Abstract

The widespread use of transparent conductive films in modern display and solar technologies calls for engineering solutions with tunable light transmission and electrical characteristics. Currently, considerable effort is put into the optimization of indium tin oxide, carbon nanotube-based, metal grid, and nano-wire thin-films. The indium and carbon films do not match the chemical stability nor the electrical performance of the noble metals, and many metal films are not uniform in material distribution leading to significant surface roughness and randomized transmission haze. We demonstrate solution-processed masks for physical vapor-deposited metal electrodes consisting of hexagonally ordered aperture arrays with scalable aperture-size and spacing in an otherwise homogeneous noble metal thin-film that may exhibit better electrical performance than carbon nanotube-based thin-films for equivalent optical transparency. The fabricated electrodes are characterized optically and electrically by measuring transmittance and sheet resistance. The presented methods yield large-scale reproducible results. Experimentally realized thin-films with very low sheet resistance, Rsh = 2.01 ± 0.14 Ω/sq, and transmittance, T = 25.7 ± 0.08 %, show good agreement with finite-element method simulations and an analytical model of sheet resistance in thin-films with ordered apertures support the experimental results and also serve to aid the design of highly transparent conductive films. A maximum Haacke number for these 33 nm thin-films, ϕH = 10.7 × 10−3Ω−1 corresponding to T ≃ 80 % and Rsh ≃ 10 Ω/sq, is extrapolated from the theoretical results. Increased transparency may be realizable using thinner metal films trading off conductivity. Nevertheless, the findings of this article indicate that colloidal lithographic patterned transparent conductive films can serve as vital components in technologies with a demand for transparent electrodes with low sheet resistance.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser microstructured metal thin films as promising alternative for indium based transparent electrodes

Sebastian Eckhardt, Mathias Siebold, and Andrés Fabián Lasagni
Opt. Express 24(6) A553-A568 (2016)

Very low resistance ZnS/Ag/ZnS/Ag/ZnS nano-multilayer anode for organic light emitting diodes applications

Hamideh Kermani, Hamid Reza Fallah, Morteza Hajimahmoodzadeh, and Seyed Vahid Tabatabaei
Appl. Opt. 52(4) 780-785 (2013)

Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells

Ju Won Lim, Young Tack Lee, Rina Pandey, Tae-Hee Yoo, Byoung-In Sang, Byeong-Kwon Ju, Do Kyung Hwang, and Won Kook Choi
Opt. Express 22(22) 26891-26899 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
    [Crossref] [PubMed]
  2. S. Oi, “Automotive Touch Panel Market Report,” Tech. Rep. (2016). https://goo.gl/3r7oyT .
  3. G. Adiboina, “Thin Film Photovoltaic (PV) Cells Market Analysis to 2020,” Tech. Rep. (2010). https://goo.gl/v9ceGP .
  4. J. Baljko, “Flexible Displays Poised for Explosive Growth,” Tech. Rep. (2013). https://goo.gl/R5rnPb .
  5. H. Hartnagel, Semiconducting Transparent Thin Films (Institute of Physics Publishing, 1995).
  6. VLSI Standards, ITO Sheet Resistance Standard (VLSI Standards, 2012).
  7. S. Kim, S. Choi, C. Park, and H. Jin, “Transparent conductive ITO thin films through the sol-gel process using metal salts,” Thin Solid Films 347(1), 155–160 (1999).
    [Crossref]
  8. H. Kim, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
    [Crossref]
  9. S. Kirner, M. Hartig, L. Mazzarella, L. Korte, T. Frijnts, H. Scherg-Kurmes, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “The Influence of ITO Dopant Density on J-V Characteristics of Silicon Heterojunction Solar Cells: Experiments and Simulations,” Energy Procedia 77, 725–732 (2015).
    [Crossref]
  10. A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
    [Crossref]
  11. R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, “Transparent conducting metal electrode for top emission organic light-emitting devices: Ca-Ag double layer,” Appl. Phys. Lett. 84(23), 4614–4616 (2004).
    [Crossref]
  12. J. Y. Lee, S. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
    [Crossref] [PubMed]
  13. W. He and C. Ye, “Flexible Transparent Conductive Films on the Basis of Ag Nanowires: Design and Applications: A Review,” J. Mater. Sci. Technol. 31(6), 581–588 (2015).
    [Crossref]
  14. K. Cheng, Z. Cui, Q. Li, S. Wang, and Z. Du, “Large-scale fabrication of a continuous gold network for use as a transparent conductive electrode in photo-electronic devices,” Nanotechnology 23, 42 (2012).
    [Crossref]
  15. A. J. Morfa, E. M. Akinoglu, J. Subbiah, M. Giersig, and P. Mulvaney, “Transparent metal electrodes from ordered nanosphere arrays,” J. Appl. Phys. 114(5), 54502 (2013).
    [Crossref]
  16. T. Qiu, B. Luo, F. Ali, E. Jaatinen, L. Wang, and H. Wang, “Metallic nanomesh with disordered dual-size apertures as wide-viewing-angle transparent conductive electrode,” ACS Appl. Mater. Interfaces 8(35), 22768–22773 (2016).
    [Crossref]
  17. S. Baek, S. Ha, H. Lee, K. Kim, D. Kim, and J. Moon, “Monolithic Two-Dimensional Photonic Crystal Reflectors for the Fabrication of Highly Efficient and Highly Transparent Dye-Sensitized Solar Cells,” ACS Appl. Mater. Interfaces 9(42), 37006–37012 (2017).
    [Crossref]
  18. G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
    [Crossref]
  19. T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van De Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
    [Crossref]
  20. American Society for Testing and Materials, Annual book of ASTM standards (American Society for Testing and Materials, 1975).
  21. I. Miccoli, F. Edler, H. Pfnür, and C. Tegenkamp, “The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems,” J. Phys. Condens. Matter 27(22), 223201 (2015).
    [Crossref]
  22. F. M. Smits, “Measurement of Sheet Resistivities with the Four-Point Probe,” Bell Syst. Tech. J. 37(3), 711–718 (1958).
    [Crossref]
  23. W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1), 146–152 (2004).
    [Crossref]
  24. A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-Close-Packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
    [Crossref]
  25. E. Devaux, T. Ebbesen, J. C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936–4938 (2003).
    [Crossref]
  26. A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
    [Crossref]
  27. A. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
    [Crossref]
  28. D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).
    [Crossref]
  29. Y. Peng, T. Paudel, W. C. Chen, W. J. Padilla, Z. F. Ren, and K. Kempa, “Percolation and polaritonic effects in periodic planar nanostructures evolving from holes to islands,” Appl. Phys. Lett. 97(4), 2–4 (2010).
    [Crossref]
  30. Z. Li, H. Kandel, E. Dervishi, V. Saini, A. Biris, A. Biris, and D. Lupu, “Does the wall number of carbon nanotubes matter as conductive transparent material?” Appl. Phys. Lett. 91(5), 53115 (2007).
    [Crossref]
  31. L. Malaquin, T. Kraus, H. Schmid, E. Delamarche, and H. Wolf, “Controlled particle placement through convective and capillary assembly,” Langmuir 23(23), 11513–11521 (2007).
    [Crossref]
  32. COMSOL AB, “COMSOL MultiPhysics Reference Manual, version 5.3,” COMSOL, Inc, www.comsol.com (2017).
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  34. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205 (1965).
    [Crossref]

