-Brown, P. Harrison, and P. M. Mendes, “Vesicles in Nature and the Laboratory: Elucidation of Their Biological Properties and Synthesis of Increasingly Complex Synthetic Vesicles,” Angew. Chem. Int. Ed. Engl. 56(12), 3142–3160 (2017).
    [Crossref] [PubMed]
  17. J.-S. Wi, S. Lee, S. H. Lee, D. K. Oh, K.-T. Lee, I. Park, M. K. Kwak, and J. G. Ok, “Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors,” Nanoscale 9(4), 1398–1402 (2017).
    [Crossref] [PubMed]
  18. M. M. Miller and A. A. Lazarides, “Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
    [Crossref] [PubMed]
  19. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
    [Crossref] [PubMed]
  20. Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of Colloidal Nanocrystals into Lithographically Patterned Devices,” Nano Lett. 4(6), 1093–1098 (2004).
    [Crossref]
  21. M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed Self-Assembly of Nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
    [Crossref] [PubMed]

2017 (3)

J.-S. Wi, J. Park, H. Kang, D. Jung, S.-W. Lee, and T. G. Lee, “Stacked Gold Nanodisks for Bimodal Photoacoustic and Optical Coherence Imaging,” ACS Nano 11(6), 6225–6232 (2017).
[Crossref] [PubMed]

F. Fernandez-Trillo, L. M. Grover, A. Stephenson-Brown, P. Harrison, and P. M. Mendes, “Vesicles in Nature and the Laboratory: Elucidation of Their Biological Properties and Synthesis of Increasingly Complex Synthetic Vesicles,” Angew. Chem. Int. Ed. Engl. 56(12), 3142–3160 (2017).
[Crossref] [PubMed]

J.-S. Wi, S. Lee, S. H. Lee, D. K. Oh, K.-T. Lee, I. Park, M. K. Kwak, and J. G. Ok, “Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors,” Nanoscale 9(4), 1398–1402 (2017).
[Crossref] [PubMed]

2016 (1)

J. Park, H. Kang, Y. H. Kim, S.-W. Lee, T. G. Lee, and J.-S. Wi, “Physically-synthesized gold nanoparticles containing multiple nanopores for enhanced photothermal conversion and photoacoustic imaging,” Nanoscale 8(34), 15514–15520 (2016).
[Crossref] [PubMed]

2015 (2)

W. Zhou, X. Gao, D. Liu, and X. Chen, “Gold Nanoparticles for In Vitro Diagnostics,” Chem. Rev. 115(19), 10575–10636 (2015).
[Crossref] [PubMed]

J.-S. Wi, J. G. Son, S. W. Han, and T. G. Lee, “Nanoparticles inside nanodishes for plasmon excitations,” Appl. Phys. Lett. 107(20), 203102 (2015).
[Crossref]

2014 (1)

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi‐Spectral Materials: Hybridisation of Optical Plasmonic Filters and a Terahertz Metamaterial Absorber,” Adv. Optical Mater. 2(2), 149–153 (2014).
[Crossref]

2013 (2)

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color Imaging via Nearest Neighbor Hole Coupling in Plasmonic Color Filters Integrated onto a Complementary Metal-Oxide Semiconductor Image Sensor,” ACS Nano 7(11), 10038–10047 (2013).
[Crossref] [PubMed]

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

2011 (2)

K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

S. El-Safty and M. A. Shenashen, “Size-selective separations of biological macromolecules on mesocylinder silica arrays,” Anal. Chim. Acta 694(1-2), 151–161 (2011).
[Crossref] [PubMed]

2010 (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed Self-Assembly of Nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

2009 (1)

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev. 38(6), 1759–1782 (2009).
[Crossref] [PubMed]

2008 (2)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

J. Fu, P. Mao, and J. Han, “Artificial molecular sieves and filters: a new paradigm for biomolecule separation,” Trends Biotechnol. 26(6), 311–320 (2008).
[Crossref] [PubMed]

2007 (1)

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

2006 (2)

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

V. Zielasek, B. Jürgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, and M. Bäumer, “Gold Catalysts: Nanoporous Gold Foams,” Angew. Chem. Int. Ed. Engl. 45(48), 8241–8244 (2006).
[Crossref] [PubMed]

2005 (1)

M. M. Miller and A. A. Lazarides, “Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

2004 (1)

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of Colloidal Nanocrystals into Lithographically Patterned Devices,” Nano Lett. 4(6), 1093–1098 (2004).
[Crossref]

Alegret, J.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

Alivisatos, A. P.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of Colloidal Nanocrystals into Lithographically Patterned Devices,” Nano Lett. 4(6), 1093–1098 (2004).
[Crossref]

Arnold, S.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Astruc, D.

