Abstract

The diamagnetic performance of GeS2-Ga2S3 and GeS2-Ga2S3-PbI2 chalcogenide glasses were investigated, and the composition, wavelength and temperature dependences of the Verdet constant were discussed in detail. It indicates that the contributions to the Verdet constant for each kind of ion are in the order of VPb>VGa>VGe in these chalcogenide glasses, and the Becquerel rule is proved to be an effective guidance for predicting the Verdet constant value. A large Verdet constant is obtained in 68GeS2·17Ga2S3·15PbI2 composition glass and the value is 0.230 min·G−1·cm−1 at 635nm, which is greatly larger than those of commercial diamagnetic glasses. Besides, the temperature coefficient of Verdet constant can be regarded as a constant between 278 and 368 K, indicating these chalcogenide glasses are good candidates for magneto-optical devices in temperature instability conditions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High Verdet constants and diamagnetic responses of GeS2-In2S3-PbI2 chalcogenide glasses for integrated optics applications

Yantao Xu, Haitao Guo, Xusheng Xiao, Pengfei Wang, Xiaoxia Cui, Min Lu, Changgui Lin, Shixun Dai, and Bo Peng
Opt. Express 25(17) 20410-20420 (2017)

Temperature dependence of the Faraday effect in As–S glass fiber

Heihachi Sato, Masatoshi Kawase, and Mitsunori Saito
Appl. Opt. 24(15) 2300-2303 (1985)

Enhanced Raman gain of Ge–Ga–Sb–S chalcogenide glass for highly nonlinear microstructured optical fibers

Tomas Kohoutek, Xin Yan, Teruo W. Shiosaka, Spyros N. Yannopoulos, Athanassios Chrissanthopoulos, Takenobu Suzuki, and Yasutake Ohishi
J. Opt. Soc. Am. B 28(9) 2284-2290 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. J. Firby and A. Y. Elezzabi, “High-speed nonreciprocal magnetoplasmonic waveguide phase shifter,” Optica 2(7), 598–606 (2015).
    [Crossref]
  2. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B 22(1), 240–253 (2005).
    [Crossref]
  3. L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
    [Crossref]
  4. M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4(1), 1558 (2013).
    [Crossref] [PubMed]
  5. Y. Xu, H. Guo, X. Xiao, P. Wang, X. Cui, M. Lu, C. Lin, S. Dai, and B. Peng, “High Verdet constants and diamagnetic responses of GeS2-In2S3-PbI2 chalcogenide glasses for integrated optics applications,” Opt. Express 25(17), 20410–20420 (2017).
    [Crossref] [PubMed]
  6. A. Haddadpour, V. F. Nezhad, Z. Yu, and G. Veronis, “Highly compact magneto-optical switches for metal-dielectric-metal plasmonic waveguides,” Opt. Lett. 41(18), 4340–4343 (2016).
    [Crossref] [PubMed]
  7. B. Geist, R. Ronningen, A. Stolz, G. Bollen, and V. Kochergin, “Radiation stability of visible and near-infrared optical and magneto-optical properties of terbium gallium garnet crystals,” Appl. Opt. 54(10), 2866–2869 (2015).
    [Crossref] [PubMed]
  8. Z. Chen, L. Yang, X. Wang, and H. Yin, “High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal,” Opt. Lett. 41(11), 2580–2583 (2016).
    [Crossref] [PubMed]
  9. M. J. Weber, Handbook of Optical Materials (CRC Press, Florida, 2003), Chap. 2.
  10. A. Edgar, D. Giltrap, and D. R. MacFarlane, “Temperature dependence of Faraday rotation and magnetic susceptibility for Ce3+ and Pr3+ ions in fluorozirconate glass,” J. Non-Cryst. Solids 231(3), 257–267 (1998).
    [Crossref]
  11. M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
    [Crossref] [PubMed]
  12. J. Qiu and K. Hirao, “The Faraday effect in diamagnetic glasses,” J. Mater. Res. 13(5), 1358–1362 (1998).
    [Crossref]
  13. N. Ovcharenko and T. Smirnova, “High refractive index and magneto-optical glasses in the systems TeO2-WO3-Bi2O3 and TeO2-WO3-PbO,” J. Non-Cryst. Solids 291(1-2), 121–126 (2001).
    [Crossref]
  14. N. F. Borrelli, “Faraday rotation in glasses,” J. Chem. Phys. 41(11), 3289–3293 (1964).
    [Crossref]
  15. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [Crossref]
  16. H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
    [Crossref] [PubMed]
  17. A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
    [Crossref]
  18. T. Haizheng, Z. Xiujian, T. Wei, and M. Shun, “Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 1039–1045 (2006).
    [Crossref] [PubMed]
  19. A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of Far-Infrared-Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics,” Adv. Mater. 19(22), 3796–3800 (2007).
    [Crossref]
  20. L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
    [Crossref]
  21. Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
    [Crossref]
  22. G. Chen, Y. Xu, H. Guo, X. Cui, P. Wang, M. Lu, X. Xiao, Q. Guo, and B. Peng, “Magneto-optical effects of Ge-Ga-Sb(In)-S chalcogenide glasses with diamagnetic responses,” J. Am. Ceram. Soc. 100(7), 2914–2920 (2017).
    [Crossref]
  23. H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
    [Crossref]
  24. K. Abe, H. Takebe, and K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids 212(2-3), 143–150 (1997).
    [Crossref]
  25. J. Marvin, Weber, Handbook of Optical Materials (CRC Press, 2003), Section 2.7.1.
  26. H. Seito, M. Kawase, and M. Saito, “Temperature dependence of the Faraday effect in As-S glass fiber,” Appl. Opt. 24(15), 2300–2303 (1985).
    [Crossref] [PubMed]

