Abstract

We report on the first application of an antimony telluride (Sb2Te3) thin film as a saturable absorber (SA) in a microchip laser. The 3–15 nm-thick Sb2Te3 films were deposited on glass substrates by pulsed magnetron sputtering and they were studied by SEM, X-ray diffraction, Raman and optical spectroscopy. The saturable absorption of the Sb2Te3 film was confirmed at 1.56 μm for ns-long pulses revealing low saturation intensity of 0.17 MW/cm2. The microchip laser was based on a Tm:GdVO4 crystal diode-pumped at ~802 nm. In the continuous-wave regime, this laser generated 3.54 W at 1905–1921 nm with a slope efficiency of 37%. The Q-switched laser generated a maximum average output power of 0.70 W at 1913 nm. The highest pulse energy of 3.5 µJ and the shortest pulse duration of 223 ns were obtained at the 200 kHz repetition rate.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers

Josep Maria Serres, Pavel Loiko, Xavier Mateos, Haohai Yu, Huaijin Zhang, Yanxue Chen, Valentin Petrov, Uwe Griebner, Konstantin Yumashev, Magdalena Aguiló, and Francesc Díaz
Opt. Mater. Express 6(10) 3262-3273 (2016)

Tm:KY1-x-yGdxLuy(WO4)2 planar waveguide laser passively Q-switched by single-walled carbon nanotubes

Esrom Kifle, Xavier Mateos, Pavel Loiko, Sun Yung Choi, Ji Eun Bae, Fabian Rotermund, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, and Valentin Petrov
Opt. Express 26(4) 4961-4966 (2018)

Passively Q-switched solid-state Tm:YAG laser using topological insulator Bi2Te3 as a saturable absorber

Pan Gao, Haizhou Huang, Xihu Wang, Huagang Liu, Jianhong Huang, Wen Weng, Shutao Dai, Jinhui Li, and Wenxiong Lin
Appl. Opt. 57(9) 2020-2024 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  2. G. Xing, H. Guo, X. Zhang, T. C. Sum, and C. H. A. Huan, “The physics of ultrafast saturable absorption in graphene,” Opt. Express 18(5), 4564–4573 (2010).
    [Crossref] [PubMed]
  3. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  4. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D. I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
    [Crossref]
  5. J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photon. Res. 3(4), 119–124 (2015).
    [Crossref]
  6. Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
    [Crossref]
  7. J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6(10), 3262–3273 (2016).
    [Crossref]
  8. J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015).
    [Crossref] [PubMed]
  9. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
    [Crossref]
  10. X. Wang, J. Xu, Y. Sun, Z. Zhu, Z. You, and C. Tu, “Near infrared passively Q-switched solid state laser based on Sb2Te3 topological insulator saturable absorber,” J. Lumin. 192, 1–5 (2017).
    [Crossref]
  11. F. Zhang, S. Han, Y. Liu, Z. Wang, and X. Xu, “Dependence of the saturable absorption of graphene upon excitation photon energy,” Appl. Phys. Lett. 106(9), 091102 (2015).
    [Crossref]
  12. J. E. Moore, “The birth of topological insulators,” Nature 464(7286), 194–198 (2010).
    [Crossref] [PubMed]
  13. H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
    [Crossref]
  14. P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep.  5, 8690 (2015).
    [Crossref]
  15. X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2 µm,” Laser Phys. Lett. 14(9), 095801 (2017).
    [Crossref]
  16. M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
    [Crossref]
  17. R. Lan, X. Mateos, Y. Wang, J. M. Serres, P. Loiko, J. Li, Y. Pan, U. Griebner, and V. Petrov, “Semiconductor saturable absorber Q-switching of a holmium micro-laser,” Opt. Express 25(5), 4579–4584 (2017).
    [Crossref] [PubMed]
  18. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, 2010), pp. 471–500.
  19. Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron.  20(5), 0902708 (2014).
  20. J. Lee, M. Jung, J. Koo, C. Chi, and J. H. Lee, “Passively Q-switched 1.89-μm fiber laser using a bulk-structured Bi2Te3 topological insulator,” IEEE J. Sel. Top. Quantum Electron.  21(1), 0900206 (2015).
  21. J. Bogusławski, G. Soboń, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
    [Crossref]
  22. J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
    [Crossref] [PubMed]
  23. R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
    [Crossref] [PubMed]
  24. R. Zybala and K. T. Wojciechowski, “Anisotropy analysis of thermoelectric properties of Bi2Te2.9Se0.1 prepared by SPS method,” AIP Conf. Proc. 1449(1), 393–396 (2012).
    [Crossref]
  25. R. Zybała, K. Mars, A. Mikuła, J. Bogusławski, G. Soboń, J. Sotor, M. Schmidt, K. Kaszyca, M. Chmielewski, L. Ciupiński, and K. Pietrzak, “Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications,” Arch. Metall. Mater. 62(2), 1067–1070 (2017).
    [Crossref]
  26. J. Boguslawski, G. Sobon, R. Zybala, and J. Sotor, “Dissipative soliton generation in Er-doped fiber laser mode-locked by Sb2Te3 topological insulator,” Opt. Lett. 40(12), 2786–2789 (2015).
    [Crossref] [PubMed]
  27. G. Hao, X. Qi, Y. Fan, L. Xue, X. Peng, X. Wei, and J. Zhong, “Spiral growth of topological insulator Sb2Te3 nanoplates,” Appl. Phys. Lett. 102(1), 013105 (2013).
    [Crossref] [PubMed]
  28. K. A. Kokh, V. V. Atuchin, T. A. Gavrilova, N. V. Kuratieva, N. V. Pervukhina, and N. V. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
    [Crossref]
  29. K. Takayama and M. Takashiri, “Multi-layered-stack thermoelectric generators using p-type Sb2Te3 and n-type Bi2Te3 thin films by radio-frequency magnetron sputtering,” Vacuum 144, 164–171 (2017).
    [Crossref]
  30. J. Reimann, J. Güdde, K. Kuroda, E. V. Chulkov, and U. Höfer, “Spectroscopy and dynamics of unoccupied electronic states of the topological insulators Sb2Te3 and Sb2Te2S,” Phys. Rev. B 90(8), 081106 (2014).
    [Crossref]
  31. K. Krzempek, D. Tomaszewska, and K. M. Abramski, “Dissipative soliton resonance mode-locked all-polarization-maintaining double clad Er:Yb fiber laser,” Opt. Express 25(21), 24853–24860 (2017).
    [Crossref] [PubMed]
  32. K. Wang, H. Long, M. Fu, G. Yang, and P. Lu, “Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array,” Opt. Lett. 35(10), 1560–1562 (2010).
    [Crossref] [PubMed]
  33. C. P. Wyss, W. Lüthy, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, and I. A. Shcherbakov, “Emission properties of a Tm3+:GdVO4 microchip laser at 1.9 μm,” Appl. Phys. B 67(5), 545–548 (1998).
    [Crossref]
  34. P. A. Loiko, K. V. Yumashev, V. N. Matrosov, and N. V. Kuleshov, “Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals: erratum,” Appl. Opt. 54(15), 4820–4822 (2015).
    [Crossref] [PubMed]
  35. A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
    [Crossref]
  36. S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4(4), 587–596 (2014).
    [Crossref]