2017 (1)

S. Baek, S. Ha, H. Lee, K. Kim, D. Kim, and J. Moon, “Monolithic Two-Dimensional Photonic Crystal Reflectors for the Fabrication of Highly Efficient and Highly Transparent Dye-Sensitized Solar Cells,” ACS Appl. Mater. Interfaces 9(42), 37006–37012 (2017).
[Crossref]

2016 (1)

T. Qiu, B. Luo, F. Ali, E. Jaatinen, L. Wang, and H. Wang, “Metallic nanomesh with disordered dual-size apertures as wide-viewing-angle transparent conductive electrode,” ACS Appl. Mater. Interfaces 8(35), 22768–22773 (2016).
[Crossref]

2015 (3)

I. Miccoli, F. Edler, H. Pfnür, and C. Tegenkamp, “The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems,” J. Phys. Condens. Matter 27(22), 223201 (2015).
[Crossref]

S. Kirner, M. Hartig, L. Mazzarella, L. Korte, T. Frijnts, H. Scherg-Kurmes, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “The Influence of ITO Dopant Density on J-V Characteristics of Silicon Heterojunction Solar Cells: Experiments and Simulations,” Energy Procedia 77, 725–732 (2015).
[Crossref]

W. He and C. Ye, “Flexible Transparent Conductive Films on the Basis of Ag Nanowires: Design and Applications: A Review,” J. Mater. Sci. Technol. 31(6), 581–588 (2015).
[Crossref]

2013 (1)

A. J. Morfa, E. M. Akinoglu, J. Subbiah, M. Giersig, and P. Mulvaney, “Transparent metal electrodes from ordered nanosphere arrays,” J. Appl. Phys. 114(5), 54502 (2013).
[Crossref]

2012 (2)

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van De Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

K. Cheng, Z. Cui, Q. Li, S. Wang, and Z. Du, “Large-scale fabrication of a continuous gold network for use as a transparent conductive electrode in photo-electronic devices,” Nanotechnology 23, 42 (2012).
[Crossref]

2011 (1)

D. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

2010 (1)

Y. Peng, T. Paudel, W. C. Chen, W. J. Padilla, Z. F. Ren, and K. Kempa, “Percolation and polaritonic effects in periodic planar nanostructures evolving from holes to islands,” Appl. Phys. Lett. 97(4), 2–4 (2010).
[Crossref]

2009 (1)

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-Close-Packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

2008 (1)

J. Y. Lee, S. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[Crossref] [PubMed]

2007 (2)

Z. Li, H. Kandel, E. Dervishi, V. Saini, A. Biris, A. Biris, and D. Lupu, “Does the wall number of carbon nanotubes matter as conductive transparent material?” Appl. Phys. Lett. 91(5), 53115 (2007).
[Crossref]

L. Malaquin, T. Kraus, H. Schmid, E. Delamarche, and H. Wolf, “Controlled particle placement through convective and capillary assembly,” Langmuir 23(23), 11513–11521 (2007).
[Crossref]

2005 (1)

A. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

2004 (2)

R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, “Transparent conducting metal electrode for top emission organic light-emitting devices: Ca-Ag double layer,” Appl. Phys. Lett. 84(23), 4614–4616 (2004).
[Crossref]

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1), 146–152 (2004).
[Crossref]

2003 (1)

E. Devaux, T. Ebbesen, J. C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936–4938 (2003).
[Crossref]

2001 (1)

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[Crossref]

1999 (2)

S. Kim, S. Choi, C. Park, and H. Jin, “Transparent conductive ITO thin films through the sol-gel process using metal salts,” Thin Solid Films 347(1), 155–160 (1999).
[Crossref]

H. Kim, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

1998 (1)

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

1976 (1)

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
[Crossref]

1975 (1)

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1965 (1)

1958 (1)

F. M. Smits, “Measurement of Sheet Resistivities with the Four-Point Probe,” Bell Syst. Tech. J. 37(3), 711–718 (1958).
[Crossref]

Akinoglu, E. M.