2017 (2)

G. Chen, Y. Xu, H. Guo, X. Cui, P. Wang, M. Lu, X. Xiao, Q. Guo, and B. Peng, “Magneto-optical effects of Ge-Ga-Sb(In)-S chalcogenide glasses with diamagnetic responses,” J. Am. Ceram. Soc. 100(7), 2914–2920 (2017).
[Crossref]

Y. Xu, H. Guo, X. Xiao, P. Wang, X. Cui, M. Lu, C. Lin, S. Dai, and B. Peng, “High Verdet constants and diamagnetic responses of GeS2-In2S3-PbI2 chalcogenide glasses for integrated optics applications,” Opt. Express 25(17), 20410–20420 (2017).
[Crossref] [PubMed]

2016 (4)

2015 (2)

2013 (1)

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4(1), 1558 (2013).
[Crossref] [PubMed]

2011 (3)

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
[Crossref] [PubMed]

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

2007 (2)

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of Far-Infrared-Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

2006 (1)

T. Haizheng, Z. Xiujian, T. Wei, and M. Shun, “Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 1039–1045 (2006).
[Crossref] [PubMed]

2005 (2)

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B 22(1), 240–253 (2005).
[Crossref]

2001 (2)

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

N. Ovcharenko and T. Smirnova, “High refractive index and magneto-optical glasses in the systems TeO2-WO3-Bi2O3 and TeO2-WO3-PbO,” J. Non-Cryst. Solids 291(1-2), 121–126 (2001).
[Crossref]

1998 (2)

J. Qiu and K. Hirao, “The Faraday effect in diamagnetic glasses,” J. Mater. Res. 13(5), 1358–1362 (1998).
[Crossref]

A. Edgar, D. Giltrap, and D. R. MacFarlane, “Temperature dependence of Faraday rotation and magnetic susceptibility for Ce3+ and Pr3+ ions in fluorozirconate glass,” J. Non-Cryst. Solids 231(3), 257–267 (1998).
[Crossref]

1997 (1)

K. Abe, H. Takebe, and K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids 212(2-3), 143–150 (1997).
[Crossref]

1985 (1)

1964 (1)

N. F. Borrelli, “Faraday rotation in glasses,” J. Chem. Phys. 41(11), 3289–3293 (1964).
[Crossref]

Abe, K.