2017 (7)

X. Wang, J. Xu, Y. Sun, Z. Zhu, Z. You, and C. Tu, “Near infrared passively Q-switched solid state laser based on Sb2Te3 topological insulator saturable absorber,” J. Lumin. 192, 1–5 (2017).
[Crossref]

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2 µm,” Laser Phys. Lett. 14(9), 095801 (2017).
[Crossref]

R. Zybała, K. Mars, A. Mikuła, J. Bogusławski, G. Soboń, J. Sotor, M. Schmidt, K. Kaszyca, M. Chmielewski, L. Ciupiński, and K. Pietrzak, “Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications,” Arch. Metall. Mater. 62(2), 1067–1070 (2017).
[Crossref]

K. Takayama and M. Takashiri, “Multi-layered-stack thermoelectric generators using p-type Sb2Te3 and n-type Bi2Te3 thin films by radio-frequency magnetron sputtering,” Vacuum 144, 164–171 (2017).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

R. Lan, X. Mateos, Y. Wang, J. M. Serres, P. Loiko, J. Li, Y. Pan, U. Griebner, and V. Petrov, “Semiconductor saturable absorber Q-switching of a holmium micro-laser,” Opt. Express 25(5), 4579–4584 (2017).
[Crossref] [PubMed]

K. Krzempek, D. Tomaszewska, and K. M. Abramski, “Dissipative soliton resonance mode-locked all-polarization-maintaining double clad Er:Yb fiber laser,” Opt. Express 25(21), 24853–24860 (2017).
[Crossref] [PubMed]

2016 (5)

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6(10), 3262–3273 (2016).
[Crossref]

J. Bogusławski, G. Soboń, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
[Crossref]

2015 (8)

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep.  5, 8690 (2015).
[Crossref]

F. Zhang, S. Han, Y. Liu, Z. Wang, and X. Xu, “Dependence of the saturable absorption of graphene upon excitation photon energy,” Appl. Phys. Lett. 106(9), 091102 (2015).
[Crossref]

J. Lee, M. Jung, J. Koo, C. Chi, and J. H. Lee, “Passively Q-switched 1.89-μm fiber laser using a bulk-structured Bi2Te3 topological insulator,” IEEE J. Sel. Top. Quantum Electron.  21(1), 0900206 (2015).

P. A. Loiko, K. V. Yumashev, V. N. Matrosov, and N. V. Kuleshov, “Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals: erratum,” Appl. Opt. 54(15), 4820–4822 (2015).
[Crossref] [PubMed]

J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photon. Res. 3(4), 119–124 (2015).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

J. Boguslawski, G. Sobon, R. Zybala, and J. Sotor, “Dissipative soliton generation in Er-doped fiber laser mode-locked by Sb2Te3 topological insulator,” Opt. Lett. 40(12), 2786–2789 (2015).
[Crossref] [PubMed]

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015).
[Crossref] [PubMed]

2014 (4)

J. Reimann, J. Güdde, K. Kuroda, E. V. Chulkov, and U. Höfer, “Spectroscopy and dynamics of unoccupied electronic states of the topological insulators Sb2Te3 and Sb2Te2S,” Phys. Rev. B 90(8), 081106 (2014).
[Crossref]

K. A. Kokh, V. V. Atuchin, T. A. Gavrilova, N. V. Kuratieva, N. V. Pervukhina, and N. V. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
[Crossref]

S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4(4), 587–596 (2014).
[Crossref]

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron.  20(5), 0902708 (2014).