A. J. Morfa, E. M. Akinoglu, J. Subbiah, M. Giersig, and P. Mulvaney, “Transparent metal electrodes from ordered nanosphere arrays,” J. Appl. Phys. 114(5), 54502 (2013).
[Crossref]

Ali, F.

T. Qiu, B. Luo, F. Ali, E. Jaatinen, L. Wang, and H. Wang, “Metallic nanomesh with disordered dual-size apertures as wide-viewing-angle transparent conductive electrode,” ACS Appl. Mater. Interfaces 8(35), 22768–22773 (2016).
[Crossref]

Baek, S.

S. Baek, S. Ha, H. Lee, K. Kim, D. Kim, and J. Moon, “Monolithic Two-Dimensional Photonic Crystal Reflectors for the Fabrication of Highly Efficient and Highly Transparent Dye-Sensitized Solar Cells,” ACS Appl. Mater. Interfaces 9(42), 37006–37012 (2017).
[Crossref]

Baida, F. I.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[Crossref]

Barnes, T. M.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van De Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Beard, M. C.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van De Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Bergeson, J. D.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van De Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Biris, A.

Z. Li, H. Kandel, E. Dervishi, V. Saini, A. Biris, A. Biris, and D. Lupu, “Does the wall number of carbon nanotubes matter as conductive transparent material?” Appl. Phys. Lett. 91(5), 53115 (2007).
[Crossref]

Z. Li, H. Kandel, E. Dervishi, V. Saini, A. Biris, A. Biris, and D. Lupu, “Does the wall number of carbon nanotubes matter as conductive transparent material?” Appl. Phys. Lett. 91(5), 53115 (2007).
[Crossref]

Blackburn, J. L.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van De Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Bouhelier, A.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[Crossref]

Boul, P. J.

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

Brijs, B.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1), 146–152 (2004).
[Crossref]

Brongersma, S. H.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1), 146–152 (2004).
[Crossref]

Bult, J.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van De Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Chen, W. C.

Y. Peng, T. Paudel, W. C. Chen, W. J. Padilla, Z. F. Ren, and K. Kempa, “Percolation and polaritonic effects in periodic planar nanostructures evolving from holes to islands,” Appl. Phys. Lett. 97(4), 2–4 (2010).
[Crossref]

Cheng, K.

K. Cheng, Z. Cui, Q. Li, S. Wang, and Z. Du, “Large-scale fabrication of a continuous gold network for use as a transparent conductive electrode in photo-electronic devices,” Nanotechnology 23, 42 (2012).
[Crossref]

Choi, S.

S. Kim, S. Choi, C. Park, and H. Jin, “Transparent conductive ITO thin films through the sol-gel process using metal salts,” Thin Solid Films 347(1), 155–160 (1999).
[Crossref]

Chrisey, D. B.

H. Kim, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Colbert, D. T.

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

Connor, S.

J. Y. Lee, S. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[Crossref] [PubMed]

Cui, Y.

J. Y. Lee, S. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[Crossref] [PubMed]

Cui, Z.

K. Cheng, Z. Cui, Q. Li, S. Wang, and Z. Du, “Large-scale fabrication of a continuous gold network for use as a transparent conductive electrode in photo-electronic devices,” Nanotechnology 23, 42 (2012).
[Crossref]

Dai, H.

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

Delamarche, E.

L. Malaquin, T. Kraus, H. Schmid, E. Delamarche, and H. Wolf, “Controlled particle placement through convective and capillary assembly,” Langmuir 23(23), 11513–11521 (2007).
[Crossref]

Dereux, A.

E. Devaux, T. Ebbesen, J. C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936–4938 (2003).
[Crossref]

Dervishi, E.

Z. Li, H. Kandel, E. Dervishi, V. Saini, A. Biris, A. Biris, and D. Lupu, “Does the wall number of carbon nanotubes matter as conductive transparent material?” Appl. Phys. Lett. 91(5), 53115 (2007).
[Crossref]

Devaux, E.

E. Devaux, T. Ebbesen, J. C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936–4938 (2003).
[Crossref]

Du, Z.

K. Cheng, Z. Cui, Q. Li, S. Wang, and Z. Du, “Large-scale fabrication of a continuous gold network for use as a transparent conductive electrode in photo-electronic devices,” Nanotechnology 23, 42 (2012).
[Crossref]

Ebbesen, T.

E. Devaux, T. Ebbesen, J. C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936–4938 (2003).
[Crossref]

Edler, F.

I. Miccoli, F. Edler, H. Pfnür, and C. Tegenkamp, “The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems,” J. Phys. Condens. Matter 27(22), 223201 (2015).
[Crossref]

Eklund, P. C.

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

Enderle, F.

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-Close-Packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

Fischer, J. E.

