Abstract

In this paper, an iterative method to model the anisotropic lateral oxidation of circular structures is proposed and validated by confrontation to experimental data. The described model enables the efficient calculation of the temporal bi-dimensional evolution of the oxidation front shape, starting from a circular mesa, and progressing inward as a result of an anisotropic process combining an isotropic diffusion with an anisotropic reaction. The result of the developed model shows that the oxide aperture smoothly deforms from a circle to become more diamond-like, mimicking the experimental situation encountered when fabricating vertical-cavity surface-emitting lasers (VCSELs) on (100) wafers or, more generally, when oxidizing circular mesas of aluminum-containing III-V semiconductor on similarly oriented substrates.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Anisotropy in the wet thermal oxidation of AlGaAs: influence of process parameters

Gaël Lafleur, Guilhem Almuneau, Alexandre Arnoult, Henri Camon, and Stéphane Calvez
Opt. Mater. Express 8(7) 1788-1795 (2018)

Low-loss buried AlGaAs/AlOx waveguides using a quasi-planar process

Stephane Calvez, Pierre-Francois Calmon, Alexandre Arnoult, Olivier Gauthier-Lafaye, Chantal Fontaine, and Guilhem Almuneau
Opt. Express 25(16) 19275-19280 (2017)

Anisotropic second-harmonic generation from chromophoric self-assembled monolayers upon oxide overlayers of Si(111) surfaces

Haitian Zhou, David Hahn, George K. Wong, Stephen B. Roscoe, and Tobin J. Marks
J. Opt. Soc. Am. B 14(2) 391-395 (1997)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in Al x Ga 1−x As‐AlAs‐GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
    [Crossref]
  2. J. M. Dallesasse, N. El‐Zein, N. Holonyak, K. C. Hsieh, R. D. Burnham, and R. D. Dupuis, “Environmental degradation of Al x Ga 1−x As‐GaAs quantum‐well heterostructures,” J. Appl. Phys. 68(5), 2235–2238 (1990).
    [Crossref]
  3. D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97–99 (1994).
    [Crossref]
  4. J. M. Dallesasse and D. G. Deppe, “III-V Oxidation: Discoveries and Applications in Vertical-Cavity Surface-Emitting Lasers,” Proc. IEEE 101(10), 2234–2242 (2013).
    [Crossref]
  5. S. A. Maranowski, A. R. Sugg, E. I. Chen, and N. Holonyak., “Native oxide top- and bottom-confined narrow stripe p-n AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure laser,” Appl. Phys. Lett. 63(12), 1660–1662 (1993).
    [Crossref]
  6. K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, and P. Van Daele, “First demonstration of 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36(12), 1028 (2000).
    [Crossref]
  7. K. Welna, M. Hugues, C. P. Reardon, L. O’Faolain, M. Hopkinson, and T. F. Krauss, “Photonic crystal nanocavities in GaAs/AlGaAs with oxidised bottom cladding,” Photonics Nanostructures – Fundam. Appl. 11, 139–144 (2013).
  8. S. Calvez, G. Lafleur, A. Larrue, P.-F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically Coupled Microdisk Resonators Using AlGaAs/AlOx Technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
    [Crossref]
  9. S. Calvez, P.-F. Calmon, A. Arnoult, O. Gauthier-Lafaye, C. Fontaine, and G. Almuneau, “Low-loss buried AlGaAs/AlOx waveguides using a quasi-planar process,” Opt. Express 25(16), 19275–19280 (2017).
    [Crossref] [PubMed]
  10. E. I. Chen, N. Holonyak, and S. A. Maranowski, “Al x Ga 1−x As–GaAs metal–oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs,” Appl. Phys. Lett. 66(20), 2688–2690 (1995).
    [Crossref]
  11. G. Walter, N. Holonyak, M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 85(20), 4768–4770 (2004).
    [Crossref]
  12. A. C. Alonzo, X.-C. Cheng, and T. C. McGill, “Effect of cylindrical geometry on the wet thermal oxidation of AlAs,” J. Appl. Phys. 84(12), 6901–6905 (1998).
    [Crossref]
  13. M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, and T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett. 68(14), 1898–1900 (1996).
    [Crossref]
  14. B. Koley, M. Dagenais, R. Jin, J. Pham, G. Simonis, G. McLane, and D. Stone, “Kinetics of growth of AlAs oxide in selectively oxidized vertical cavity surface emitting lasers,” J. Appl. Phys. 82(9), 4586–4589 (1997).
    [Crossref]
  15. P.-C. Ku and C. J. Chang-Hasnain, “Thermal oxidation of AlGaAs: modeling and process control,” IEEE J. Quantum Electron. 39(4), 577–585 (2003).
    [Crossref]
  16. S.-C. Ko, S. Lee, and Y. T. Chou, “Wet Oxidation in a Square Sandwich Composite of GaAs/AlAs/GaAs,” J. Electron. Mater. 36(12), 1652–1657 (2007).
    [Crossref]
  17. S.-C. Ko, S. Lee, and Y. T. Chou, “Radial boundary layer diffusion in a cylindrical sandwich composite with application to oxidation of GaAs/AlAs/GaAs,” Mater. Chem. Phys. 115(1), 488–492 (2009).
    [Crossref]
  18. R. L. Naone and L. A. Coldren, “Surface energy model for the thickness dependence of the lateral oxidation of AlAs,” J. Appl. Phys. 82(5), 2277–2280 (1997).
    [Crossref]
  19. S.-C. Ko, S. Lee, H.-L. Wang, and Y. T. Chou, “Wet oxidation kinetics of AlAs at elevated temperatures,” J. Mater. Res. 18(05), 1027–1030 (2003).
    [Crossref]
  20. F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
    [Crossref]
  21. A. Fiore, Y. A. Akulova, J. Ko, E. R. Hegblom, and L. A. Coldren, “Postgrowth tuning of semiconductor vertical cavities for multiple-wavelength laser arrays,” IEEE J. Quantum Electron. 35(4), 616–623 (1999).
    [Crossref]
  22. I. Suárez, G. Almuneau, M. Condé, A. Arnoult, and C. Fontaine, “Optimal control of AlAs oxidation via digital alloy heterostructure compositions,” J. Phys. Appl. Phys. 42(17), 175105 (2009).
    [Crossref]
  23. B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
    [Crossref]
  24. K. Koizumi, P. O. Vaccaro, K. Fujita, M. Tateuchi, and T. Ohachi, “Lateral wet oxidation of AlAs layer in GaAs/AlAs heterostructures grown by MBE on GaAs (n11) A substrates,” J. Cryst. Growth 198, 1136–1140 (1999).
    [Crossref]
  25. P. O. Vaccaro, K. Koizumi, K. Fujita, and T. Ohachi, “AlAs oxidation process in GaAs/AlGaAs/AlAs heterostructures grown by molecular beam epitaxy on GaAs (n11) A substrates,” Microelectronics J. 30(4-5), 387–391 (1999).
    [Crossref]
  26. K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. IEEE J. Of 3(3), 916–926 (1997).
    [Crossref]
  27. Y. Laaroussi, D. Sanchez, L. Cerutti, C. Levallois, C. Paranthoën, A. Rumeau, C. Tourte, and G. Almuneau, “Oxide-confined mid-infrared VCSELs,” Electron. Lett. 48(25), 1616–1618 (2012).
    [Crossref]
  28. G. Lafleur, G. Almuneau, A. Arnoult, S. Calvez, and H. Camon, “Anisotropy in the wet thermal oxidation of AlGaAs : influences of process parameters,” Opt. Mater. Express, in press (2018).
  29. C. I. H. Ashby, J. P. Sullivan, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Wet oxidation of AlGaAs: the role of hydrogen,” J. Appl. Phys. 82(6), 3134–3136 (1997).
    [Crossref]
  30. T. Yoshikawa, H. Saito, H. Kosaka, Y. Sugimoto, and K. Kasahara, “Self-stopping selective-oxidation process of AlAs,” Appl. Phys. Lett. 72(18), 2310–2312 (1998).
    [Crossref]