2013 (1)

G. Hao, X. Qi, Y. Fan, L. Xue, X. Peng, X. Wei, and J. Zhong, “Spiral growth of topological insulator Sb2Te3 nanoplates,” Appl. Phys. Lett. 102(1), 013105 (2013).
[Crossref] [PubMed]

2012 (2)

R. Zybala and K. T. Wojciechowski, “Anisotropy analysis of thermoelectric properties of Bi2Te2.9Se0.1 prepared by SPS method,” AIP Conf. Proc. 1449(1), 393–396 (2012).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

2010 (4)

J. E. Moore, “The birth of topological insulators,” Nature 464(7286), 194–198 (2010).
[Crossref] [PubMed]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D. I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

G. Xing, H. Guo, X. Zhang, T. C. Sum, and C. H. A. Huan, “The physics of ultrafast saturable absorption in graphene,” Opt. Express 18(5), 4564–4573 (2010).
[Crossref] [PubMed]

K. Wang, H. Long, M. Fu, G. Yang, and P. Lu, “Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array,” Opt. Lett. 35(10), 1560–1562 (2010).
[Crossref] [PubMed]

2009 (2)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

2008 (1)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

1998 (1)

C. P. Wyss, W. Lüthy, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, and I. A. Shcherbakov, “Emission properties of a Tm3+:GdVO4 microchip laser at 1.9 μm,” Appl. Phys. B 67(5), 545–548 (1998).
[Crossref]

Abramski, K. M.

Aguiló, M.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2 µm,” Laser Phys. Lett. 14(9), 095801 (2017).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6(10), 3262–3273 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

Aksienionek, M.

Atuchin, V. V.

K. A. Kokh, V. V. Atuchin, T. A. Gavrilova, N. V. Kuratieva, N. V. Pervukhina, and N. V. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
[Crossref]

Bao, Q.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Boguslawski, J.

R. Zybała, K. Mars, A. Mikuła, J. Bogusławski, G. Soboń, J. Sotor, M. Schmidt, K. Kaszyca, M. Chmielewski, L. Ciupiński, and K. Pietrzak, “Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications,” Arch. Metall. Mater. 62(2), 1067–1070 (2017).
[Crossref]

J. Bogusławski, G. Soboń, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

J. Boguslawski, G. Sobon, R. Zybala, and J. Sotor, “Dissipative soliton generation in Er-doped fiber laser mode-locked by Sb2Te3 topological insulator,” Opt. Lett. 40(12), 2786–2789 (2015).
[Crossref] [PubMed]

J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photon. Res. 3(4), 119–124 (2015).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Cai, Z.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron.  20(5), 0902708 (2014).

Chen, H.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep.  5, 8690 (2015).
[Crossref]

Chen, S.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep.  5, 8690 (2015).
[Crossref]

S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4(4), 587–596 (2014).
[Crossref]

Chen, Y.

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6(10), 3262–3273 (2016).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Chi, C.

J. Lee, M. Jung, J. Koo, C. Chi, and J. H. Lee, “Passively Q-switched 1.89-μm fiber laser using a bulk-structured Bi2Te3 topological insulator,” IEEE J. Sel. Top. Quantum Electron.  21(1), 0900206 (2015).

Chmielewski, M.

R. Zybała, K. Mars, A. Mikuła, J. Bogusławski, G. Soboń, J. Sotor, M. Schmidt, K. Kaszyca, M. Chmielewski, L. Ciupiński, and K. Pietrzak, “Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications,” Arch. Metall. Mater. 62(2), 1067–1070 (2017).
[Crossref]

Cho, W. B.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D. I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Choi, S. Y.

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2 µm,” Laser Phys. Lett. 14(9), 095801 (2017).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D. I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Chulkov, E. V.

J. Reimann, J. Güdde, K. Kuroda, E. V. Chulkov, and U. Höfer, “Spectroscopy and dynamics of unoccupied electronic states of the topological insulators Sb2Te3 and Sb2Te2S,” Phys. Rev. B 90(8), 081106 (2014).
[Crossref]

Ciupinski, L.

R. Zybała, K. Mars, A. Mikuła, J. Bogusławski, G. Soboń, J. Sotor, M. Schmidt, K. Kaszyca, M. Chmielewski, L. Ciupiński, and K. Pietrzak, “Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications,” Arch. Metall. Mater. 62(2), 1067–1070 (2017).
[Crossref]

Dai, X.

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Díaz, F.

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2 µm,” Laser Phys. Lett. 14(9), 095801 (2017).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6(10), 3262–3273 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

Fan, Y.

G. Hao, X. Qi, Y. Fan, L. Xue, X. Peng, X. Wei, and J. Zhong, “Spiral growth of topological insulator Sb2Te3 nanoplates,” Appl. Phys. Lett. 102(1), 013105 (2013).
[Crossref] [PubMed]

Fang, Z.

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Fu, M.

Gaponenko, M.

M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
[Crossref]

Gavrilova, T. A.

K. A. Kokh, V. V. Atuchin, T. A. Gavrilova, N. V. Kuratieva, N. V. Pervukhina, and N. V. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
[Crossref]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Griebner, U.