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

Frijnts, T.

S. Kirner, M. Hartig, L. Mazzarella, L. Korte, T. Frijnts, H. Scherg-Kurmes, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “The Influence of ITO Dopant Density on J-V Characteristics of Silicon Heterojunction Solar Cells: Experiments and Simulations,” Energy Procedia 77, 725–732 (2015).
[Crossref]

Froyen, L.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1), 146–152 (2004).
[Crossref]

Giersig, M.

A. J. Morfa, E. M. Akinoglu, J. Subbiah, M. Giersig, and P. Mulvaney, “Transparent metal electrodes from ordered nanosphere arrays,” J. Appl. Phys. 114(5), 54502 (2013).
[Crossref]

Güntherodt, H.-J.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[Crossref]

Ha, S.

S. Baek, S. Ha, H. Lee, K. Kim, D. Kim, and J. Moon, “Monolithic Two-Dimensional Photonic Crystal Reflectors for the Fabrication of Highly Efficient and Highly Transparent Dye-Sensitized Solar Cells,” ACS Appl. Mater. Interfaces 9(42), 37006–37012 (2017).
[Crossref]

Haacke, G.

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
[Crossref]

Han, J. I.

R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, “Transparent conducting metal electrode for top emission organic light-emitting devices: Ca-Ag double layer,” Appl. Phys. Lett. 84(23), 4614–4616 (2004).
[Crossref]

Hartig, M.

S. Kirner, M. Hartig, L. Mazzarella, L. Korte, T. Frijnts, H. Scherg-Kurmes, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “The Influence of ITO Dopant Density on J-V Characteristics of Silicon Heterojunction Solar Cells: Experiments and Simulations,” Energy Procedia 77, 725–732 (2015).
[Crossref]

Hartnagel, H.

H. Hartnagel, Semiconducting Transparent Thin Films (Institute of Physics Publishing, 1995).

He, W.

W. He and C. Ye, “Flexible Transparent Conductive Films on the Basis of Ag Nanowires: Design and Applications: A Review,” J. Mater. Sci. Technol. 31(6), 581–588 (2015).
[Crossref]

Hecht, D.

D. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Heymann, D.

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

Horwitz, J. S.

H. Kim, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

Hu, L.

D. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Huffman, C. B.

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

Huser, T.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[Crossref]

Irvin, G.

D. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Jaatinen, E.

T. Qiu, B. Luo, F. Ali, E. Jaatinen, L. Wang, and H. Wang, “Metallic nanomesh with disordered dual-size apertures as wide-viewing-angle transparent conductive electrode,” ACS Appl. Mater. Interfaces 8(35), 22768–22773 (2016).
[Crossref]

Jin, H.

S. Kim, S. Choi, C. Park, and H. Jin, “Transparent conductive ITO thin films through the sol-gel process using metal salts,” Thin Solid Films 347(1), 155–160 (1999).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kafafi, Z. H.

H. Kim, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

Kandel, H.

Z. Li, H. Kandel, E. Dervishi, V. Saini, A. Biris, A. Biris, and D. Lupu, “Does the wall number of carbon nanotubes matter as conductive transparent material?” Appl. Phys. Lett. 91(5), 53115 (2007).
[Crossref]

Kempa, K.

Y. Peng, T. Paudel, W. C. Chen, W. J. Padilla, Z. F. Ren, and K. Kempa, “Percolation and polaritonic effects in periodic planar nanostructures evolving from holes to islands,” Appl. Phys. Lett. 97(4), 2–4 (2010).
[Crossref]

Kim, D.

S. Baek, S. Ha, H. Lee, K. Kim, D. Kim, and J. Moon, “Monolithic Two-Dimensional Photonic Crystal Reflectors for the Fabrication of Highly Efficient and Highly Transparent Dye-Sensitized Solar Cells,” ACS Appl. Mater. Interfaces 9(42), 37006–37012 (2017).
[Crossref]

Kim, H.

H. Kim, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

Kim, K.

S. Baek, S. Ha, H. Lee, K. Kim, D. Kim, and J. Moon, “Monolithic Two-Dimensional Photonic Crystal Reflectors for the Fabrication of Highly Efficient and Highly Transparent Dye-Sensitized Solar Cells,” ACS Appl. Mater. Interfaces 9(42), 37006–37012 (2017).
[Crossref]

Kim, S.

S. Kim, S. Choi, C. Park, and H. Jin, “Transparent conductive ITO thin films through the sol-gel process using metal salts,” Thin Solid Films 347(1), 155–160 (1999).
[Crossref]

Kirner, S.

S. Kirner, M. Hartig, L. Mazzarella, L. Korte, T. Frijnts, H. Scherg-Kurmes, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “The Influence of ITO Dopant Density on J-V Characteristics of Silicon Heterojunction Solar Cells: Experiments and Simulations,” Energy Procedia 77, 725–732 (2015).
[Crossref]

Korte, L.

S. Kirner, M. Hartig, L. Mazzarella, L. Korte, T. Frijnts, H. Scherg-Kurmes, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “The Influence of ITO Dopant Density on J-V Characteristics of Silicon Heterojunction Solar Cells: Experiments and Simulations,” Energy Procedia 77, 725–732 (2015).
[Crossref]

Kraus, T.