2017 (1)

2015 (1)

S. Calvez, G. Lafleur, A. Larrue, P.-F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically Coupled Microdisk Resonators Using AlGaAs/AlOx Technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

2014 (1)

F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
[Crossref]

2013 (2)

J. M. Dallesasse and D. G. Deppe, “III-V Oxidation: Discoveries and Applications in Vertical-Cavity Surface-Emitting Lasers,” Proc. IEEE 101(10), 2234–2242 (2013).
[Crossref]

K. Welna, M. Hugues, C. P. Reardon, L. O’Faolain, M. Hopkinson, and T. F. Krauss, “Photonic crystal nanocavities in GaAs/AlGaAs with oxidised bottom cladding,” Photonics Nanostructures – Fundam. Appl. 11, 139–144 (2013).

2012 (1)

Y. Laaroussi, D. Sanchez, L. Cerutti, C. Levallois, C. Paranthoën, A. Rumeau, C. Tourte, and G. Almuneau, “Oxide-confined mid-infrared VCSELs,” Electron. Lett. 48(25), 1616–1618 (2012).
[Crossref]

2009 (2)

I. Suárez, G. Almuneau, M. Condé, A. Arnoult, and C. Fontaine, “Optimal control of AlAs oxidation via digital alloy heterostructure compositions,” J. Phys. Appl. Phys. 42(17), 175105 (2009).
[Crossref]

S.-C. Ko, S. Lee, and Y. T. Chou, “Radial boundary layer diffusion in a cylindrical sandwich composite with application to oxidation of GaAs/AlAs/GaAs,” Mater. Chem. Phys. 115(1), 488–492 (2009).
[Crossref]

2007 (1)

S.-C. Ko, S. Lee, and Y. T. Chou, “Wet Oxidation in a Square Sandwich Composite of GaAs/AlAs/GaAs,” J. Electron. Mater. 36(12), 1652–1657 (2007).
[Crossref]

2004 (1)

G. Walter, N. Holonyak, M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 85(20), 4768–4770 (2004).
[Crossref]

2003 (2)

P.-C. Ku and C. J. Chang-Hasnain, “Thermal oxidation of AlGaAs: modeling and process control,” IEEE J. Quantum Electron. 39(4), 577–585 (2003).
[Crossref]

S.-C. Ko, S. Lee, H.-L. Wang, and Y. T. Chou, “Wet oxidation kinetics of AlAs at elevated temperatures,” J. Mater. Res. 18(05), 1027–1030 (2003).
[Crossref]

2000 (1)

K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, and P. Van Daele, “First demonstration of 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36(12), 1028 (2000).
[Crossref]

1999 (3)

A. Fiore, Y. A. Akulova, J. Ko, E. R. Hegblom, and L. A. Coldren, “Postgrowth tuning of semiconductor vertical cavities for multiple-wavelength laser arrays,” IEEE J. Quantum Electron. 35(4), 616–623 (1999).
[Crossref]

K. Koizumi, P. O. Vaccaro, K. Fujita, M. Tateuchi, and T. Ohachi, “Lateral wet oxidation of AlAs layer in GaAs/AlAs heterostructures grown by MBE on GaAs (n11) A substrates,” J. Cryst. Growth 198, 1136–1140 (1999).
[Crossref]

P. O. Vaccaro, K. Koizumi, K. Fujita, and T. Ohachi, “AlAs oxidation process in GaAs/AlGaAs/AlAs heterostructures grown by molecular beam epitaxy on GaAs (n11) A substrates,” Microelectronics J. 30(4-5), 387–391 (1999).
[Crossref]

1998 (2)

A. C. Alonzo, X.-C. Cheng, and T. C. McGill, “Effect of cylindrical geometry on the wet thermal oxidation of AlAs,” J. Appl. Phys. 84(12), 6901–6905 (1998).
[Crossref]

T. Yoshikawa, H. Saito, H. Kosaka, Y. Sugimoto, and K. Kasahara, “Self-stopping selective-oxidation process of AlAs,” Appl. Phys. Lett. 72(18), 2310–2312 (1998).
[Crossref]

1997 (4)

B. Koley, M. Dagenais, R. Jin, J. Pham, G. Simonis, G. McLane, and D. Stone, “Kinetics of growth of AlAs oxide in selectively oxidized vertical cavity surface emitting lasers,” J. Appl. Phys. 82(9), 4586–4589 (1997).
[Crossref]

R. L. Naone and L. A. Coldren, “Surface energy model for the thickness dependence of the lateral oxidation of AlAs,” J. Appl. Phys. 82(5), 2277–2280 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. IEEE J. Of 3(3), 916–926 (1997).
[Crossref]

C. I. H. Ashby, J. P. Sullivan, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Wet oxidation of AlGaAs: the role of hydrogen,” J. Appl. Phys. 82(6), 3134–3136 (1997).
[Crossref]

1996 (1)

M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, and T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett. 68(14), 1898–1900 (1996).
[Crossref]

1995 (1)

E. I. Chen, N. Holonyak, and S. A. Maranowski, “Al x Ga 1−x As–GaAs metal–oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs,” Appl. Phys. Lett. 66(20), 2688–2690 (1995).
[Crossref]

1994 (1)

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97–99 (1994).
[Crossref]

1993 (1)

S. A. Maranowski, A. R. Sugg, E. I. Chen, and N. Holonyak., “Native oxide top- and bottom-confined narrow stripe p-n AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure laser,” Appl. Phys. Lett. 63(12), 1660–1662 (1993).
[Crossref]

1990 (2)

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in Al x Ga 1−x As‐AlAs‐GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

J. M. Dallesasse, N. El‐Zein, N. Holonyak, K. C. Hsieh, R. D. Burnham, and R. D. Dupuis, “Environmental degradation of Al x Ga 1−x As‐GaAs quantum‐well heterostructures,” J. Appl. Phys. 68(5), 2235–2238 (1990).
[Crossref]

1965 (1)

B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
[Crossref]

Akulova, Y. A.