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2 µm,” Laser Phys. Lett. 14(9), 095801 (2017).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

R. Lan, X. Mateos, Y. Wang, J. M. Serres, P. Loiko, J. Li, Y. Pan, U. Griebner, and V. Petrov, “Semiconductor saturable absorber Q-switching of a holmium micro-laser,” Opt. Express 25(5), 4579–4584 (2017).
[Crossref] [PubMed]

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6(10), 3262–3273 (2016).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D. I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Güdde, J.

J. Reimann, J. Güdde, K. Kuroda, E. V. Chulkov, and U. Höfer, “Spectroscopy and dynamics of unoccupied electronic states of the topological insulators Sb2Te3 and Sb2Te2S,” Phys. Rev. B 90(8), 081106 (2014).
[Crossref]

Guo, C.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep.  5, 8690 (2015).
[Crossref]

Guo, H.

Gusakova, N. V.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Han, S.

F. Zhang, S. Han, Y. Liu, Z. Wang, and X. Xu, “Dependence of the saturable absorption of graphene upon excitation photon energy,” Appl. Phys. Lett. 106(9), 091102 (2015).
[Crossref]

Hao, G.

G. Hao, X. Qi, Y. Fan, L. Xue, X. Peng, X. Wei, and J. Zhong, “Spiral growth of topological insulator Sb2Te3 nanoplates,” Appl. Phys. Lett. 102(1), 013105 (2013).
[Crossref] [PubMed]

Höfer, U.

J. Reimann, J. Güdde, K. Kuroda, E. V. Chulkov, and U. Höfer, “Spectroscopy and dynamics of unoccupied electronic states of the topological insulators Sb2Te3 and Sb2Te2S,” Phys. Rev. B 90(8), 081106 (2014).
[Crossref]

Hu, J.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep.  5, 8690 (2015).
[Crossref]

Huan, C. H. A.

Huang, H.

Huang, Y.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron.  20(5), 0902708 (2014).

Jung, M.

J. Lee, M. Jung, J. Koo, C. Chi, and J. H. Lee, “Passively Q-switched 1.89-μm fiber laser using a bulk-structured Bi2Te3 topological insulator,” IEEE J. Sel. Top. Quantum Electron.  21(1), 0900206 (2015).

Kaszyca, K.

R. Zybała, K. Mars, A. Mikuła, J. Bogusławski, G. Soboń, J. Sotor, M. Schmidt, K. Kaszyca, M. Chmielewski, L. Ciupiński, and K. Pietrzak, “Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications,” Arch. Metall. Mater. 62(2), 1067–1070 (2017).
[Crossref]

Kim, K.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D. I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Kim, M. H.

Kokh, K. A.

K. A. Kokh, V. V. Atuchin, T. A. Gavrilova, N. V. Kuratieva, N. V. Pervukhina, and N. V. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
[Crossref]

Koo, J.

J. Lee, M. Jung, J. Koo, C. Chi, and J. H. Lee, “Passively Q-switched 1.89-μm fiber laser using a bulk-structured Bi2Te3 topological insulator,” IEEE J. Sel. Top. Quantum Electron.  21(1), 0900206 (2015).

Kowalczyk, M.

Kozinski, R.

Krzempek, K.

Kuleshov, N.

M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
[Crossref]

Kuleshov, N. V.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

P. A. Loiko, K. V. Yumashev, V. N. Matrosov, and N. V. Kuleshov, “Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals: erratum,” Appl. Opt. 54(15), 4820–4822 (2015).
[Crossref] [PubMed]

Kuratieva, N. V.

K. A. Kokh, V. V. Atuchin, T. A. Gavrilova, N. V. Kuratieva, N. V. Pervukhina, and N. V. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
[Crossref]

Kuroda, K.

J. Reimann, J. Güdde, K. Kuroda, E. V. Chulkov, and U. Höfer, “Spectroscopy and dynamics of unoccupied electronic states of the topological insulators Sb2Te3 and Sb2Te2S,” Phys. Rev. B 90(8), 081106 (2014).
[Crossref]

Lan, R.

Lee, J.

J. Lee, M. Jung, J. Koo, C. Chi, and J. H. Lee, “Passively Q-switched 1.89-μm fiber laser using a bulk-structured Bi2Te3 topological insulator,” IEEE J. Sel. Top. Quantum Electron.  21(1), 0900206 (2015).

Lee, J. H.

J. Lee, M. Jung, J. Koo, C. Chi, and J. H. Lee, “Passively Q-switched 1.89-μm fiber laser using a bulk-structured Bi2Te3 topological insulator,” IEEE J. Sel. Top. Quantum Electron.  21(1), 0900206 (2015).

Lee, S.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D. I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Li, J.

Li, Y.

Librant, K.

Lin, R.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep.  5, 8690 (2015).
[Crossref]

Lin, Z.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron.  20(5), 0902708 (2014).

Lipinska, L.

Liu, A.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep.  5, 8690 (2015).
[Crossref]

Liu, C.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron.  20(5), 0902708 (2014).

Liu, C. X.

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Liu, Y.

F. Zhang, S. Han, Y. Liu, Z. Wang, and X. Xu, “Dependence of the saturable absorption of graphene upon excitation photon energy,” Appl. Phys. Lett. 106(9), 091102 (2015).
[Crossref]

Loh, K. P.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Loiko, P.