K. Abe, H. Takebe, and K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids 212(2-3), 143–150 (1997).
[Crossref]

Aggarwal, I. D.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Bahlmann, N.

Bi, L.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Bollen, G.

Borrelli, N. F.

N. F. Borrelli, “Faraday rotation in glasses,” J. Chem. Phys. 41(11), 3289–3293 (1964).
[Crossref]

Boussard-pledel, C.

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of Far-Infrared-Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Bureau, B.

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of Far-Infrared-Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Chen, F.

Chen, G.

G. Chen, Y. Xu, H. Guo, X. Cui, P. Wang, M. Lu, X. Xiao, Q. Guo, and B. Peng, “Magneto-optical effects of Ge-Ga-Sb(In)-S chalcogenide glasses with diamagnetic responses,” J. Am. Ceram. Soc. 100(7), 2914–2920 (2017).
[Crossref]

Chen, Z.

Chu, S.

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Cole, B.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Coulombier, Q.

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of Far-Infrared-Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Cui, X.

Y. Xu, H. Guo, X. Xiao, P. Wang, X. Cui, M. Lu, C. Lin, S. Dai, and B. Peng, “High Verdet constants and diamagnetic responses of GeS2-In2S3-PbI2 chalcogenide glasses for integrated optics applications,” Opt. Express 25(17), 20410–20420 (2017).
[Crossref] [PubMed]

G. Chen, Y. Xu, H. Guo, X. Cui, P. Wang, M. Lu, X. Xiao, Q. Guo, and B. Peng, “Magneto-optical effects of Ge-Ga-Sb(In)-S chalcogenide glasses with diamagnetic responses,” J. Am. Ceram. Soc. 100(7), 2914–2920 (2017).
[Crossref]

Da, N.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
[Crossref] [PubMed]

Dai, S.

Dionne, G. F.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Dötsch, H.

Edgar, A.

A. Edgar, D. Giltrap, and D. R. MacFarlane, “Temperature dependence of Faraday rotation and magnetic susceptibility for Ce3+ and Pr3+ ions in fluorozirconate glass,” J. Non-Cryst. Solids 231(3), 257–267 (1998).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Elezzabi, A. Y.

Firby, C. J.

Geist, B.

Gerhardt, R.

Giltrap, D.

A. Edgar, D. Giltrap, and D. R. MacFarlane, “Temperature dependence of Faraday rotation and magnetic susceptibility for Ce3+ and Pr3+ ions in fluorozirconate glass,” J. Non-Cryst. Solids 231(3), 257–267 (1998).
[Crossref]

Gong, Q.

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Granzow, N.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
[Crossref] [PubMed]

Gu, S.

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Guo, H.

Y. Xu, H. Guo, X. Xiao, P. Wang, X. Cui, M. Lu, C. Lin, S. Dai, and B. Peng, “High Verdet constants and diamagnetic responses of GeS2-In2S3-PbI2 chalcogenide glasses for integrated optics applications,” Opt. Express 25(17), 20410–20420 (2017).
[Crossref] [PubMed]

G. Chen, Y. Xu, H. Guo, X. Cui, P. Wang, M. Lu, X. Xiao, Q. Guo, and B. Peng, “Magneto-optical effects of Ge-Ga-Sb(In)-S chalcogenide glasses with diamagnetic responses,” J. Am. Ceram. Soc. 100(7), 2914–2920 (2017).
[Crossref]

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Guo, Q.

G. Chen, Y. Xu, H. Guo, X. Cui, P. Wang, M. Lu, X. Xiao, Q. Guo, and B. Peng, “Magneto-optical effects of Ge-Ga-Sb(In)-S chalcogenide glasses with diamagnetic responses,” J. Am. Ceram. Soc. 100(7), 2914–2920 (2017).
[Crossref]

Haddadpour, A.