A. Fiore, Y. A. Akulova, J. Ko, E. R. Hegblom, and L. A. Coldren, “Postgrowth tuning of semiconductor vertical cavities for multiple-wavelength laser arrays,” IEEE J. Quantum Electron. 35(4), 616–623 (1999).
[Crossref]

Almuneau, G.

S. Calvez, P.-F. Calmon, A. Arnoult, O. Gauthier-Lafaye, C. Fontaine, and G. Almuneau, “Low-loss buried AlGaAs/AlOx waveguides using a quasi-planar process,” Opt. Express 25(16), 19275–19280 (2017).
[Crossref] [PubMed]

S. Calvez, G. Lafleur, A. Larrue, P.-F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically Coupled Microdisk Resonators Using AlGaAs/AlOx Technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
[Crossref]

Y. Laaroussi, D. Sanchez, L. Cerutti, C. Levallois, C. Paranthoën, A. Rumeau, C. Tourte, and G. Almuneau, “Oxide-confined mid-infrared VCSELs,” Electron. Lett. 48(25), 1616–1618 (2012).
[Crossref]

I. Suárez, G. Almuneau, M. Condé, A. Arnoult, and C. Fontaine, “Optimal control of AlAs oxidation via digital alloy heterostructure compositions,” J. Phys. Appl. Phys. 42(17), 175105 (2009).
[Crossref]

G. Lafleur, G. Almuneau, A. Arnoult, S. Calvez, and H. Camon, “Anisotropy in the wet thermal oxidation of AlGaAs : influences of process parameters,” Opt. Mater. Express, in press (2018).

Alonzo, A. C.

A. C. Alonzo, X.-C. Cheng, and T. C. McGill, “Effect of cylindrical geometry on the wet thermal oxidation of AlAs,” J. Appl. Phys. 84(12), 6901–6905 (1998).
[Crossref]

Arnoult, A.

S. Calvez, P.-F. Calmon, A. Arnoult, O. Gauthier-Lafaye, C. Fontaine, and G. Almuneau, “Low-loss buried AlGaAs/AlOx waveguides using a quasi-planar process,” Opt. Express 25(16), 19275–19280 (2017).
[Crossref] [PubMed]

S. Calvez, G. Lafleur, A. Larrue, P.-F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically Coupled Microdisk Resonators Using AlGaAs/AlOx Technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
[Crossref]

I. Suárez, G. Almuneau, M. Condé, A. Arnoult, and C. Fontaine, “Optimal control of AlAs oxidation via digital alloy heterostructure compositions,” J. Phys. Appl. Phys. 42(17), 175105 (2009).
[Crossref]

G. Lafleur, G. Almuneau, A. Arnoult, S. Calvez, and H. Camon, “Anisotropy in the wet thermal oxidation of AlGaAs : influences of process parameters,” Opt. Mater. Express, in press (2018).

Ashby, C. I.

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. IEEE J. Of 3(3), 916–926 (1997).
[Crossref]

Ashby, C. I. H.

C. I. H. Ashby, J. P. Sullivan, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Wet oxidation of AlGaAs: the role of hydrogen,” J. Appl. Phys. 82(6), 3134–3136 (1997).
[Crossref]

Baets, R.

K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, and P. Van Daele, “First demonstration of 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36(12), 1028 (2000).
[Crossref]

Blum, O.

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. IEEE J. Of 3(3), 916–926 (1997).
[Crossref]

Burnham, R. D.

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in Al x Ga 1−x As‐AlAs‐GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

J. M. Dallesasse, N. El‐Zein, N. Holonyak, K. C. Hsieh, R. D. Burnham, and R. D. Dupuis, “Environmental degradation of Al x Ga 1−x As‐GaAs quantum‐well heterostructures,” J. Appl. Phys. 68(5), 2235–2238 (1990).
[Crossref]

Calmon, P.-F.

S. Calvez, P.-F. Calmon, A. Arnoult, O. Gauthier-Lafaye, C. Fontaine, and G. Almuneau, “Low-loss buried AlGaAs/AlOx waveguides using a quasi-planar process,” Opt. Express 25(16), 19275–19280 (2017).
[Crossref] [PubMed]

S. Calvez, G. Lafleur, A. Larrue, P.-F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically Coupled Microdisk Resonators Using AlGaAs/AlOx Technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

Calvez, S.

S. Calvez, P.-F. Calmon, A. Arnoult, O. Gauthier-Lafaye, C. Fontaine, and G. Almuneau, “Low-loss buried AlGaAs/AlOx waveguides using a quasi-planar process,” Opt. Express 25(16), 19275–19280 (2017).
[Crossref] [PubMed]

S. Calvez, G. Lafleur, A. Larrue, P.-F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically Coupled Microdisk Resonators Using AlGaAs/AlOx Technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

G. Lafleur, G. Almuneau, A. Arnoult, S. Calvez, and H. Camon, “Anisotropy in the wet thermal oxidation of AlGaAs : influences of process parameters,” Opt. Mater. Express, in press (2018).

Camon, H.

G. Lafleur, G. Almuneau, A. Arnoult, S. Calvez, and H. Camon, “Anisotropy in the wet thermal oxidation of AlGaAs : influences of process parameters,” Opt. Mater. Express, in press (2018).

Cerutti, L.

Y. Laaroussi, D. Sanchez, L. Cerutti, C. Levallois, C. Paranthoën, A. Rumeau, C. Tourte, and G. Almuneau, “Oxide-confined mid-infrared VCSELs,” Electron. Lett. 48(25), 1616–1618 (2012).
[Crossref]

Chan, R.

G. Walter, N. Holonyak, M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 85(20), 4768–4770 (2004).
[Crossref]

Chang-Hasnain, C. J.

P.-C. Ku and C. J. Chang-Hasnain, “Thermal oxidation of AlGaAs: modeling and process control,” IEEE J. Quantum Electron. 39(4), 577–585 (2003).
[Crossref]

Chen, E. I.

E. I. Chen, N. Holonyak, and S. A. Maranowski, “Al x Ga 1−x As–GaAs metal–oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs,” Appl. Phys. Lett. 66(20), 2688–2690 (1995).
[Crossref]

S. A. Maranowski, A. R. Sugg, E. I. Chen, and N. Holonyak., “Native oxide top- and bottom-confined narrow stripe p-n AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure laser,” Appl. Phys. Lett. 63(12), 1660–1662 (1993).
[Crossref]

Cheng, X.-C.

A. C. Alonzo, X.-C. Cheng, and T. C. McGill, “Effect of cylindrical geometry on the wet thermal oxidation of AlAs,” J. Appl. Phys. 84(12), 6901–6905 (1998).
[Crossref]

Cherkashin, N.

F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
[Crossref]

Choquette, K. D.

C. I. H. Ashby, J. P. Sullivan, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Wet oxidation of AlGaAs: the role of hydrogen,” J. Appl. Phys. 82(6), 3134–3136 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. IEEE J. Of 3(3), 916–926 (1997).
[Crossref]

Chou, Y. T.