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2 µm,” Laser Phys. Lett. 14(9), 095801 (2017).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

R. Lan, X. Mateos, Y. Wang, J. M. Serres, P. Loiko, J. Li, Y. Pan, U. Griebner, and V. Petrov, “Semiconductor saturable absorber Q-switching of a holmium micro-laser,” Opt. Express 25(5), 4579–4584 (2017).
[Crossref] [PubMed]

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6(10), 3262–3273 (2016).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

Loiko, P. A.

Long, H.

Lu, P.

Lu, S.

Luo, Z.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron.  20(5), 0902708 (2014).

Lüthy, W.

C. P. Wyss, W. Lüthy, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, and I. A. Shcherbakov, “Emission properties of a Tm3+:GdVO4 microchip laser at 1.9 μm,” Appl. Phys. B 67(5), 545–548 (1998).
[Crossref]

Macherzynski, W.

Mars, K.

R. Zybała, K. Mars, A. Mikuła, J. Bogusławski, G. Soboń, J. Sotor, M. Schmidt, K. Kaszyca, M. Chmielewski, L. Ciupiński, and K. Pietrzak, “Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications,” Arch. Metall. Mater. 62(2), 1067–1070 (2017).
[Crossref]

J. Bogusławski, G. Soboń, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

Martinez, A.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Mateos, X.

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2 µm,” Laser Phys. Lett. 14(9), 095801 (2017).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

R. Lan, X. Mateos, Y. Wang, J. M. Serres, P. Loiko, J. Li, Y. Pan, U. Griebner, and V. Petrov, “Semiconductor saturable absorber Q-switching of a holmium micro-laser,” Opt. Express 25(5), 4579–4584 (2017).
[Crossref] [PubMed]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6(10), 3262–3273 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

Matrosov, V. N.

Mikula, A.

R. Zybała, K. Mars, A. Mikuła, J. Bogusławski, G. Soboń, J. Sotor, M. Schmidt, K. Kaszyca, M. Chmielewski, L. Ciupiński, and K. Pietrzak, “Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications,” Arch. Metall. Mater. 62(2), 1067–1070 (2017).
[Crossref]

J. Bogusławski, G. Soboń, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

Moore, J. E.

J. E. Moore, “The birth of topological insulators,” Nature 464(7286), 194–198 (2010).
[Crossref] [PubMed]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Paletko, P.

Pan, Y.

Peng, X.

G. Hao, X. Qi, Y. Fan, L. Xue, X. Peng, X. Wei, and J. Zhong, “Spiral growth of topological insulator Sb2Te3 nanoplates,” Appl. Phys. Lett. 102(1), 013105 (2013).
[Crossref] [PubMed]

Peres, N. M.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Pervukhina, N. V.

K. A. Kokh, V. V. Atuchin, T. A. Gavrilova, N. V. Kuratieva, N. V. Pervukhina, and N. V. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
[Crossref]

Petrov, V.

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2 µm,” Laser Phys. Lett. 14(9), 095801 (2017).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

R. Lan, X. Mateos, Y. Wang, J. M. Serres, P. Loiko, J. Li, Y. Pan, U. Griebner, and V. Petrov, “Semiconductor saturable absorber Q-switching of a holmium micro-laser,” Opt. Express 25(5), 4579–4584 (2017).
[Crossref] [PubMed]

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6(10), 3262–3273 (2016).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D. I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Pietrzak, K.

R. Zybała, K. Mars, A. Mikuła, J. Bogusławski, G. Soboń, J. Sotor, M. Schmidt, K. Kaszyca, M. Chmielewski, L. Ciupiński, and K. Pietrzak, “Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications,” Arch. Metall. Mater. 62(2), 1067–1070 (2017).
[Crossref]

Qi, X.

G. Hao, X. Qi, Y. Fan, L. Xue, X. Peng, X. Wei, and J. Zhong, “Spiral growth of topological insulator Sb2Te3 nanoplates,” Appl. Phys. Lett. 102(1), 013105 (2013).
[Crossref] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Qi, X. L.

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Reimann, J.

J. Reimann, J. Güdde, K. Kuroda, E. V. Chulkov, and U. Höfer, “Spectroscopy and dynamics of unoccupied electronic states of the topological insulators Sb2Te3 and Sb2Te2S,” Phys. Rev. B 90(8), 081106 (2014).
[Crossref]

Rotermund, F.

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2 µm,” Laser Phys. Lett. 14(9), 095801 (2017).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D. I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Ruan, S.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep.  5, 8690 (2015).
[Crossref]

Schmidt, A.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D. I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Schmidt, M.

R. Zybała, K. Mars, A. Mikuła, J. Bogusławski, G. Soboń, J. Sotor, M. Schmidt, K. Kaszyca, M. Chmielewski, L. Ciupiński, and K. Pietrzak, “Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications,” Arch. Metall. Mater. 62(2), 1067–1070 (2017).
[Crossref]

Serres, J. M.

Shcherbakov, I. A.

C. P. Wyss, W. Lüthy, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, and I. A. Shcherbakov, “Emission properties of a Tm3+:GdVO4 microchip laser at 1.9 μm,” Appl. Phys. B 67(5), 545–548 (1998).
[Crossref]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Sobon, G.