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev. 38(6), 1759–1782 (2009).
[Crossref] [PubMed]

Atwater, H. A.

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color Imaging via Nearest Neighbor Hole Coupling in Plasmonic Color Filters Integrated onto a Complementary Metal-Oxide Semiconductor Image Sensor,” ACS Nano 7(11), 10038–10047 (2013).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Bäumer, M.

V. Zielasek, B. Jürgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, and M. Bäumer, “Gold Catalysts: Nanoporous Gold Foams,” Angew. Chem. Int. Ed. Engl. 45(48), 8241–8244 (2006).
[Crossref] [PubMed]

Biener, J.

V. Zielasek, B. Jürgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, and M. Bäumer, “Gold Catalysts: Nanoporous Gold Foams,” Angew. Chem. Int. Ed. Engl. 45(48), 8241–8244 (2006).
[Crossref] [PubMed]

Biener, M. M.

V. Zielasek, B. Jürgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, and M. Bäumer, “Gold Catalysts: Nanoporous Gold Foams,” Angew. Chem. Int. Ed. Engl. 45(48), 8241–8244 (2006).
[Crossref] [PubMed]

Björk, M. T.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of Colloidal Nanocrystals into Lithographically Patterned Devices,” Nano Lett. 4(6), 1093–1098 (2004).
[Crossref]

Boisselier, E.

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev. 38(6), 1759–1782 (2009).
[Crossref] [PubMed]

Boussert, B.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of Colloidal Nanocrystals into Lithographically Patterned Devices,” Nano Lett. 4(6), 1093–1098 (2004).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Burgos, S. P.

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color Imaging via Nearest Neighbor Hole Coupling in Plasmonic Color Filters Integrated onto a Complementary Metal-Oxide Semiconductor Image Sensor,” ACS Nano 7(11), 10038–10047 (2013).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Chen, H.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Chen, X.

W. Zhou, X. Gao, D. Liu, and X. Chen, “Gold Nanoparticles for In Vitro Diagnostics,” Chem. Rev. 115(19), 10575–10636 (2015).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of Colloidal Nanocrystals into Lithographically Patterned Devices,” Nano Lett. 4(6), 1093–1098 (2004).
[Crossref]

Cumming, D. R. S.

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi‐Spectral Materials: Hybridisation of Optical Plasmonic Filters and a Terahertz Metamaterial Absorber,” Adv. Optical Mater. 2(2), 149–153 (2014).
[Crossref]

Drysdale, T. D.

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi‐Spectral Materials: Hybridisation of Optical Plasmonic Filters and a Terahertz Metamaterial Absorber,” Adv. Optical Mater. 2(2), 149–153 (2014).
[Crossref]

El-Safty, S.

S. El-Safty and M. A. Shenashen, “Size-selective separations of biological macromolecules on mesocylinder silica arrays,” Anal. Chim. Acta 694(1-2), 151–161 (2011).
[Crossref] [PubMed]

el-Sayed, M. A.

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

Eustis, S.

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

Fernandez-Trillo, F.

F. Fernandez-Trillo, L. M. Grover, A. Stephenson-Brown, P. Harrison, and P. M. Mendes, “Vesicles in Nature and the Laboratory: Elucidation of Their Biological Properties and Synthesis of Increasingly Complex Synthetic Vesicles,” Angew. Chem. Int. Ed. Engl. 56(12), 3142–3160 (2017).
[Crossref] [PubMed]

Fu, J.

J. Fu, P. Mao, and J. Han, “Artificial molecular sieves and filters: a new paradigm for biomolecule separation,” Trends Biotechnol. 26(6), 311–320 (2008).
[Crossref] [PubMed]

Furst, E. M.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed Self-Assembly of Nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

Gao, X.

W. Zhou, X. Gao, D. Liu, and X. Chen, “Gold Nanoparticles for In Vitro Diagnostics,” Chem. Rev. 115(19), 10575–10636 (2015).
[Crossref] [PubMed]

Grant, J.