S.-C. Ko, S. Lee, and Y. T. Chou, “Radial boundary layer diffusion in a cylindrical sandwich composite with application to oxidation of GaAs/AlAs/GaAs,” Mater. Chem. Phys. 115(1), 488–492 (2009).
[Crossref]

S.-C. Ko, S. Lee, and Y. T. Chou, “Wet Oxidation in a Square Sandwich Composite of GaAs/AlAs/GaAs,” J. Electron. Mater. 36(12), 1652–1657 (2007).
[Crossref]

S.-C. Ko, S. Lee, H.-L. Wang, and Y. T. Chou, “Wet oxidation kinetics of AlAs at elevated temperatures,” J. Mater. Res. 18(05), 1027–1030 (2003).
[Crossref]

Chouchane, F.

F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
[Crossref]

Cockerill, T. M.

M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, and T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett. 68(14), 1898–1900 (1996).
[Crossref]

Coldren, L. A.

A. Fiore, Y. A. Akulova, J. Ko, E. R. Hegblom, and L. A. Coldren, “Postgrowth tuning of semiconductor vertical cavities for multiple-wavelength laser arrays,” IEEE J. Quantum Electron. 35(4), 616–623 (1999).
[Crossref]

R. L. Naone and L. A. Coldren, “Surface energy model for the thickness dependence of the lateral oxidation of AlAs,” J. Appl. Phys. 82(5), 2277–2280 (1997).
[Crossref]

Condé, M.

I. Suárez, G. Almuneau, M. Condé, A. Arnoult, and C. Fontaine, “Optimal control of AlAs oxidation via digital alloy heterostructure compositions,” J. Phys. Appl. Phys. 42(17), 175105 (2009).
[Crossref]

Dagenais, M.

B. Koley, M. Dagenais, R. Jin, J. Pham, G. Simonis, G. McLane, and D. Stone, “Kinetics of growth of AlAs oxide in selectively oxidized vertical cavity surface emitting lasers,” J. Appl. Phys. 82(9), 4586–4589 (1997).
[Crossref]

Dallesasse, J. M.

J. M. Dallesasse and D. G. Deppe, “III-V Oxidation: Discoveries and Applications in Vertical-Cavity Surface-Emitting Lasers,” Proc. IEEE 101(10), 2234–2242 (2013).
[Crossref]

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in Al x Ga 1−x As‐AlAs‐GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

J. M. Dallesasse, N. El‐Zein, N. Holonyak, K. C. Hsieh, R. D. Burnham, and R. D. Dupuis, “Environmental degradation of Al x Ga 1−x As‐GaAs quantum‐well heterostructures,” J. Appl. Phys. 68(5), 2235–2238 (1990).
[Crossref]

De Mesel, K.

K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, and P. Van Daele, “First demonstration of 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36(12), 1028 (2000).
[Crossref]

Deal, B. E.

B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
[Crossref]

Deppe, D. G.

J. M. Dallesasse and D. G. Deppe, “III-V Oxidation: Discoveries and Applications in Vertical-Cavity Surface-Emitting Lasers,” Proc. IEEE 101(10), 2234–2242 (2013).
[Crossref]

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97–99 (1994).
[Crossref]

Dupuis, R. D.

J. M. Dallesasse, N. El‐Zein, N. Holonyak, K. C. Hsieh, R. D. Burnham, and R. D. Dupuis, “Environmental degradation of Al x Ga 1−x As‐GaAs quantum‐well heterostructures,” J. Appl. Phys. 68(5), 2235–2238 (1990).
[Crossref]

El-Zein, N.

J. M. Dallesasse, N. El‐Zein, N. Holonyak, K. C. Hsieh, R. D. Burnham, and R. D. Dupuis, “Environmental degradation of Al x Ga 1−x As‐GaAs quantum‐well heterostructures,” J. Appl. Phys. 68(5), 2235–2238 (1990).
[Crossref]

Feng, M.

G. Walter, N. Holonyak, M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 85(20), 4768–4770 (2004).
[Crossref]

Fiore, A.

A. Fiore, Y. A. Akulova, J. Ko, E. R. Hegblom, and L. A. Coldren, “Postgrowth tuning of semiconductor vertical cavities for multiple-wavelength laser arrays,” IEEE J. Quantum Electron. 35(4), 616–623 (1999).
[Crossref]

Follstaedt, D. M.

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. IEEE J. Of 3(3), 916–926 (1997).
[Crossref]

Fontaine, C.

S. Calvez, P.-F. Calmon, A. Arnoult, O. Gauthier-Lafaye, C. Fontaine, and G. Almuneau, “Low-loss buried AlGaAs/AlOx waveguides using a quasi-planar process,” Opt. Express 25(16), 19275–19280 (2017).
[Crossref] [PubMed]

F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
[Crossref]

I. Suárez, G. Almuneau, M. Condé, A. Arnoult, and C. Fontaine, “Optimal control of AlAs oxidation via digital alloy heterostructure compositions,” J. Phys. Appl. Phys. 42(17), 175105 (2009).
[Crossref]

Fujita, K.

P. O. Vaccaro, K. Koizumi, K. Fujita, and T. Ohachi, “AlAs oxidation process in GaAs/AlGaAs/AlAs heterostructures grown by molecular beam epitaxy on GaAs (n11) A substrates,” Microelectronics J. 30(4-5), 387–391 (1999).
[Crossref]

K. Koizumi, P. O. Vaccaro, K. Fujita, M. Tateuchi, and T. Ohachi, “Lateral wet oxidation of AlAs layer in GaAs/AlAs heterostructures grown by MBE on GaAs (n11) A substrates,” J. Cryst. Growth 198, 1136–1140 (1999).
[Crossref]

Gauthier-Lafaye, O.

S. Calvez, P.-F. Calmon, A. Arnoult, O. Gauthier-Lafaye, C. Fontaine, and G. Almuneau, “Low-loss buried AlGaAs/AlOx waveguides using a quasi-planar process,” Opt. Express 25(16), 19275–19280 (2017).
[Crossref] [PubMed]

S. Calvez, G. Lafleur, A. Larrue, P.-F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically Coupled Microdisk Resonators Using AlGaAs/AlOx Technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

Gavrilovic, P.

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in Al x Ga 1−x As‐AlAs‐GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

Geib, K. M.

C. I. H. Ashby, J. P. Sullivan, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Wet oxidation of AlGaAs: the role of hydrogen,” J. Appl. Phys. 82(6), 3134–3136 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. IEEE J. Of 3(3), 916–926 (1997).
[Crossref]

Giudice, G. E.

M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, and T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett. 68(14), 1898–1900 (1996).
[Crossref]

Grove, A. S.

B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
[Crossref]

Hammons, B. E.

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. IEEE J. Of 3(3), 916–926 (1997).
[Crossref]

Hegblom, E. R.