R. Zybała, K. Mars, A. Mikuła, J. Bogusławski, G. Soboń, J. Sotor, M. Schmidt, K. Kaszyca, M. Chmielewski, L. Ciupiński, and K. Pietrzak, “Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications,” Arch. Metall. Mater. 62(2), 1067–1070 (2017).
[Crossref]

J. Bogusławski, G. Soboń, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

J. Boguslawski, G. Sobon, R. Zybala, and J. Sotor, “Dissipative soliton generation in Er-doped fiber laser mode-locked by Sb2Te3 topological insulator,” Opt. Lett. 40(12), 2786–2789 (2015).
[Crossref] [PubMed]

J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photon. Res. 3(4), 119–124 (2015).
[Crossref]

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015).
[Crossref] [PubMed]

Sotor, J.

R. Zybała, K. Mars, A. Mikuła, J. Bogusławski, G. Soboń, J. Sotor, M. Schmidt, K. Kaszyca, M. Chmielewski, L. Ciupiński, and K. Pietrzak, “Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications,” Arch. Metall. Mater. 62(2), 1067–1070 (2017).
[Crossref]

J. Bogusławski, G. Soboń, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photon. Res. 3(4), 119–124 (2015).
[Crossref]

J. Boguslawski, G. Sobon, R. Zybala, and J. Sotor, “Dissipative soliton generation in Er-doped fiber laser mode-locked by Sb2Te3 topological insulator,” Opt. Lett. 40(12), 2786–2789 (2015).
[Crossref] [PubMed]

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015).
[Crossref] [PubMed]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Steinmeyer, G.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D. I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Studenikin, P. A.

C. P. Wyss, W. Lüthy, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, and I. A. Shcherbakov, “Emission properties of a Tm3+:GdVO4 microchip laser at 1.9 μm,” Appl. Phys. B 67(5), 545–548 (1998).
[Crossref]

Südmeyer, T.

M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
[Crossref]

Sum, T. C.

Sun, L.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron.  20(5), 0902708 (2014).

Sun, Y.

X. Wang, J. Xu, Y. Sun, Z. Zhu, Z. You, and C. Tu, “Near infrared passively Q-switched solid state laser based on Sb2Te3 topological insulator saturable absorber,” J. Lumin. 192, 1–5 (2017).
[Crossref]

Sun, Z.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Surovtsev, N. V.

K. A. Kokh, V. V. Atuchin, T. A. Gavrilova, N. V. Kuratieva, N. V. Pervukhina, and N. V. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
[Crossref]

Takashiri, M.

K. Takayama and M. Takashiri, “Multi-layered-stack thermoelectric generators using p-type Sb2Te3 and n-type Bi2Te3 thin films by radio-frequency magnetron sputtering,” Vacuum 144, 164–171 (2017).
[Crossref]

Takayama, K.

K. Takayama and M. Takashiri, “Multi-layered-stack thermoelectric generators using p-type Sb2Te3 and n-type Bi2Te3 thin films by radio-frequency magnetron sputtering,” Vacuum 144, 164–171 (2017).
[Crossref]

Tang, D.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Tang, D. Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Tarnowski, K.

J. Bogusławski, G. Soboń, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

Tomaszewska, D.

Tu, C.

X. Wang, J. Xu, Y. Sun, Z. Zhu, Z. You, and C. Tu, “Near infrared passively Q-switched solid state laser based on Sb2Te3 topological insulator saturable absorber,” J. Lumin. 192, 1–5 (2017).
[Crossref]

Vlasov, V. I.

C. P. Wyss, W. Lüthy, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, and I. A. Shcherbakov, “Emission properties of a Tm3+:GdVO4 microchip laser at 1.9 μm,” Appl. Phys. B 67(5), 545–548 (1998).
[Crossref]

Wang, F.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Wang, K.

Wang, X.

X. Wang, J. Xu, Y. Sun, Z. Zhu, Z. You, and C. Tu, “Near infrared passively Q-switched solid state laser based on Sb2Te3 topological insulator saturable absorber,” J. Lumin. 192, 1–5 (2017).
[Crossref]

Wang, Y.

Wang, Z.

F. Zhang, S. Han, Y. Liu, Z. Wang, and X. Xu, “Dependence of the saturable absorption of graphene upon excitation photon energy,” Appl. Phys. Lett. 106(9), 091102 (2015).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Weber, H. P.

C. P. Wyss, W. Lüthy, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, and I. A. Shcherbakov, “Emission properties of a Tm3+:GdVO4 microchip laser at 1.9 μm,” Appl. Phys. B 67(5), 545–548 (1998).
[Crossref]

Wei, X.

G. Hao, X. Qi, Y. Fan, L. Xue, X. Peng, X. Wei, and J. Zhong, “Spiral growth of topological insulator Sb2Te3 nanoplates,” Appl. Phys. Lett. 102(1), 013105 (2013).
[Crossref] [PubMed]

Wen, S.

S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4(4), 587–596 (2014).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Weng, J.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron.  20(5), 0902708 (2014).

Wojciechowski, K. T.

R. Zybala and K. T. Wojciechowski, “Anisotropy analysis of thermoelectric properties of Bi2Te2.9Se0.1 prepared by SPS method,” AIP Conf. Proc. 1449(1), 393–396 (2012).
[Crossref]

Wu, D.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron.  20(5), 0902708 (2014).

Wu, J.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron.  20(5), 0902708 (2014).

Wyss, C. P.