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi‐Spectral Materials: Hybridisation of Optical Plasmonic Filters and a Terahertz Metamaterial Absorber,” Adv. Optical Mater. 2(2), 149–153 (2014).
[Crossref]

Grover, L. M.

F. Fernandez-Trillo, L. M. Grover, A. Stephenson-Brown, P. Harrison, and P. M. Mendes, “Vesicles in Nature and the Laboratory: Elucidation of Their Biological Properties and Synthesis of Increasingly Complex Synthetic Vesicles,” Angew. Chem. Int. Ed. Engl. 56(12), 3142–3160 (2017).
[Crossref] [PubMed]

Grzelczak, M.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed Self-Assembly of Nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Hamza, A. V.

V. Zielasek, B. Jürgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, and M. Bäumer, “Gold Catalysts: Nanoporous Gold Foams,” Angew. Chem. Int. Ed. Engl. 45(48), 8241–8244 (2006).
[Crossref] [PubMed]

Han, J.

J. Fu, P. Mao, and J. Han, “Artificial molecular sieves and filters: a new paradigm for biomolecule separation,” Trends Biotechnol. 26(6), 311–320 (2008).
[Crossref] [PubMed]

Han, S. W.

J.-S. Wi, J. G. Son, S. W. Han, and T. G. Lee, “Nanoparticles inside nanodishes for plasmon excitations,” Appl. Phys. Lett. 107(20), 203102 (2015).
[Crossref]

Harrison, P.

F. Fernandez-Trillo, L. M. Grover, A. Stephenson-Brown, P. Harrison, and P. M. Mendes, “Vesicles in Nature and the Laboratory: Elucidation of Their Biological Properties and Synthesis of Increasingly Complex Synthetic Vesicles,” Angew. Chem. Int. Ed. Engl. 56(12), 3142–3160 (2017).
[Crossref] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Jung, D.

J.-S. Wi, J. Park, H. Kang, D. Jung, S.-W. Lee, and T. G. Lee, “Stacked Gold Nanodisks for Bimodal Photoacoustic and Optical Coherence Imaging,” ACS Nano 11(6), 6225–6232 (2017).
[Crossref] [PubMed]

Jürgens, B.

V. Zielasek, B. Jürgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, and M. Bäumer, “Gold Catalysts: Nanoporous Gold Foams,” Angew. Chem. Int. Ed. Engl. 45(48), 8241–8244 (2006).
[Crossref] [PubMed]

Käll, M.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

Kang, H.

J.-S. Wi, J. Park, H. Kang, D. Jung, S.-W. Lee, and T. G. Lee, “Stacked Gold Nanodisks for Bimodal Photoacoustic and Optical Coherence Imaging,” ACS Nano 11(6), 6225–6232 (2017).
[Crossref] [PubMed]

J. Park, H. Kang, Y. H. Kim, S.-W. Lee, T. G. Lee, and J.-S. Wi, “Physically-synthesized gold nanoparticles containing multiple nanopores for enhanced photothermal conversion and photoacoustic imaging,” Nanoscale 8(34), 15514–15520 (2016).
[Crossref] [PubMed]

Keng, D.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Kim, Y. H.

J. Park, H. Kang, Y. H. Kim, S.-W. Lee, T. G. Lee, and J.-S. Wi, “Physically-synthesized gold nanoparticles containing multiple nanopores for enhanced photothermal conversion and photoacoustic imaging,” Nanoscale 8(34), 15514–15520 (2016).
[Crossref] [PubMed]

Kwak, M. K.

J.-S. Wi, S. Lee, S. H. Lee, D. K. Oh, K.-T. Lee, I. Park, M. K. Kwak, and J. G. Ok, “Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors,” Nanoscale 9(4), 1398–1402 (2017).
[Crossref] [PubMed]

Larsson, E. M.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, “Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

Lee, K.-T.

J.-S. Wi, S. Lee, S. H. Lee, D. K. Oh, K.-T. Lee, I. Park, M. K. Kwak, and J. G. Ok, “Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors,” Nanoscale 9(4), 1398–1402 (2017).
[Crossref] [PubMed]

Lee, S.

J.-S. Wi, S. Lee, S. H. Lee, D. K. Oh, K.-T. Lee, I. Park, M. K. Kwak, and J. G. Ok, “Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors,” Nanoscale 9(4), 1398–1402 (2017).
[Crossref] [PubMed]

Lee, S. H.