Haizheng, T.

T. Haizheng, Z. Xiujian, T. Wei, and M. Shun, “Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 1039–1045 (2006).
[Crossref] [PubMed]

Hammer, M.

Hertel, P.

Hirao, K.

J. Qiu and K. Hirao, “The Faraday effect in diamagnetic glasses,” J. Mater. Res. 13(5), 1358–1362 (1998).
[Crossref]

Hu, J.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Huang, Y.

Jarvis, R. A.

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Kawase, M.

Kimerling, L.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Kochergin, V.

Lee, H. W.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
[Crossref] [PubMed]

Li, L.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Lin, C.

Liu, Z.

Lu, M.

Y. Xu, H. Guo, X. Xiao, P. Wang, X. Cui, M. Lu, C. Lin, S. Dai, and B. Peng, “High Verdet constants and diamagnetic responses of GeS2-In2S3-PbI2 chalcogenide glasses for integrated optics applications,” Opt. Express 25(17), 20410–20420 (2017).
[Crossref] [PubMed]

G. Chen, Y. Xu, H. Guo, X. Cui, P. Wang, M. Lu, X. Xiao, Q. Guo, and B. Peng, “Magneto-optical effects of Ge-Ga-Sb(In)-S chalcogenide glasses with diamagnetic responses,” J. Am. Ceram. Soc. 100(7), 2914–2920 (2017).
[Crossref]

Lucas, J.

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of Far-Infrared-Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Lucas, P.

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of Far-Infrared-Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Luo, B.

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

MacFarlane, D. R.

A. Edgar, D. Giltrap, and D. R. MacFarlane, “Temperature dependence of Faraday rotation and magnetic susceptibility for Ce3+ and Pr3+ ions in fluorozirconate glass,” J. Non-Cryst. Solids 231(3), 257–267 (1998).
[Crossref]

Madden, S.

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Morandotti, R.

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4(1), 1558 (2013).
[Crossref] [PubMed]

Morinaga, K.

K. Abe, H. Takebe, and K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids 212(2-3), 143–150 (1997).
[Crossref]

Nezhad, V. F.

Ou, H.

Ovcharenko, N.

N. Ovcharenko and T. Smirnova, “High refractive index and magneto-optical glasses in the systems TeO2-WO3-Bi2O3 and TeO2-WO3-PbO,” J. Non-Cryst. Solids 291(1-2), 121–126 (2001).
[Crossref]

Ozturk, Y.

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4(1), 1558 (2013).
[Crossref] [PubMed]

Peccianti, M.

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4(1), 1558 (2013).
[Crossref] [PubMed]

Peng, B.

G. Chen, Y. Xu, H. Guo, X. Cui, P. Wang, M. Lu, X. Xiao, Q. Guo, and B. Peng, “Magneto-optical effects of Ge-Ga-Sb(In)-S chalcogenide glasses with diamagnetic responses,” J. Am. Ceram. Soc. 100(7), 2914–2920 (2017).
[Crossref]

Y. Xu, H. Guo, X. Xiao, P. Wang, X. Cui, M. Lu, C. Lin, S. Dai, and B. Peng, “High Verdet constants and diamagnetic responses of GeS2-In2S3-PbI2 chalcogenide glasses for integrated optics applications,” Opt. Express 25(17), 20410–20420 (2017).
[Crossref] [PubMed]

Popkov, A. F.

Qiu, J.

J. Qiu and K. Hirao, “The Faraday effect in diamagnetic glasses,” J. Mater. Res. 13(5), 1358–1362 (1998).
[Crossref]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Rode, A. V.

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Ronningen, R.

Ross, C. A.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Ruan, Y.

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Saito, M.

Sanghera, J. S.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Schmidt, M. A.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
[Crossref] [PubMed]

Seito, H.

Shalaby, M.