C. P. Wyss, W. Lüthy, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, and I. A. Shcherbakov, “Emission properties of a Tm3+:GdVO4 microchip laser at 1.9 μm,” Appl. Phys. B 67(5), 545–548 (1998).
[Crossref]

Xing, G.

Xu, H.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron.  20(5), 0902708 (2014).

Xu, J.

X. Wang, J. Xu, Y. Sun, Z. Zhu, Z. You, and C. Tu, “Near infrared passively Q-switched solid state laser based on Sb2Te3 topological insulator saturable absorber,” J. Lumin. 192, 1–5 (2017).
[Crossref]

Xu, X.

F. Zhang, S. Han, Y. Liu, Z. Wang, and X. Xu, “Dependence of the saturable absorption of graphene upon excitation photon energy,” Appl. Phys. Lett. 106(9), 091102 (2015).
[Crossref]

Xue, L.

G. Hao, X. Qi, Y. Fan, L. Xue, X. Peng, X. Wei, and J. Zhong, “Spiral growth of topological insulator Sb2Te3 nanoplates,” Appl. Phys. Lett. 102(1), 013105 (2013).
[Crossref] [PubMed]

Yan, P.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep.  5, 8690 (2015).
[Crossref]

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Yang, G.

Yasukevich, A.

Yasukevich, A. S.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Yeom, D. I.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D. I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Yim, J. H.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D. I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

You, Z.

X. Wang, J. Xu, Y. Sun, Z. Zhu, Z. You, and C. Tu, “Near infrared passively Q-switched solid state laser based on Sb2Te3 topological insulator saturable absorber,” J. Lumin. 192, 1–5 (2017).
[Crossref]

Yu, H.

Yumashev, K.

Yumashev, K. V.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

P. A. Loiko, K. V. Yumashev, V. N. Matrosov, and N. V. Kuleshov, “Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals: erratum,” Appl. Opt. 54(15), 4820–4822 (2015).
[Crossref] [PubMed]

Zagumennyi, A. I.

C. P. Wyss, W. Lüthy, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, and I. A. Shcherbakov, “Emission properties of a Tm3+:GdVO4 microchip laser at 1.9 μm,” Appl. Phys. B 67(5), 545–548 (1998).
[Crossref]

Zavartsev, Y. D.

C. P. Wyss, W. Lüthy, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, and I. A. Shcherbakov, “Emission properties of a Tm3+:GdVO4 microchip laser at 1.9 μm,” Appl. Phys. B 67(5), 545–548 (1998).
[Crossref]

Zhang, F.

F. Zhang, S. Han, Y. Liu, Z. Wang, and X. Xu, “Dependence of the saturable absorption of graphene upon excitation photon energy,” Appl. Phys. Lett. 106(9), 091102 (2015).
[Crossref]

Zhang, H.

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6(10), 3262–3273 (2016).
[Crossref]

S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4(4), 587–596 (2014).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Zhang, S. C.

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Zhang, X.

Zhao, C.

S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4(4), 587–596 (2014).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Zheng, Y.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep.  5, 8690 (2015).
[Crossref]

Zhong, J.

G. Hao, X. Qi, Y. Fan, L. Xue, X. Peng, X. Wei, and J. Zhong, “Spiral growth of topological insulator Sb2Te3 nanoplates,” Appl. Phys. Lett. 102(1), 013105 (2013).
[Crossref] [PubMed]

Zhu, Z.

X. Wang, J. Xu, Y. Sun, Z. Zhu, Z. You, and C. Tu, “Near infrared passively Q-switched solid state laser based on Sb2Te3 topological insulator saturable absorber,” J. Lumin. 192, 1–5 (2017).
[Crossref]

Zybala, R.

R. Zybała, K. Mars, A. Mikuła, J. Bogusławski, G. Soboń, J. Sotor, M. Schmidt, K. Kaszyca, M. Chmielewski, L. Ciupiński, and K. Pietrzak, “Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications,” Arch. Metall. Mater. 62(2), 1067–1070 (2017).
[Crossref]

J. Bogusławski, G. Soboń, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

J. Boguslawski, G. Sobon, R. Zybala, and J. Sotor, “Dissipative soliton generation in Er-doped fiber laser mode-locked by Sb2Te3 topological insulator,” Opt. Lett. 40(12), 2786–2789 (2015).
[Crossref] [PubMed]

R. Zybala and K. T. Wojciechowski, “Anisotropy analysis of thermoelectric properties of Bi2Te2.9Se0.1 prepared by SPS method,” AIP Conf. Proc. 1449(1), 393–396 (2012).
[Crossref]

Adv. Funct. Mater. (2)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D. I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

AIP Conf. Proc. (1)

R. Zybala and K. T. Wojciechowski, “Anisotropy analysis of thermoelectric properties of Bi2Te2.9Se0.1 prepared by SPS method,” AIP Conf. Proc. 1449(1), 393–396 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

C. P. Wyss, W. Lüthy, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, and I. A. Shcherbakov, “Emission properties of a Tm3+:GdVO4 microchip laser at 1.9 μm,” Appl. Phys. B 67(5), 545–548 (1998).
[Crossref]

Appl. Phys. Lett. (3)

G. Hao, X. Qi, Y. Fan, L. Xue, X. Peng, X. Wei, and J. Zhong, “Spiral growth of topological insulator Sb2Te3 nanoplates,” Appl. Phys. Lett. 102(1), 013105 (2013).
[Crossref] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

F. Zhang, S. Han, Y. Liu, Z. Wang, and X. Xu, “Dependence of the saturable absorption of graphene upon excitation photon energy,” Appl. Phys. Lett. 106(9), 091102 (2015).
[Crossref]

Arch. Metall. Mater. (1)

R. Zybała, K. Mars, A. Mikuła, J. Bogusławski, G. Soboń, J. Sotor, M. Schmidt, K. Kaszyca, M. Chmielewski, L. Ciupiński, and K. Pietrzak, “Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications,” Arch. Metall. Mater. 62(2), 1067–1070 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron (2)

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength,” IEEE J. Sel. Top. Quantum Electron.  20(5), 0902708 (2014).