L. Malaquin, T. Kraus, H. Schmid, E. Delamarche, and H. Wolf, “Controlled particle placement through convective and capillary assembly,” Langmuir 23(23), 11513–11521 (2007).
[Crossref]

Larsen, B. A.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van De Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Lee, C. J.

R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, “Transparent conducting metal electrode for top emission organic light-emitting devices: Ca-Ag double layer,” Appl. Phys. Lett. 84(23), 4614–4616 (2004).
[Crossref]

Lee, H.

S. Baek, S. Ha, H. Lee, K. Kim, D. Kim, and J. Moon, “Monolithic Two-Dimensional Photonic Crystal Reflectors for the Fabrication of Highly Efficient and Highly Transparent Dye-Sensitized Solar Cells,” ACS Appl. Mater. Interfaces 9(42), 37006–37012 (2017).
[Crossref]

Lee, J. Y.

J. Y. Lee, S. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[Crossref] [PubMed]

Lee, R. S.

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

Li, Q.

K. Cheng, Z. Cui, Q. Li, S. Wang, and Z. Du, “Large-scale fabrication of a continuous gold network for use as a transparent conductive electrode in photo-electronic devices,” Nanotechnology 23, 42 (2012).
[Crossref]

Li, Z.

Z. Li, H. Kandel, E. Dervishi, V. Saini, A. Biris, A. Biris, and D. Lupu, “Does the wall number of carbon nanotubes matter as conductive transparent material?” Appl. Phys. Lett. 91(5), 53115 (2007).
[Crossref]

Liu, J.

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

Lu, A. H.

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

Luo, B.

T. Qiu, B. Luo, F. Ali, E. Jaatinen, L. Wang, and H. Wang, “Metallic nanomesh with disordered dual-size apertures as wide-viewing-angle transparent conductive electrode,” ACS Appl. Mater. Interfaces 8(35), 22768–22773 (2016).
[Crossref]

Lupu, D.

Z. Li, H. Kandel, E. Dervishi, V. Saini, A. Biris, A. Biris, and D. Lupu, “Does the wall number of carbon nanotubes matter as conductive transparent material?” Appl. Phys. Lett. 91(5), 53115 (2007).
[Crossref]

Maex, K.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1), 146–152 (2004).
[Crossref]

Malaquin, L.

L. Malaquin, T. Kraus, H. Schmid, E. Delamarche, and H. Wolf, “Controlled particle placement through convective and capillary assembly,” Langmuir 23(23), 11513–11521 (2007).
[Crossref]

Malitson, I. H.

Manzke, A.

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-Close-Packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

Maradudin, A. A.

A. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Mattoussi, H.

H. Kim, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

Mazzarella, L.

S. Kirner, M. Hartig, L. Mazzarella, L. Korte, T. Frijnts, H. Scherg-Kurmes, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “The Influence of ITO Dopant Density on J-V Characteristics of Silicon Heterojunction Solar Cells: Experiments and Simulations,” Energy Procedia 77, 725–732 (2015).
[Crossref]

Miccoli, I.

I. Miccoli, F. Edler, H. Pfnür, and C. Tegenkamp, “The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems,” J. Phys. Condens. Matter 27(22), 223201 (2015).
[Crossref]

Mills, D. L.

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).
[Crossref]

Moon, D. G.

R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, “Transparent conducting metal electrode for top emission organic light-emitting devices: Ca-Ag double layer,” Appl. Phys. Lett. 84(23), 4614–4616 (2004).
[Crossref]

Moon, J.

S. Baek, S. Ha, H. Lee, K. Kim, D. Kim, and J. Moon, “Monolithic Two-Dimensional Photonic Crystal Reflectors for the Fabrication of Highly Efficient and Highly Transparent Dye-Sensitized Solar Cells,” ACS Appl. Mater. Interfaces 9(42), 37006–37012 (2017).
[Crossref]

Morfa, A. J.

A. J. Morfa, E. M. Akinoglu, J. Subbiah, M. Giersig, and P. Mulvaney, “Transparent metal electrodes from ordered nanosphere arrays,” J. Appl. Phys. 114(5), 54502 (2013).
[Crossref]

Mulvaney, P.

A. J. Morfa, E. M. Akinoglu, J. Subbiah, M. Giersig, and P. Mulvaney, “Transparent metal electrodes from ordered nanosphere arrays,” J. Appl. Phys. 114(5), 54502 (2013).
[Crossref]

Murata, H.

H. Kim, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

Nikolaev, P.

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

Padilla, W. J.

Y. Peng, T. Paudel, W. C. Chen, W. J. Padilla, Z. F. Ren, and K. Kempa, “Percolation and polaritonic effects in periodic planar nanostructures evolving from holes to islands,” Appl. Phys. Lett. 97(4), 2–4 (2010).
[Crossref]

Palmans, R.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1), 146–152 (2004).
[Crossref]

Park, C.

S. Kim, S. Choi, C. Park, and H. Jin, “Transparent conductive ITO thin films through the sol-gel process using metal salts,” Thin Solid Films 347(1), 155–160 (1999).
[Crossref]

Paudel, T.

Y. Peng, T. Paudel, W. C. Chen, W. J. Padilla, Z. F. Ren, and K. Kempa, “Percolation and polaritonic effects in periodic planar nanostructures evolving from holes to islands,” Appl. Phys. Lett. 97(4), 2–4 (2010).
[Crossref]

Peng, Y.