J.-S. Wi, S. Lee, S. H. Lee, D. K. Oh, K.-T. Lee, I. Park, M. K. Kwak, and J. G. Ok, “Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors,” Nanoscale 9(4), 1398–1402 (2017).
[Crossref] [PubMed]

Lee, S.-W.

J.-S. Wi, J. Park, H. Kang, D. Jung, S.-W. Lee, and T. G. Lee, “Stacked Gold Nanodisks for Bimodal Photoacoustic and Optical Coherence Imaging,” ACS Nano 11(6), 6225–6232 (2017).
[Crossref] [PubMed]

J. Park, H. Kang, Y. H. Kim, S.-W. Lee, T. G. Lee, and J.-S. Wi, “Physically-synthesized gold nanoparticles containing multiple nanopores for enhanced photothermal conversion and photoacoustic imaging,” Nanoscale 8(34), 15514–15520 (2016).
[Crossref] [PubMed]

Lee, T. G.

J.-S. Wi, J. Park, H. Kang, D. Jung, S.-W. Lee, and T. G. Lee, “Stacked Gold Nanodisks for Bimodal Photoacoustic and Optical Coherence Imaging,” ACS Nano 11(6), 6225–6232 (2017).
[Crossref] [PubMed]

J. Park, H. Kang, Y. H. Kim, S.-W. Lee, T. G. Lee, and J.-S. Wi, “Physically-synthesized gold nanoparticles containing multiple nanopores for enhanced photothermal conversion and photoacoustic imaging,” Nanoscale 8(34), 15514–15520 (2016).
[Crossref] [PubMed]

J.-S. Wi, J. G. Son, S. W. Han, and T. G. Lee, “Nanoparticles inside nanodishes for plasmon excitations,” Appl. Phys. Lett. 107(20), 203102 (2015).
[Crossref]

Li, Q.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Liddle, J. A.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of Colloidal Nanocrystals into Lithographically Patterned Devices,” Nano Lett. 4(6), 1093–1098 (2004).
[Crossref]

Liu, D.

W. Zhou, X. Gao, D. Liu, and X. Chen, “Gold Nanoparticles for In Vitro Diagnostics,” Chem. Rev. 115(19), 10575–10636 (2015).
[Crossref] [PubMed]

Liz-Marzán, L. M.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed Self-Assembly of Nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

Mao, P.

J. Fu, P. Mao, and J. Han, “Artificial molecular sieves and filters: a new paradigm for biomolecule separation,” Trends Biotechnol. 26(6), 311–320 (2008).
[Crossref] [PubMed]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

McCrindle, I. J. H.

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi‐Spectral Materials: Hybridisation of Optical Plasmonic Filters and a Terahertz Metamaterial Absorber,” Adv. Optical Mater. 2(2), 149–153 (2014).
[Crossref]

Mendes, P. M.

F. Fernandez-Trillo, L. M. Grover, A. Stephenson-Brown, P. Harrison, and P. M. Mendes, “Vesicles in Nature and the Laboratory: Elucidation of Their Biological Properties and Synthesis of Increasingly Complex Synthetic Vesicles,” Angew. Chem. Int. Ed. Engl. 56(12), 3142–3160 (2017).
[Crossref] [PubMed]

Miller, M. M.

M. M. Miller and A. A. Lazarides, “Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

Oh, D. K.

J.-S. Wi, S. Lee, S. H. Lee, D. K. Oh, K.-T. Lee, I. Park, M. K. Kwak, and J. G. Ok, “Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors,” Nanoscale 9(4), 1398–1402 (2017).
[Crossref] [PubMed]

Ok, J. G.

J.-S. Wi, S. Lee, S. H. Lee, D. K. Oh, K.-T. Lee, I. Park, M. K. Kwak, and J. G. Ok, “Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors,” Nanoscale 9(4), 1398–1402 (2017).
[Crossref] [PubMed]

Park, I.

J.-S. Wi, S. Lee, S. H. Lee, D. K. Oh, K.-T. Lee, I. Park, M. K. Kwak, and J. G. Ok, “Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors,” Nanoscale 9(4), 1398–1402 (2017).
[Crossref] [PubMed]

Park, J.