A. Fiore, Y. A. Akulova, J. Ko, E. R. Hegblom, and L. A. Coldren, “Postgrowth tuning of semiconductor vertical cavities for multiple-wavelength laser arrays,” IEEE J. Quantum Electron. 35(4), 616–623 (1999).
[Crossref]

Holonyak, N.

G. Walter, N. Holonyak, M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 85(20), 4768–4770 (2004).
[Crossref]

E. I. Chen, N. Holonyak, and S. A. Maranowski, “Al x Ga 1−x As–GaAs metal–oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs,” Appl. Phys. Lett. 66(20), 2688–2690 (1995).
[Crossref]

S. A. Maranowski, A. R. Sugg, E. I. Chen, and N. Holonyak., “Native oxide top- and bottom-confined narrow stripe p-n AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure laser,” Appl. Phys. Lett. 63(12), 1660–1662 (1993).
[Crossref]

J. M. Dallesasse, N. El‐Zein, N. Holonyak, K. C. Hsieh, R. D. Burnham, and R. D. Dupuis, “Environmental degradation of Al x Ga 1−x As‐GaAs quantum‐well heterostructures,” J. Appl. Phys. 68(5), 2235–2238 (1990).
[Crossref]

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in Al x Ga 1−x As‐AlAs‐GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

Hopkinson, M.

K. Welna, M. Hugues, C. P. Reardon, L. O’Faolain, M. Hopkinson, and T. F. Krauss, “Photonic crystal nanocavities in GaAs/AlGaAs with oxidised bottom cladding,” Photonics Nanostructures – Fundam. Appl. 11, 139–144 (2013).

Hou, H. Q.

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. IEEE J. Of 3(3), 916–926 (1997).
[Crossref]

C. I. H. Ashby, J. P. Sullivan, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Wet oxidation of AlGaAs: the role of hydrogen,” J. Appl. Phys. 82(6), 3134–3136 (1997).
[Crossref]

Hsieh, K. C.

J. M. Dallesasse, N. El‐Zein, N. Holonyak, K. C. Hsieh, R. D. Burnham, and R. D. Dupuis, “Environmental degradation of Al x Ga 1−x As‐GaAs quantum‐well heterostructures,” J. Appl. Phys. 68(5), 2235–2238 (1990).
[Crossref]

Huffaker, D. L.

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97–99 (1994).
[Crossref]

Hugues, M.

K. Welna, M. Hugues, C. P. Reardon, L. O’Faolain, M. Hopkinson, and T. F. Krauss, “Photonic crystal nanocavities in GaAs/AlGaAs with oxidised bottom cladding,” Photonics Nanostructures – Fundam. Appl. 11, 139–144 (2013).

Hull, R.

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. IEEE J. Of 3(3), 916–926 (1997).
[Crossref]

Jin, R.

B. Koley, M. Dagenais, R. Jin, J. Pham, G. Simonis, G. McLane, and D. Stone, “Kinetics of growth of AlAs oxide in selectively oxidized vertical cavity surface emitting lasers,” J. Appl. Phys. 82(9), 4586–4589 (1997).
[Crossref]

Kaliski, R. W.

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in Al x Ga 1−x As‐AlAs‐GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

Kasahara, K.

T. Yoshikawa, H. Saito, H. Kosaka, Y. Sugimoto, and K. Kasahara, “Self-stopping selective-oxidation process of AlAs,” Appl. Phys. Lett. 72(18), 2310–2312 (1998).
[Crossref]

Ko, J.

A. Fiore, Y. A. Akulova, J. Ko, E. R. Hegblom, and L. A. Coldren, “Postgrowth tuning of semiconductor vertical cavities for multiple-wavelength laser arrays,” IEEE J. Quantum Electron. 35(4), 616–623 (1999).
[Crossref]

Ko, S.-C.

S.-C. Ko, S. Lee, and Y. T. Chou, “Radial boundary layer diffusion in a cylindrical sandwich composite with application to oxidation of GaAs/AlAs/GaAs,” Mater. Chem. Phys. 115(1), 488–492 (2009).
[Crossref]

S.-C. Ko, S. Lee, and Y. T. Chou, “Wet Oxidation in a Square Sandwich Composite of GaAs/AlAs/GaAs,” J. Electron. Mater. 36(12), 1652–1657 (2007).
[Crossref]

S.-C. Ko, S. Lee, H.-L. Wang, and Y. T. Chou, “Wet oxidation kinetics of AlAs at elevated temperatures,” J. Mater. Res. 18(05), 1027–1030 (2003).
[Crossref]

Koizumi, K.

K. Koizumi, P. O. Vaccaro, K. Fujita, M. Tateuchi, and T. Ohachi, “Lateral wet oxidation of AlAs layer in GaAs/AlAs heterostructures grown by MBE on GaAs (n11) A substrates,” J. Cryst. Growth 198, 1136–1140 (1999).
[Crossref]

P. O. Vaccaro, K. Koizumi, K. Fujita, and T. Ohachi, “AlAs oxidation process in GaAs/AlGaAs/AlAs heterostructures grown by molecular beam epitaxy on GaAs (n11) A substrates,” Microelectronics J. 30(4-5), 387–391 (1999).
[Crossref]

Koley, B.

B. Koley, M. Dagenais, R. Jin, J. Pham, G. Simonis, G. McLane, and D. Stone, “Kinetics of growth of AlAs oxide in selectively oxidized vertical cavity surface emitting lasers,” J. Appl. Phys. 82(9), 4586–4589 (1997).
[Crossref]

Kosaka, H.

T. Yoshikawa, H. Saito, H. Kosaka, Y. Sugimoto, and K. Kasahara, “Self-stopping selective-oxidation process of AlAs,” Appl. Phys. Lett. 72(18), 2310–2312 (1998).
[Crossref]

Krauss, T. F.

K. Welna, M. Hugues, C. P. Reardon, L. O’Faolain, M. Hopkinson, and T. F. Krauss, “Photonic crystal nanocavities in GaAs/AlGaAs with oxidised bottom cladding,” Photonics Nanostructures – Fundam. Appl. 11, 139–144 (2013).

Ku, P.-C.

P.-C. Ku and C. J. Chang-Hasnain, “Thermal oxidation of AlGaAs: modeling and process control,” IEEE J. Quantum Electron. 39(4), 577–585 (2003).
[Crossref]

Kumar, K.

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97–99 (1994).
[Crossref]

Laaroussi, Y.

Y. Laaroussi, D. Sanchez, L. Cerutti, C. Levallois, C. Paranthoën, A. Rumeau, C. Tourte, and G. Almuneau, “Oxide-confined mid-infrared VCSELs,” Electron. Lett. 48(25), 1616–1618 (2012).
[Crossref]

Lacoste, G.

F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
[Crossref]

Lafleur, G.

S. Calvez, G. Lafleur, A. Larrue, P.-F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically Coupled Microdisk Resonators Using AlGaAs/AlOx Technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

G. Lafleur, G. Almuneau, A. Arnoult, S. Calvez, and H. Camon, “Anisotropy in the wet thermal oxidation of AlGaAs : influences of process parameters,” Opt. Mater. Express, in press (2018).