Y. Peng, T. Paudel, W. C. Chen, W. J. Padilla, Z. F. Ren, and K. Kempa, “Percolation and polaritonic effects in periodic planar nanostructures evolving from holes to islands,” Appl. Phys. Lett. 97(4), 2–4 (2010).
[Crossref]

Peumans, P.

J. Y. Lee, S. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[Crossref] [PubMed]

Pfahler, C.

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-Close-Packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

Pfnür, H.

I. Miccoli, F. Edler, H. Pfnür, and C. Tegenkamp, “The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems,” J. Phys. Condens. Matter 27(22), 223201 (2015).
[Crossref]

Piqué, A.

H. Kim, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

Plettl, A.

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-Close-Packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

Pode, R. B.

R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, “Transparent conducting metal electrode for top emission organic light-emitting devices: Ca-Ag double layer,” Appl. Phys. Lett. 84(23), 4614–4616 (2004).
[Crossref]

Pohl, D. W.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[Crossref]

Qiu, T.

T. Qiu, B. Luo, F. Ali, E. Jaatinen, L. Wang, and H. Wang, “Metallic nanomesh with disordered dual-size apertures as wide-viewing-angle transparent conductive electrode,” ACS Appl. Mater. Interfaces 8(35), 22768–22773 (2016).
[Crossref]

Rao, A. M.

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

Rech, B.

S. Kirner, M. Hartig, L. Mazzarella, L. Korte, T. Frijnts, H. Scherg-Kurmes, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “The Influence of ITO Dopant Density on J-V Characteristics of Silicon Heterojunction Solar Cells: Experiments and Simulations,” Energy Procedia 77, 725–732 (2015).
[Crossref]

Reese, M. O.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van De Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Ren, Z. F.

Y. Peng, T. Paudel, W. C. Chen, W. J. Padilla, Z. F. Ren, and K. Kempa, “Percolation and polaritonic effects in periodic planar nanostructures evolving from holes to islands,” Appl. Phys. Lett. 97(4), 2–4 (2010).
[Crossref]

Richard, O.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1), 146–152 (2004).
[Crossref]

Ring, S.

S. Kirner, M. Hartig, L. Mazzarella, L. Korte, T. Frijnts, H. Scherg-Kurmes, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “The Influence of ITO Dopant Density on J-V Characteristics of Silicon Heterojunction Solar Cells: Experiments and Simulations,” Energy Procedia 77, 725–732 (2015).
[Crossref]

Rinzler, A. G.

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

Rodríguez-Macías, F.

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

Saini, V.

Z. Li, H. Kandel, E. Dervishi, V. Saini, A. Biris, A. Biris, and D. Lupu, “Does the wall number of carbon nanotubes matter as conductive transparent material?” Appl. Phys. Lett. 91(5), 53115 (2007).
[Crossref]

Saitner, M.

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-Close-Packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

Scherg-Kurmes, H.

S. Kirner, M. Hartig, L. Mazzarella, L. Korte, T. Frijnts, H. Scherg-Kurmes, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “The Influence of ITO Dopant Density on J-V Characteristics of Silicon Heterojunction Solar Cells: Experiments and Simulations,” Energy Procedia 77, 725–732 (2015).
[Crossref]

Schlatmann, R.

S. Kirner, M. Hartig, L. Mazzarella, L. Korte, T. Frijnts, H. Scherg-Kurmes, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “The Influence of ITO Dopant Density on J-V Characteristics of Silicon Heterojunction Solar Cells: Experiments and Simulations,” Energy Procedia 77, 725–732 (2015).
[Crossref]

Schmid, H.

L. Malaquin, T. Kraus, H. Schmid, E. Delamarche, and H. Wolf, “Controlled particle placement through convective and capillary assembly,” Langmuir 23(23), 11513–11521 (2007).
[Crossref]

Smalley, R. E.

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

Smits, F. M.

F. M. Smits, “Measurement of Sheet Resistivities with the Four-Point Probe,” Bell Syst. Tech. J. 37(3), 711–718 (1958).
[Crossref]

Smolyaninov, I. I.

A. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Stannowski, B.

S. Kirner, M. Hartig, L. Mazzarella, L. Korte, T. Frijnts, H. Scherg-Kurmes, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “The Influence of ITO Dopant Density on J-V Characteristics of Silicon Heterojunction Solar Cells: Experiments and Simulations,” Energy Procedia 77, 725–732 (2015).
[Crossref]

Subbiah, J.

A. J. Morfa, E. M. Akinoglu, J. Subbiah, M. Giersig, and P. Mulvaney, “Transparent metal electrodes from ordered nanosphere arrays,” J. Appl. Phys. 114(5), 54502 (2013).
[Crossref]

Tamaru, H.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[Crossref]

Tegenkamp, C.

I. Miccoli, F. Edler, H. Pfnür, and C. Tegenkamp, “The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems,” J. Phys. Condens. Matter 27(22), 223201 (2015).
[Crossref]

Van De Lagemaat, J.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van De Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Van Labeke, D.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[Crossref]

Wang, H.

T. Qiu, B. Luo, F. Ali, E. Jaatinen, L. Wang, and H. Wang, “Metallic nanomesh with disordered dual-size apertures as wide-viewing-angle transparent conductive electrode,” ACS Appl. Mater. Interfaces 8(35), 22768–22773 (2016).
[Crossref]

Wang, L.