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4(1), 1558 (2013).
[Crossref] [PubMed]

Shaw, L. B.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Shun, M.

T. Haizheng, Z. Xiujian, T. Wei, and M. Shun, “Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 1039–1045 (2006).
[Crossref] [PubMed]

Smirnova, T.

N. Ovcharenko and T. Smirnova, “High refractive index and magneto-optical glasses in the systems TeO2-WO3-Bi2O3 and TeO2-WO3-PbO,” J. Non-Cryst. Solids 291(1-2), 121–126 (2001).
[Crossref]

St J Russell, P.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
[Crossref] [PubMed]

Stolz, A.

Takebe, H.

K. Abe, H. Takebe, and K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids 212(2-3), 143–150 (1997).
[Crossref]

Tang, D.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Tao, H.

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Thielen, P. A.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Veronis, G.

Wang, P.

Y. Xu, H. Guo, X. Xiao, P. Wang, X. Cui, M. Lu, C. Lin, S. Dai, and B. Peng, “High Verdet constants and diamagnetic responses of GeS2-In2S3-PbI2 chalcogenide glasses for integrated optics applications,” Opt. Express 25(17), 20410–20420 (2017).
[Crossref] [PubMed]

G. Chen, Y. Xu, H. Guo, X. Cui, P. Wang, M. Lu, X. Xiao, Q. Guo, and B. Peng, “Magneto-optical effects of Ge-Ga-Sb(In)-S chalcogenide glasses with diamagnetic responses,” J. Am. Ceram. Soc. 100(7), 2914–2920 (2017).
[Crossref]

Wang, R.

Wang, S.

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Wang, X.

Wang, Y.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Wei, T.

T. Haizheng, Z. Xiujian, T. Wei, and M. Shun, “Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 1039–1045 (2006).
[Crossref] [PubMed]

Wilhelm, A. A.

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of Far-Infrared-Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Wilkens, L.

Wondraczek, L.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
[Crossref] [PubMed]

Xiao, X.

G. Chen, Y. Xu, H. Guo, X. Cui, P. Wang, M. Lu, X. Xiao, Q. Guo, and B. Peng, “Magneto-optical effects of Ge-Ga-Sb(In)-S chalcogenide glasses with diamagnetic responses,” J. Am. Ceram. Soc. 100(7), 2914–2920 (2017).
[Crossref]

Y. Xu, H. Guo, X. Xiao, P. Wang, X. Cui, M. Lu, C. Lin, S. Dai, and B. Peng, “High Verdet constants and diamagnetic responses of GeS2-In2S3-PbI2 chalcogenide glasses for integrated optics applications,” Opt. Express 25(17), 20410–20420 (2017).
[Crossref] [PubMed]

Xiujian, Z.

T. Haizheng, Z. Xiujian, T. Wei, and M. Shun, “Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 1039–1045 (2006).
[Crossref] [PubMed]

Xu, H.

Xu, Y.

Y. Xu, H. Guo, X. Xiao, P. Wang, X. Cui, M. Lu, C. Lin, S. Dai, and B. Peng, “High Verdet constants and diamagnetic responses of GeS2-In2S3-PbI2 chalcogenide glasses for integrated optics applications,” Opt. Express 25(17), 20410–20420 (2017).
[Crossref] [PubMed]

G. Chen, Y. Xu, H. Guo, X. Cui, P. Wang, M. Lu, X. Xiao, Q. Guo, and B. Peng, “Magneto-optical effects of Ge-Ga-Sb(In)-S chalcogenide glasses with diamagnetic responses,” J. Am. Ceram. Soc. 100(7), 2914–2920 (2017).
[Crossref]

Yang, A.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Yang, L.

Yang, Z.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Yin, H.

Yu, Z.

Zhai, Y.

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Zhang, B.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Zhang, M.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Zhang, P.

Zhao, X.

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Zheng, X.

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Zhuromskyy, O.