Larrue, A.

S. Calvez, G. Lafleur, A. Larrue, P.-F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically Coupled Microdisk Resonators Using AlGaAs/AlOx Technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

Lee, S.

S.-C. Ko, S. Lee, and Y. T. Chou, “Radial boundary layer diffusion in a cylindrical sandwich composite with application to oxidation of GaAs/AlAs/GaAs,” Mater. Chem. Phys. 115(1), 488–492 (2009).
[Crossref]

S.-C. Ko, S. Lee, and Y. T. Chou, “Wet Oxidation in a Square Sandwich Composite of GaAs/AlAs/GaAs,” J. Electron. Mater. 36(12), 1652–1657 (2007).
[Crossref]

S.-C. Ko, S. Lee, H.-L. Wang, and Y. T. Chou, “Wet oxidation kinetics of AlAs at elevated temperatures,” J. Mater. Res. 18(05), 1027–1030 (2003).
[Crossref]

Levallois, C.

Y. Laaroussi, D. Sanchez, L. Cerutti, C. Levallois, C. Paranthoën, A. Rumeau, C. Tourte, and G. Almuneau, “Oxide-confined mid-infrared VCSELs,” Electron. Lett. 48(25), 1616–1618 (2012).
[Crossref]

Maranowski, S. A.

E. I. Chen, N. Holonyak, and S. A. Maranowski, “Al x Ga 1−x As–GaAs metal–oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs,” Appl. Phys. Lett. 66(20), 2688–2690 (1995).
[Crossref]

S. A. Maranowski, A. R. Sugg, E. I. Chen, and N. Holonyak., “Native oxide top- and bottom-confined narrow stripe p-n AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure laser,” Appl. Phys. Lett. 63(12), 1660–1662 (1993).
[Crossref]

Mathes, D.

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. IEEE J. Of 3(3), 916–926 (1997).
[Crossref]

McGill, T. C.

A. C. Alonzo, X.-C. Cheng, and T. C. McGill, “Effect of cylindrical geometry on the wet thermal oxidation of AlAs,” J. Appl. Phys. 84(12), 6901–6905 (1998).
[Crossref]

McLane, G.

B. Koley, M. Dagenais, R. Jin, J. Pham, G. Simonis, G. McLane, and D. Stone, “Kinetics of growth of AlAs oxide in selectively oxidized vertical cavity surface emitting lasers,” J. Appl. Phys. 82(9), 4586–4589 (1997).
[Crossref]

Moerman, I.

K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, and P. Van Daele, “First demonstration of 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36(12), 1028 (2000).
[Crossref]

Nam, D. W.

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in Al x Ga 1−x As‐AlAs‐GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

Naone, R. L.

R. L. Naone and L. A. Coldren, “Surface energy model for the thickness dependence of the lateral oxidation of AlAs,” J. Appl. Phys. 82(5), 2277–2280 (1997).
[Crossref]

O’Faolain, L.

K. Welna, M. Hugues, C. P. Reardon, L. O’Faolain, M. Hopkinson, and T. F. Krauss, “Photonic crystal nanocavities in GaAs/AlGaAs with oxidised bottom cladding,” Photonics Nanostructures – Fundam. Appl. 11, 139–144 (2013).

Ochiai, M.

M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, and T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett. 68(14), 1898–1900 (1996).
[Crossref]

Ohachi, T.

K. Koizumi, P. O. Vaccaro, K. Fujita, M. Tateuchi, and T. Ohachi, “Lateral wet oxidation of AlAs layer in GaAs/AlAs heterostructures grown by MBE on GaAs (n11) A substrates,” J. Cryst. Growth 198, 1136–1140 (1999).
[Crossref]

P. O. Vaccaro, K. Koizumi, K. Fujita, and T. Ohachi, “AlAs oxidation process in GaAs/AlGaAs/AlAs heterostructures grown by molecular beam epitaxy on GaAs (n11) A substrates,” Microelectronics J. 30(4-5), 387–391 (1999).
[Crossref]

Paranthoën, C.

Y. Laaroussi, D. Sanchez, L. Cerutti, C. Levallois, C. Paranthoën, A. Rumeau, C. Tourte, and G. Almuneau, “Oxide-confined mid-infrared VCSELs,” Electron. Lett. 48(25), 1616–1618 (2012).
[Crossref]

Pham, J.

B. Koley, M. Dagenais, R. Jin, J. Pham, G. Simonis, G. McLane, and D. Stone, “Kinetics of growth of AlAs oxide in selectively oxidized vertical cavity surface emitting lasers,” J. Appl. Phys. 82(9), 4586–4589 (1997).
[Crossref]

Reardon, C. P.

K. Welna, M. Hugues, C. P. Reardon, L. O’Faolain, M. Hopkinson, and T. F. Krauss, “Photonic crystal nanocavities in GaAs/AlGaAs with oxidised bottom cladding,” Photonics Nanostructures – Fundam. Appl. 11, 139–144 (2013).

Rogers, T. J.

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97–99 (1994).
[Crossref]

Rumeau, A.

Y. Laaroussi, D. Sanchez, L. Cerutti, C. Levallois, C. Paranthoën, A. Rumeau, C. Tourte, and G. Almuneau, “Oxide-confined mid-infrared VCSELs,” Electron. Lett. 48(25), 1616–1618 (2012).
[Crossref]

Saito, H.

T. Yoshikawa, H. Saito, H. Kosaka, Y. Sugimoto, and K. Kasahara, “Self-stopping selective-oxidation process of AlAs,” Appl. Phys. Lett. 72(18), 2310–2312 (1998).
[Crossref]

Sanchez, D.

Y. Laaroussi, D. Sanchez, L. Cerutti, C. Levallois, C. Paranthoën, A. Rumeau, C. Tourte, and G. Almuneau, “Oxide-confined mid-infrared VCSELs,” Electron. Lett. 48(25), 1616–1618 (2012).
[Crossref]

Scott, J. W.

M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, and T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett. 68(14), 1898–1900 (1996).
[Crossref]

Simonis, G.

B. Koley, M. Dagenais, R. Jin, J. Pham, G. Simonis, G. McLane, and D. Stone, “Kinetics of growth of AlAs oxide in selectively oxidized vertical cavity surface emitting lasers,” J. Appl. Phys. 82(9), 4586–4589 (1997).
[Crossref]

Stone, D.

B. Koley, M. Dagenais, R. Jin, J. Pham, G. Simonis, G. McLane, and D. Stone, “Kinetics of growth of AlAs oxide in selectively oxidized vertical cavity surface emitting lasers,” J. Appl. Phys. 82(9), 4586–4589 (1997).
[Crossref]

Suárez, I.

I. Suárez, G. Almuneau, M. Condé, A. Arnoult, and C. Fontaine, “Optimal control of AlAs oxidation via digital alloy heterostructure compositions,” J. Phys. Appl. Phys. 42(17), 175105 (2009).
[Crossref]

Sugg, A. R.