J.-S. Wi, J. Park, H. Kang, D. Jung, S.-W. Lee, and T. G. Lee, “Stacked Gold Nanodisks for Bimodal Photoacoustic and Optical Coherence Imaging,” ACS Nano 11(6), 6225–6232 (2017).
[Crossref] [PubMed]

J. Park, H. Kang, Y. H. Kim, S.-W. Lee, T. G. Lee, and J.-S. Wi, “Physically-synthesized gold nanoparticles containing multiple nanopores for enhanced photothermal conversion and photoacoustic imaging,” Nanoscale 8(34), 15514–15520 (2016).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Schulz, C.

V. Zielasek, B. Jürgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, and M. Bäumer, “Gold Catalysts: Nanoporous Gold Foams,” Angew. Chem. Int. Ed. Engl. 45(48), 8241–8244 (2006).
[Crossref] [PubMed]

Shao, L.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Shenashen, M. A.

S. El-Safty and M. A. Shenashen, “Size-selective separations of biological macromolecules on mesocylinder silica arrays,” Anal. Chim. Acta 694(1-2), 151–161 (2011).
[Crossref] [PubMed]

Son, J. G.

J.-S. Wi, J. G. Son, S. W. Han, and T. G. Lee, “Nanoparticles inside nanodishes for plasmon excitations,” Appl. Phys. Lett. 107(20), 203102 (2015).
[Crossref]

Sönnichsen, C.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of Colloidal Nanocrystals into Lithographically Patterned Devices,” Nano Lett. 4(6), 1093–1098 (2004).
[Crossref]

Stephenson-Brown, A.

F. Fernandez-Trillo, L. M. Grover, A. Stephenson-Brown, P. Harrison, and P. M. Mendes, “Vesicles in Nature and the Laboratory: Elucidation of Their Biological Properties and Synthesis of Increasingly Complex Synthetic Vesicles,” Angew. Chem. Int. Ed. Engl. 56(12), 3142–3160 (2017).
[Crossref] [PubMed]

Sutherland, D. S.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

Vermant, J.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed Self-Assembly of Nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

Vollmer, F.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Wang, J.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wi, J.-S.

J.-S. Wi, J. Park, H. Kang, D. Jung, S.-W. Lee, and T. G. Lee, “Stacked Gold Nanodisks for Bimodal Photoacoustic and Optical Coherence Imaging,” ACS Nano 11(6), 6225–6232 (2017).
[Crossref] [PubMed]

J.-S. Wi, S. Lee, S. H. Lee, D. K. Oh, K.-T. Lee, I. Park, M. K. Kwak, and J. G. Ok, “Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors,” Nanoscale 9(4), 1398–1402 (2017).
[Crossref] [PubMed]

J. Park, H. Kang, Y. H. Kim, S.-W. Lee, T. G. Lee, and J.-S. Wi, “Physically-synthesized gold nanoparticles containing multiple nanopores for enhanced photothermal conversion and photoacoustic imaging,” Nanoscale 8(34), 15514–15520 (2016).
[Crossref] [PubMed]

J.-S. Wi, J. G. Son, S. W. Han, and T. G. Lee, “Nanoparticles inside nanodishes for plasmon excitations,” Appl. Phys. Lett. 107(20), 203102 (2015).
[Crossref]

Yokogawa, S.

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color Imaging via Nearest Neighbor Hole Coupling in Plasmonic Color Filters Integrated onto a Complementary Metal-Oxide Semiconductor Image Sensor,” ACS Nano 7(11), 10038–10047 (2013).
[Crossref] [PubMed]

Zhou, W.

W. Zhou, X. Gao, D. Liu, and X. Chen, “Gold Nanoparticles for In Vitro Diagnostics,” Chem. Rev. 115(19), 10575–10636 (2015).
[Crossref] [PubMed]

Zielasek, V.

V. Zielasek, B. Jürgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, and M. Bäumer, “Gold Catalysts: Nanoporous Gold Foams,” Angew. Chem. Int. Ed. Engl. 45(48), 8241–8244 (2006).
[Crossref] [PubMed]

ACS Nano (3)

J.-S. Wi, J. Park, H. Kang, D. Jung, S.-W. Lee, and T. G. Lee, “Stacked Gold Nanodisks for Bimodal Photoacoustic and Optical Coherence Imaging,” ACS Nano 11(6), 6225–6232 (2017).
[Crossref] [PubMed]

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color Imaging via Nearest Neighbor Hole Coupling in Plasmonic Color Filters Integrated onto a Complementary Metal-Oxide Semiconductor Image Sensor,” ACS Nano 7(11), 10038–10047 (2013).
[Crossref] [PubMed]