T. Qiu, B. Luo, F. Ali, E. Jaatinen, L. Wang, and H. Wang, “Metallic nanomesh with disordered dual-size apertures as wide-viewing-angle transparent conductive electrode,” ACS Appl. Mater. Interfaces 8(35), 22768–22773 (2016).
[Crossref]

Wang, S.

K. Cheng, Z. Cui, Q. Li, S. Wang, and Z. Du, “Large-scale fabrication of a continuous gold network for use as a transparent conductive electrode in photo-electronic devices,” Nanotechnology 23, 42 (2012).
[Crossref]

Weeber, J. C.

E. Devaux, T. Ebbesen, J. C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936–4938 (2003).
[Crossref]

Wiedemann, S.

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-Close-Packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

Wolf, H.

L. Malaquin, T. Kraus, H. Schmid, E. Delamarche, and H. Wolf, “Controlled particle placement through convective and capillary assembly,” Langmuir 23(23), 11513–11521 (2007).
[Crossref]

Ye, C.

W. He and C. Ye, “Flexible Transparent Conductive Films on the Basis of Ag Nanowires: Design and Applications: A Review,” J. Mater. Sci. Technol. 31(6), 581–588 (2015).
[Crossref]

Zayats, A.

A. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Zhang, W.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1), 146–152 (2004).
[Crossref]

Ziemann, P.

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-Close-Packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

ACS Appl. Mater. Interfaces (2)

T. Qiu, B. Luo, F. Ali, E. Jaatinen, L. Wang, and H. Wang, “Metallic nanomesh with disordered dual-size apertures as wide-viewing-angle transparent conductive electrode,” ACS Appl. Mater. Interfaces 8(35), 22768–22773 (2016).
[Crossref]

S. Baek, S. Ha, H. Lee, K. Kim, D. Kim, and J. Moon, “Monolithic Two-Dimensional Photonic Crystal Reflectors for the Fabrication of Highly Efficient and Highly Transparent Dye-Sensitized Solar Cells,” ACS Appl. Mater. Interfaces 9(42), 37006–37012 (2017).
[Crossref]

Adv. Energy Mater. (1)

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van De Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[Crossref]

Adv. Funct. Mater. (1)

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-Close-Packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

Adv. Mater. (1)

D. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Appl. Phys. A Mater. Sci. Process. (1)

A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998).
[Crossref]

Appl. Phys. Lett. (5)

R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, “Transparent conducting metal electrode for top emission organic light-emitting devices: Ca-Ag double layer,” Appl. Phys. Lett. 84(23), 4614–4616 (2004).
[Crossref]

H. Kim, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 74(23), 3444–3446 (1999).
[Crossref]

E. Devaux, T. Ebbesen, J. C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936–4938 (2003).
[Crossref]

Y. Peng, T. Paudel, W. C. Chen, W. J. Padilla, Z. F. Ren, and K. Kempa, “Percolation and polaritonic effects in periodic planar nanostructures evolving from holes to islands,” Appl. Phys. Lett. 97(4), 2–4 (2010).
[Crossref]

Z. Li, H. Kandel, E. Dervishi, V. Saini, A. Biris, A. Biris, and D. Lupu, “Does the wall number of carbon nanotubes matter as conductive transparent material?” Appl. Phys. Lett. 91(5), 53115 (2007).
[Crossref]

Bell Syst. Tech. J. (1)

F. M. Smits, “Measurement of Sheet Resistivities with the Four-Point Probe,” Bell Syst. Tech. J. 37(3), 711–718 (1958).
[Crossref]

Energy Procedia (1)

S. Kirner, M. Hartig, L. Mazzarella, L. Korte, T. Frijnts, H. Scherg-Kurmes, S. Ring, B. Stannowski, B. Rech, and R. Schlatmann, “The Influence of ITO Dopant Density on J-V Characteristics of Silicon Heterojunction Solar Cells: Experiments and Simulations,” Energy Procedia 77, 725–732 (2015).
[Crossref]

J. Appl. Phys. (2)

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
[Crossref]

A. J. Morfa, E. M. Akinoglu, J. Subbiah, M. Giersig, and P. Mulvaney, “Transparent metal electrodes from ordered nanosphere arrays,” J. Appl. Phys. 114(5), 54502 (2013).
[Crossref]

J. Mater. Sci. Technol. (1)

W. He and C. Ye, “Flexible Transparent Conductive Films on the Basis of Ag Nanowires: Design and Applications: A Review,” J. Mater. Sci. Technol. 31(6), 581–588 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Condens. Matter (1)

I. Miccoli, F. Edler, H. Pfnür, and C. Tegenkamp, “The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems,” J. Phys. Condens. Matter 27(22), 223201 (2015).
[Crossref]

Langmuir (1)

L. Malaquin, T. Kraus, H. Schmid, E. Delamarche, and H. Wolf, “Controlled particle placement through convective and capillary assembly,” Langmuir 23(23), 11513–11521 (2007).
[Crossref]

Microelectron. Eng. (1)

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1), 146–152 (2004).
[Crossref]

Nano Lett. (1)

J. Y. Lee, S. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[Crossref] [PubMed]

Nanotechnology (1)

K. Cheng, Z. Cui, Q. Li, S. Wang, and Z. Du, “Large-scale fabrication of a continuous gold network for use as a transparent conductive electrode in photo-electronic devices,” Nanotechnology 23, 42 (2012).
[Crossref]

Phys. Rep. (1)

A. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Phys. Rev. B (3)

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[Crossref]

Thin Solid Films (1)

S. Kim, S. Choi, C. Park, and H. Jin, “Transparent conductive ITO thin films through the sol-gel process using metal salts,” Thin Solid Films 347(1), 155–160 (1999).
[Crossref]

Other (7)

American Society for Testing and Materials, Annual book of ASTM standards (American Society for Testing and Materials, 1975).