S. A. Maranowski, A. R. Sugg, E. I. Chen, and N. Holonyak., “Native oxide top- and bottom-confined narrow stripe p-n AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure laser,” Appl. Phys. Lett. 63(12), 1660–1662 (1993).
[Crossref]

Sugimoto, Y.

T. Yoshikawa, H. Saito, H. Kosaka, Y. Sugimoto, and K. Kasahara, “Self-stopping selective-oxidation process of AlAs,” Appl. Phys. Lett. 72(18), 2310–2312 (1998).
[Crossref]

Sullivan, J. P.

C. I. H. Ashby, J. P. Sullivan, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Wet oxidation of AlGaAs: the role of hydrogen,” J. Appl. Phys. 82(6), 3134–3136 (1997).
[Crossref]

Sys, C.

K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, and P. Van Daele, “First demonstration of 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36(12), 1028 (2000).
[Crossref]

Tateuchi, M.

K. Koizumi, P. O. Vaccaro, K. Fujita, M. Tateuchi, and T. Ohachi, “Lateral wet oxidation of AlAs layer in GaAs/AlAs heterostructures grown by MBE on GaAs (n11) A substrates,” J. Cryst. Growth 198, 1136–1140 (1999).
[Crossref]

Temkin, H.

M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, and T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett. 68(14), 1898–1900 (1996).
[Crossref]

Tourte, C.

Y. Laaroussi, D. Sanchez, L. Cerutti, C. Levallois, C. Paranthoën, A. Rumeau, C. Tourte, and G. Almuneau, “Oxide-confined mid-infrared VCSELs,” Electron. Lett. 48(25), 1616–1618 (2012).
[Crossref]

Twesten, R. D.

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. IEEE J. Of 3(3), 916–926 (1997).
[Crossref]

Vaccaro, P. O.

K. Koizumi, P. O. Vaccaro, K. Fujita, M. Tateuchi, and T. Ohachi, “Lateral wet oxidation of AlAs layer in GaAs/AlAs heterostructures grown by MBE on GaAs (n11) A substrates,” J. Cryst. Growth 198, 1136–1140 (1999).
[Crossref]

P. O. Vaccaro, K. Koizumi, K. Fujita, and T. Ohachi, “AlAs oxidation process in GaAs/AlGaAs/AlAs heterostructures grown by molecular beam epitaxy on GaAs (n11) A substrates,” Microelectronics J. 30(4-5), 387–391 (1999).
[Crossref]

Van Daele, P.

K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, and P. Van Daele, “First demonstration of 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36(12), 1028 (2000).
[Crossref]

Verstuyft, S.

K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, and P. Van Daele, “First demonstration of 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36(12), 1028 (2000).
[Crossref]

Vesely, E. J.

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in Al x Ga 1−x As‐AlAs‐GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

Walter, G.

G. Walter, N. Holonyak, M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 85(20), 4768–4770 (2004).
[Crossref]

Wang, H.-L.

S.-C. Ko, S. Lee, H.-L. Wang, and Y. T. Chou, “Wet oxidation kinetics of AlAs at elevated temperatures,” J. Mater. Res. 18(05), 1027–1030 (2003).
[Crossref]

Welna, K.

K. Welna, M. Hugues, C. P. Reardon, L. O’Faolain, M. Hopkinson, and T. F. Krauss, “Photonic crystal nanocavities in GaAs/AlGaAs with oxidised bottom cladding,” Photonics Nanostructures – Fundam. Appl. 11, 139–144 (2013).

Yoshikawa, T.

T. Yoshikawa, H. Saito, H. Kosaka, Y. Sugimoto, and K. Kasahara, “Self-stopping selective-oxidation process of AlAs,” Appl. Phys. Lett. 72(18), 2310–2312 (1998).
[Crossref]

Appl. Phys. Lett. (8)

E. I. Chen, N. Holonyak, and S. A. Maranowski, “Al x Ga 1−x As–GaAs metal–oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs,” Appl. Phys. Lett. 66(20), 2688–2690 (1995).
[Crossref]

G. Walter, N. Holonyak, M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 85(20), 4768–4770 (2004).
[Crossref]

M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, and T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett. 68(14), 1898–1900 (1996).
[Crossref]

F. Chouchane, G. Almuneau, N. Cherkashin, A. Arnoult, G. Lacoste, and C. Fontaine, “Local stress-induced effects on AlGaAs/AlOx oxidation front shape,” Appl. Phys. Lett. 105(4), 041909 (2014).
[Crossref]

T. Yoshikawa, H. Saito, H. Kosaka, Y. Sugimoto, and K. Kasahara, “Self-stopping selective-oxidation process of AlAs,” Appl. Phys. Lett. 72(18), 2310–2312 (1998).
[Crossref]

J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in Al x Ga 1−x As‐AlAs‐GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24), 2436–2438 (1990).
[Crossref]

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97–99 (1994).
[Crossref]

S. A. Maranowski, A. R. Sugg, E. I. Chen, and N. Holonyak., “Native oxide top- and bottom-confined narrow stripe p-n AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure laser,” Appl. Phys. Lett. 63(12), 1660–1662 (1993).
[Crossref]

Electron. Lett. (2)

K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, and P. Van Daele, “First demonstration of 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36(12), 1028 (2000).
[Crossref]

Y. Laaroussi, D. Sanchez, L. Cerutti, C. Levallois, C. Paranthoën, A. Rumeau, C. Tourte, and G. Almuneau, “Oxide-confined mid-infrared VCSELs,” Electron. Lett. 48(25), 1616–1618 (2012).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Fiore, Y. A. Akulova, J. Ko, E. R. Hegblom, and L. A. Coldren, “Postgrowth tuning of semiconductor vertical cavities for multiple-wavelength laser arrays,” IEEE J. Quantum Electron. 35(4), 616–623 (1999).
[Crossref]

P.-C. Ku and C. J. Chang-Hasnain, “Thermal oxidation of AlGaAs: modeling and process control,” IEEE J. Quantum Electron. 39(4), 577–585 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. IEEE J. Of (1)

K. D. Choquette, K. M. Geib, C. I. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. IEEE J. Of 3(3), 916–926 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Calvez, G. Lafleur, A. Larrue, P.-F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically Coupled Microdisk Resonators Using AlGaAs/AlOx Technology,” IEEE Photonics Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

J. Appl. Phys. (6)

J. M. Dallesasse, N. El‐Zein, N. Holonyak, K. C. Hsieh, R. D. Burnham, and R. D. Dupuis, “Environmental degradation of Al x Ga 1−x As‐GaAs quantum‐well heterostructures,” J. Appl. Phys. 68(5), 2235–2238 (1990).
[Crossref]

C. I. H. Ashby, J. P. Sullivan, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Wet oxidation of AlGaAs: the role of hydrogen,” J. Appl. Phys. 82(6), 3134–3136 (1997).
[Crossref]

B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
[Crossref]