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed Self-Assembly of Nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

Adv. Optical Mater. (1)

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi‐Spectral Materials: Hybridisation of Optical Plasmonic Filters and a Terahertz Metamaterial Absorber,” Adv. Optical Mater. 2(2), 149–153 (2014).
[Crossref]

Anal. Chim. Acta (1)

S. El-Safty and M. A. Shenashen, “Size-selective separations of biological macromolecules on mesocylinder silica arrays,” Anal. Chim. Acta 694(1-2), 151–161 (2011).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

F. Fernandez-Trillo, L. M. Grover, A. Stephenson-Brown, P. Harrison, and P. M. Mendes, “Vesicles in Nature and the Laboratory: Elucidation of Their Biological Properties and Synthesis of Increasingly Complex Synthetic Vesicles,” Angew. Chem. Int. Ed. Engl. 56(12), 3142–3160 (2017).
[Crossref] [PubMed]

V. Zielasek, B. Jürgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, and M. Bäumer, “Gold Catalysts: Nanoporous Gold Foams,” Angew. Chem. Int. Ed. Engl. 45(48), 8241–8244 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J.-S. Wi, J. G. Son, S. W. Han, and T. G. Lee, “Nanoparticles inside nanodishes for plasmon excitations,” Appl. Phys. Lett. 107(20), 203102 (2015).
[Crossref]

Chem. Rev. (2)

W. Zhou, X. Gao, D. Liu, and X. Chen, “Gold Nanoparticles for In Vitro Diagnostics,” Chem. Rev. 115(19), 10575–10636 (2015).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Chem. Soc. Rev. (3)

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev. 38(6), 1759–1782 (2009).
[Crossref] [PubMed]

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

M. M. Miller and A. A. Lazarides, “Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

Nano Lett. (2)

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of Colloidal Nanocrystals into Lithographically Patterned Devices,” Nano Lett. 4(6), 1093–1098 (2004).
[Crossref]

Nanoscale (2)

J. Park, H. Kang, Y. H. Kim, S.-W. Lee, T. G. Lee, and J.-S. Wi, “Physically-synthesized gold nanoparticles containing multiple nanopores for enhanced photothermal conversion and photoacoustic imaging,” Nanoscale 8(34), 15514–15520 (2016).
[Crossref] [PubMed]

J.-S. Wi, S. Lee, S. H. Lee, D. K. Oh, K.-T. Lee, I. Park, M. K. Kwak, and J. G. Ok, “Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors,” Nanoscale 9(4), 1398–1402 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Trends Biotechnol. (1)

J. Fu, P. Mao, and J. Han, “Artificial molecular sieves and filters: a new paradigm for biomolecule separation,” Trends Biotechnol. 26(6), 311–320 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Plan-view SEM images of the (a, c) 100-nm and (b, d) 200-nm PS beads which were drop-casted on the surface of the double-bent Au strip array. Figure 1(c) and 1(d) are magnified images of Fig. 1(a) and 1(b), respectively.
Fig. 2
Fig. 2 (a–c) Squared amplitudes of the local electric fields around (a) the DAS structures, (b) 100-nm PS beads located inside of a valley between the DAS structures and (c) 200-nm PS beads located at an the upper side of a valley between the DAS structures. Scale bars are 100 nm. (d) Calculated extinction cross sections of (black) the DAS structures, (gray) the DAS structures with 200-nm PS beads and (red) the DAS structures with 100-nm PS beads. Inset shows the peak shifts calculated from four-different sized PS beads sitting on the DAS structure. For the simulation of the peak shifts, the PS beads were assumed to be close packed along the valley (i.e. 60, 80, 100, and 200 nm single bead per 60, 80, 100, and 200 nm periodicity, respectively).
Fig. 3
Fig. 3 (a,b) Absorbance curves measured from the DAS sensors treated with different concentrations of (a) 100-nm and (b) 200-nm PS beads. A 1 μL drop of PS bead solution with a concentration of 10−3, 10−2, 10−1, 1, or 102 g L−1 was evaporated on the sensor surface. The inset graphs are enlarged views of the LSPR peaks. (c) Average LSPR peak shifts measured from the DAS sensors treated with different concentrations of (red) 100-nm and (black) 200-nm PS beads.

Metrics