S. Oi, “Automotive Touch Panel Market Report,” Tech. Rep. (2016). https://goo.gl/3r7oyT .

G. Adiboina, “Thin Film Photovoltaic (PV) Cells Market Analysis to 2020,” Tech. Rep. (2010). https://goo.gl/v9ceGP .

J. Baljko, “Flexible Displays Poised for Explosive Growth,” Tech. Rep. (2013). https://goo.gl/R5rnPb .

H. Hartnagel, Semiconducting Transparent Thin Films (Institute of Physics Publishing, 1995).

VLSI Standards, ITO Sheet Resistance Standard (VLSI Standards, 2012).

COMSOL AB, “COMSOL MultiPhysics Reference Manual, version 5.3,” COMSOL, Inc, www.comsol.com (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic illustration of the fabrication process. (b) A single nano-aperture after Ag PVD. Scale bar: 200 nm. (c) Low magnification micrograph of deposited Ti+Ag (3+30 nm) thin-film on homogenous PSP monolayer demonstrating large-scale feasibility. Scale bar: 50 µm. (d) PSP monolayer on an SiO2 substrate after spin-coating and a short (60 s) ICP-RIE sequence: Contacting PSP result in disconnected veins, I. The PSP edge closest to neighbor particles show bridge-forming tendency which thins the veins, II. Large gaps result in thicker inter-aperture veins, III. Scale bar: 2 µm. (e) PSP monolayer after spin-coating and a long (3 min) ICP-RIE sequence resulting in d = 206.7 ± 1.7 nm, d/d0 = 0.197 demonstrating that original PSP positions are preserved even for significant size reduction. Scale bar: 10 µm.
Fig. 2
Fig. 2 Ratio between bulk conductivity (σB) and TCF sheet conductivity (σsh) as a function of the aperture and initial particle diameter ratio. Blue: Geometrical model. Black: Analytical resistance model for the limit of large apertures. Purple: Finite-element model calculation of unit-cell resistance. Red: Conductivity measured on fully TCF-covered wafers. Inset shows that the analytical resistance model predicts the same results as the simulation in the limit of large apertures.
Fig. 3
Fig. 3 Simulated (continuous) and measured (dashed) optical transmittance in the visible wavelength range (400–700 nm) for a selection of TCFs with < 10 Ω/sq simulated sheet resistance. Inset: Calculated data points (dotted) and measured (dashed) transmittance for the d/d0 = 0.44 specimen.
Fig. 4
Fig. 4 Scanning electron micrograph of spin-coated PSP prior to the size-reducing ICP-RIE sequence. Scale bar 40 µm.
Fig. 5
Fig. 5 Scanning electron micrograph of a physical vapour deposited Ti+Ag (3 + 30 nm) thin-film on a monodomain of ICP-RIE sequenced PSP. Scale bar 3 µm.
Fig. 6
Fig. 6 Air, aperture grating in Ag film on glass substrate unit cell geometry for numerical simulation of transmittance. a) side view with material domains and b) slightly tilted view to reveal aperture in film and exemplifying periodic boundary conditions (PC).
Fig. 7
Fig. 7 Aperture grating in Ag film on glass substrate unit cell; a) Periodic port wave excitation surface (arrow indicates power flow direction), b),c) Upper and lower hypothetical surface for power flow calculations and d) Ag volume representing the unit cell of the investigated TCF.
Fig. 8
Fig. 8 Example rectangular Ag film unit cells containing apertures with side wall boundary conditions: 1 A current source, ground and periodic boundary conditions (PC) used for sheet resistance simulation. d0 = 1050 nm, a) d = 650 nm and b) d = 968 nm apertures. The calculated change in electric potential is used to calculate the sheet resistance.
Fig. 9
Fig. 9 Sketch of the lumped resistor configuration used in the analytical resistance model: a) The aperture-containing film is approximated as a network of lumped resistors. b) The value R of the lumped resistors is estimated under the assumption that the iso-voltage contours are straight lines towards the nearest aperture center. Panel b) also shows the relevant parameters of the geometry.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ϕ H = T / R sh [ 10 3 Ω 1 ] ,
σ B σ sh = 2 3 a 2 2 a arctan ( 2 a a 2 2 a tan π 12 ) ,
T π ( d 0 / 2 w / 2 ) 2 2 3 ( d 0 / 2 ) 2 0.873 ,
× × E ( ω c ) 2 ( ε r i σ ω σ 0 ) E = 0 ,
I ( ϕ ) = 2 σ B t V ϕ r r 0 / cos ϕ d r 1 r = 2 σ B t V ϕ ln ( r 0 r cos ϕ ) ,
1 2 V max = π / 6 π / 6 d ϕ V ϕ = I σ B t 0 π / 6 d ϕ [ ln ( r 0 r cos ϕ ) ] 1 I σ B t 0 π / 6 d ϕ 1 1 a cos ϕ ,
1 2 V max = I σ B t 2 a 2 2 a arctan ( 2 a a 2 2 a tan π 12 ) .