R. L. Naone and L. A. Coldren, “Surface energy model for the thickness dependence of the lateral oxidation of AlAs,” J. Appl. Phys. 82(5), 2277–2280 (1997).
[Crossref]

B. Koley, M. Dagenais, R. Jin, J. Pham, G. Simonis, G. McLane, and D. Stone, “Kinetics of growth of AlAs oxide in selectively oxidized vertical cavity surface emitting lasers,” J. Appl. Phys. 82(9), 4586–4589 (1997).
[Crossref]

A. C. Alonzo, X.-C. Cheng, and T. C. McGill, “Effect of cylindrical geometry on the wet thermal oxidation of AlAs,” J. Appl. Phys. 84(12), 6901–6905 (1998).
[Crossref]

J. Cryst. Growth (1)

K. Koizumi, P. O. Vaccaro, K. Fujita, M. Tateuchi, and T. Ohachi, “Lateral wet oxidation of AlAs layer in GaAs/AlAs heterostructures grown by MBE on GaAs (n11) A substrates,” J. Cryst. Growth 198, 1136–1140 (1999).
[Crossref]

J. Electron. Mater. (1)

S.-C. Ko, S. Lee, and Y. T. Chou, “Wet Oxidation in a Square Sandwich Composite of GaAs/AlAs/GaAs,” J. Electron. Mater. 36(12), 1652–1657 (2007).
[Crossref]

J. Mater. Res. (1)

S.-C. Ko, S. Lee, H.-L. Wang, and Y. T. Chou, “Wet oxidation kinetics of AlAs at elevated temperatures,” J. Mater. Res. 18(05), 1027–1030 (2003).
[Crossref]

J. Phys. Appl. Phys. (1)

I. Suárez, G. Almuneau, M. Condé, A. Arnoult, and C. Fontaine, “Optimal control of AlAs oxidation via digital alloy heterostructure compositions,” J. Phys. Appl. Phys. 42(17), 175105 (2009).
[Crossref]

Mater. Chem. Phys. (1)

S.-C. Ko, S. Lee, and Y. T. Chou, “Radial boundary layer diffusion in a cylindrical sandwich composite with application to oxidation of GaAs/AlAs/GaAs,” Mater. Chem. Phys. 115(1), 488–492 (2009).
[Crossref]

Microelectronics J. (1)

P. O. Vaccaro, K. Koizumi, K. Fujita, and T. Ohachi, “AlAs oxidation process in GaAs/AlGaAs/AlAs heterostructures grown by molecular beam epitaxy on GaAs (n11) A substrates,” Microelectronics J. 30(4-5), 387–391 (1999).
[Crossref]

Opt. Express (1)

Photonics Nanostructures – Fundam. Appl. (1)

K. Welna, M. Hugues, C. P. Reardon, L. O’Faolain, M. Hopkinson, and T. F. Krauss, “Photonic crystal nanocavities in GaAs/AlGaAs with oxidised bottom cladding,” Photonics Nanostructures – Fundam. Appl. 11, 139–144 (2013).

Proc. IEEE (1)

J. M. Dallesasse and D. G. Deppe, “III-V Oxidation: Discoveries and Applications in Vertical-Cavity Surface-Emitting Lasers,” Proc. IEEE 101(10), 2234–2242 (2013).
[Crossref]

Other (1)

G. Lafleur, G. Almuneau, A. Arnoult, S. Calvez, and H. Camon, “Anisotropy in the wet thermal oxidation of AlGaAs : influences of process parameters,” Opt. Mater. Express, in press (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Left: Timed microscope images taken during the process showing of the evolution of the oxidation front for a 30µm-radius mesa and, right, extracted evolution along the <100> and <110> directions together with the fitted isotropic model simulation.
Fig. 2
Fig. 2 Illustration of the calculation of the sampled “new” oxidation front (R(θj,ti + 1), red points) by point-like anisotropic oxidation (black crosses) starting from the sampled “old” oxidation front (R(θj,ti), blue crosses). The dashed grey lines show the limits of the considered angular sectors.
Fig. 3
Fig. 3 Impact of the diffusion coefficient and reaction rate on the dynamics of the oxidation of a 30-µm-radius mesa. The dashed curves represents the dimensions along the <110> direction while the solid lines are taken along the <100> direction.
Fig. 4
Fig. 4 Impact of the degree of anisotropy on the dynamics of the oxidation of a 30-µm-radius mesa. The dashed curves represents the dimensions along the <110> direction while the solid lines are taken along the <100> direction. Inset: Calculated difference between the <100> and <110> oxidation lengths at t = 32 min (L~Rmesa/2) as a function of the anisotropy coefficient, b.
Fig. 5
Fig. 5 Temporal dynamics of the experimental anisotropic oxidation of a 30-µm-radius mesa fitted using anisotropic model.
Fig. 6
Fig. 6 Left: Oxidation fronts as calculated with the proposed anisotropic model compared to their respective experimental image (of Fig. 1 – with 30µm-radius mesa). – right: zoom-in version for t = 51'13”.
Fig. 7
Fig. 7 Angular distribution of the error between the modelled and extracted experimental oxidation fronts after 39 min 25 s of oxidation.
Fig. 8
Fig. 8 The root-mean-square error between the modelled and extracted experimental oxidation fronts as function of oxidation time.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

2AlAs+ 6H 2 O Al 2 O 3 + As 2 O 3 +6H As 2 O 3 + 3H 2 2As+ 3H 2 O As 2 O 3 +6H2As+ 3H 2 O
C( x ,t) t = ( D C( x ,t )v( x ,t )C( x ,t ) )
D   C( x ext ) n ext =h( C * C( x ext ) )
D C( x int ) n int =max( k n int ) C( x int )
σ( x int )= d dt ( x int n )= max( k n int ) C( x int ) N
C t =D[ ²C ρ² + 1 ρ C ρ + 1 ρ² ²C θ² + ²C z² ]v[ C ρ + C ρθ + C z ]
D[ C ρ u ρ + C ρθ   u θ + C z u Z ] n ext =h( C * C )
Nσ=D[ C ρ u ρ + C ρθ   u θ + C z u Z ] n int =max( k n int )C
t= x ext x int d x σ( x )
t= 1 B [ ( A+ R mesa )( R mesa R )+ ( R mesa R ) 2 2 +( R mesa R ) R R mesa + R 2 ln( R R mesa ) ]
σ(R)= D C * R mesa /N D( 1/h R mesa +1/kR )+ln( R mesa /R )
k ~k( φ )( cos( φ ) u X +sin( φ )  u Y )+k  u Z
k( φ )= k c,0 /2+ n=1 k s,n sin( nφ )+ k c,n cos( nφ )
k( φ )= k c,0 /2+ n=1 k s,n sin( nNφ )+ k c,n cos( nNφ )
R( θ j , t i+1 )=R( θ j , t i )max( k n int )/ k mean σ mean,i Δ t i
k( φ )= k c,0 2 + k s,1 sin( 4φ )+ k c,1 cos( 4φ )= k mean ( 1 b 2 +b sin 2 ( 2φ ) )