Adv. Mater. (2)

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
[Crossref] [PubMed]

A. A. Wilhelm, C. Boussard-pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of Far-Infrared-Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

J. Am. Ceram. Soc. (2)

G. Chen, Y. Xu, H. Guo, X. Cui, P. Wang, M. Lu, X. Xiao, Q. Guo, and B. Peng, “Magneto-optical effects of Ge-Ga-Sb(In)-S chalcogenide glasses with diamagnetic responses,” J. Am. Ceram. Soc. 100(7), 2914–2920 (2017).
[Crossref]

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga-Sb-S chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

J. Chem. Phys. (1)

N. F. Borrelli, “Faraday rotation in glasses,” J. Chem. Phys. 41(11), 3289–3293 (1964).
[Crossref]

J. Mater. Res. (1)

J. Qiu and K. Hirao, “The Faraday effect in diamagnetic glasses,” J. Mater. Res. 13(5), 1358–1362 (1998).
[Crossref]

J. Non-Cryst. Solids (3)

N. Ovcharenko and T. Smirnova, “High refractive index and magneto-optical glasses in the systems TeO2-WO3-Bi2O3 and TeO2-WO3-PbO,” J. Non-Cryst. Solids 291(1-2), 121–126 (2001).
[Crossref]

A. Edgar, D. Giltrap, and D. R. MacFarlane, “Temperature dependence of Faraday rotation and magnetic susceptibility for Ce3+ and Pr3+ ions in fluorozirconate glass,” J. Non-Cryst. Solids 231(3), 257–267 (1998).
[Crossref]

K. Abe, H. Takebe, and K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids 212(2-3), 143–150 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Solid State Chem. (1)

H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong, “Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcogenide glasses,” J. Solid State Chem. 180(1), 240–248 (2007).
[Crossref]

Nat. Commun. (1)

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4(1), 1558 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Opt. Commun. (1)

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Optica (1)

Proc. SPIE (1)

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

T. Haizheng, Z. Xiujian, T. Wei, and M. Shun, “Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 1039–1045 (2006).
[Crossref] [PubMed]

Other (2)

M. J. Weber, Handbook of Optical Materials (CRC Press, Florida, 2003), Chap. 2.

J. Marvin, Weber, Handbook of Optical Materials (CRC Press, 2003), Section 2.7.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The schematic setup for Verdet constant measurement of glasses.
Fig. 2
Fig. 2 Refractive index dispersions for (a) standard sample; (b) 90GeS2·10Ga2S3 and 76GeS2·19Ga2S3·5PbI2 glasses. (The inset shows the relationship between the refractive index and the content of Ga2S3 for (100-x)GeS2·xGa2S3 glasses at wavelength of 808nm. The line is drawn as a guide for the eye.)
Fig. 3
Fig. 3 Relationships between the Verdet constant and the molar content of Ga2S3 in (100-x)GeS2·xGa2S3 glasses at 635, 808, 980 and 1340 nm, respectively. Dashed lines are drawn as guides for the eye.
Fig. 4
Fig. 4 Wavelength dependence of the Verdet constant for 85GeS2·15Ga2S3 and 76GeS2·19Ga2S3·5PbI2 glasses.
Fig. 5
Fig. 5 The Verdet constants of (100-x)(80GeS2·20Ga2S3) ·xPbI2 glasses at 635, 808, 980 and 1340 nm, respectively. Dashed lines are drawn as guides for the eye.
Fig. 6
Fig. 6 Relationship between the Verdet constant and the refractive index for all samples. Dashed line is drawn as a guide for the eye.
Fig. 7
Fig. 7 Temperature dependences of the Verdet constant at 635 and 980 nm, respectively. Dashed lines are drawn as guides for the eye.

Tables (1)

Tables Icon

Table 1 Fitting constants of the refractive index for all investigated glasses in this work

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n=A+ B λ 2 + C λ 4
V= θ BL
V= eλ 2m c 2 dn dλ
V=1.864+0.913n