J. Lee, M. Jung, J. Koo, C. Chi, and J. H. Lee, “Passively Q-switched 1.89-μm fiber laser using a bulk-structured Bi2Te3 topological insulator,” IEEE J. Sel. Top. Quantum Electron.  21(1), 0900206 (2015).

IEEE Photonics Technol. Lett. (1)

M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
[Crossref]

J. Lumin. (1)

X. Wang, J. Xu, Y. Sun, Z. Zhu, Z. You, and C. Tu, “Near infrared passively Q-switched solid state laser based on Sb2Te3 topological insulator saturable absorber,” J. Lumin. 192, 1–5 (2017).
[Crossref]

Laser Phys. Lett. (1)

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2 µm,” Laser Phys. Lett. 14(9), 095801 (2017).
[Crossref]

Nat. Photonics (1)

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Nat. Phys. (1)

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Nature (1)

J. E. Moore, “The birth of topological insulators,” Nature 464(7286), 194–198 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Opt. Eng. (1)

J. Bogusławski, G. Soboń, K. Tarnowski, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber,” Opt. Eng. 55(8), 081316 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (2)

Photon. Res. (1)

Phys. Rev. B (1)

J. Reimann, J. Güdde, K. Kuroda, E. V. Chulkov, and U. Höfer, “Spectroscopy and dynamics of unoccupied electronic states of the topological insulators Sb2Te3 and Sb2Te2S,” Phys. Rev. B 90(8), 081106 (2014).
[Crossref]

Sci. Rep (1)

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep.  5, 8690 (2015).
[Crossref]

Science (1)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Solid State Commun. (1)

K. A. Kokh, V. V. Atuchin, T. A. Gavrilova, N. V. Kuratieva, N. V. Pervukhina, and N. V. Surovtsev, “Microstructural and vibrational properties of PVT grown Sb2Te3 crystals,” Solid State Commun. 177, 16–19 (2014).
[Crossref]

Vacuum (1)

K. Takayama and M. Takashiri, “Multi-layered-stack thermoelectric generators using p-type Sb2Te3 and n-type Bi2Te3 thin films by radio-frequency magnetron sputtering,” Vacuum 144, 164–171 (2017).
[Crossref]

Other (1)

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, 2010), pp. 471–500.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a,b) SEM images of the surface of a 15-nm-thick Sb2Te3 film on a glass substrate (scale bar: (a) 20 µm, (b) 500 nm); (c) the profilometer results showing 3 nm-, 5 nm- and 15 nm-thick films.
Fig. 2
Fig. 2 Raman spectra at several random points (a) and XRD pattern (b) of a 2-µm-thick Sb2Te3 film deposited on a SiO2 substrate.
Fig. 3
Fig. 3 (a) Small-signal transmission spectra of the 3 nm (#1), 5 nm (#2) and 15 nm (#3) thick Sb2Te3 SAs (Fresnel losses are subtracted), inset – photograph of the SA #3; (b) Open-aperture Z-scan curve for the SA #3 at 1560 nm, SA: saturable absorption; RSA: reverse saturable absorption. Circles – experimental data, red curve – their modelling with Eq. (1). Arrow indicates the direction of sample moving.
Fig. 4
Fig. 4 Scheme of the Tm:GdVO4/Sb2Te3 PQS microchip lasers: LD – laser diode, PM – pump mirror, OC – output coupler.
Fig. 5
Fig. 5 CW Tm:GdVO4 microchip laser: (a) input-output dependences, η – slope efficiency; (b) typical laser emission spectra for Pabs = 11.0 W.
Fig. 6
Fig. 6 Tm:GdVO4 microchip laser PQS by Sb2Te3 SAs with a thickness of 3 nm (#1) and 5 nm (#2): (a) input-output dependences, η – slope efficiency; (b) typical laser emission spectra for Pabs = 2.9 W. The CW laser results in (a) are shown for comparison only in the narrow range of stable PQS operation where the slope efficiency is slightly higher compared to Fig. 5(a).
Fig. 7
Fig. 7 Pulse energy (a), pulse duration (FWHM) (b), pulse repetition frequency (PRF) (c) and peak power (d) for the Tm:GdVO4 microchip laser PQS with a 3 nm-thick Sb2Te3 SA.
Fig. 8
Fig. 8 Oscilloscope traces of the pulse train (a) and a single Q-switched pulse (b) from the Tm:GdVO4 microchip laser PQS with a 3 nm-thick Sb2Te3 SA, Pabs = 2.3 W.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α'(I)=α ' NS + α ' S 1+(I/ I sat ) β'(I),whereβ'(I)= β 0 ' 1+(I/ I TPA ) .

Metrics