Abstract

The design and fabrication of wideband mid-infrared metamaterial absorbers are presented. The emphasis is put on the shape-tolerant design for using masked UV (i-line) lithography and CMOS-compatible fabrication to enable on-chip co-integration with detector and readout circuits in a MEMS foundry while maintaining wafer throughput. The CMOS-compatibility implies the use of aluminum rather than the commonly used high conductivity metals. The use of masked lithography rather than e-beam lithography in the fabrication of metamaterial absorbers for the mid-infrared range between 3 and 4 μm introduces the challenge of the shape-tolerant design of the unit cell. Moreover, the sensitivity of the fabricated metamaterials to the surface roughness and exposure dose were investigated in this paper. The throughput advantage of masked lithography has been exploited in the fabrication of mid-infrared absorbers over an area of several mm2. The measurements confirm the theoretical spectral response and a 98% peak absorption at an angle close to perpendicular incidence. Measurements at different angles show that the absorption spectrum only deviates marginally from normal incidence for angles up to 30°. The combined CMOS-compatibility and masked lithography enable batch fabrication and the on-chip integration of the metamaterial absorbers with MEMS devices and sensors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications

James Grant, Mitchell Kenney, Yash D. Shah, Ivonne Escorcia-Carranza, and David R. S. Cumming
Opt. Express 26(8) 10408-10420 (2018)

Compact gas cell integrated with a linear variable optical filter

N. Pelin Ayerden, Ger de Graaf, and Reinoud F. Wolffenbuttel
Opt. Express 24(3) 2981-3002 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
    [Crossref]
  2. S. Gersen, M. van Essen, G. van Dijk, and H. Levinsky, “Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures,” Combust. Flame 161(10), 2729–2737 (2014).
    [Crossref]
  3. N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24(3), 2981–3002 (2016).
    [Crossref] [PubMed]
  4. M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
    [Crossref]
  5. A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
    [Crossref] [PubMed]
  6. A. Emadi, H. Wu, S. Grabarnik, G. Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
    [Crossref]
  7. “Optical filter guide www.spectrofilm.com/optical-filter-guide-spectrofilm.pdf .
  8. R. F. Wolffenbuttel, “Optical Sensors Based on Photon Detection,” in Smart Sensor Systems, G. C. M. Meijer, ed. (Wiley, 2008), pp. 79–120.
  9. A. D. Parsons and D. J. Pedder, “Thin‐film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6(3), 1686–1689 (1988).
    [Crossref]
  10. S. Shu, Z. Li, and Y. Y. Li, “Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime,” Opt. Express 21(21), 25307–25315 (2013).
    [Crossref] [PubMed]
  11. M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
    [Crossref]
  12. H. Wu, A. Emadi, P. M. Sarro, G. Graaf, and R. F. Wolffenbuttel, “A surface micromachined thermopile detector array with an interference-based absorber,” J. Micromech. Microeng. 21(7), 074009 (2011).
    [Crossref]
  13. L. John, T. Evangelos, E. George, and P. Chris, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14(7), 916–922 (2003).
    [Crossref]
  14. A. Y. Vorobyev and C. Guo, “Metallic Light Absorbers Produced by Femtosecond Laser Pulses,” Adv. Mech. Eng. 2, 452749 (2010).
    [Crossref]
  15. M. Hirota, Y. Nakajima, M. Saito, and M. Uchiyama, “120×90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber,” Sens. Actuators A Phys. 135(1), 146–151 (2007).
    [Crossref]
  16. W. Lang, K. Kühl, and H. Sandmaier, “Absorbing layers for thermal infrared detectors,” Sens. Actuators A Phys. 34(3), 243–248 (1992).
    [Crossref]
  17. V. J. Gokhale, O. A. Shenderova, G. E. McGuire, and M. Rais-Zadeh, “Infrared Absorption Properties of Carbon Nanotube/Nanodiamond Based Thin Film Coatings,” J. Microelectromech. Syst. 23(1), 191–197 (2014).
    [Crossref]
  18. J. H. Lehman, C. Engtrakul, T. Gennett, and A. C. Dillon, “Single-wall carbon nanotube coating on a pyroelectric detector,” Appl. Opt. 44(4), 483–488 (2005).
    [Crossref] [PubMed]
  19. H. Wu, S. Vollebregt, A. Emadi, G. de Graaf, R. Ishihara, and R. F. Wolffenbuttel, “Use of multi-wall carbon nanotubes as an absorber in a thermal detector,” Procedia Eng. 25, 523–526 (2011).
    [Crossref]
  20. Y. P. Lee, J. Y. Rhee, Y. J. Yoo, and K. W. Kim, Metamaterials for perfect absorption (Springer, 2016), Vol. 236.
  21. B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
    [Crossref]
  22. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  23. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013).
    [Crossref]
  24. C.-W. Cheng, M. N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
    [Crossref] [PubMed]
  25. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
    [Crossref] [PubMed]
  26. E. K. Shahmarvandi, M. Ghaderi, N. P. Ayerden, G. d. Graaf, and R. F. Wolffenbuttel, “CMOS-compatible metamaterial-based wideband mid-infrared absorber for microspectrometer applications,” in SPIE Photonics Europe, (SPIE, 2016), 9.
  27. M. Ghaderi, E. Karimi, N. P. Ayerden, and R. F. Wolffenbuttel, “Fabrication Tolerance Sensitivity in Large-Area Mid-Infrared Metamaterial Absorbers,” Proceedings 1(4), 328 (2017).
    [Crossref]
  28. T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35(22), 3766–3768 (2010).
    [Crossref] [PubMed]
  29. Y. Li, D. Li, C. Chi, and B. Huang, “Achieving Strong Field Enhancement and Light Absorption Simultaneously with Plasmonic Nanoantennas Exploiting Film-Coupled Triangular Nanodisks,” J. Phys. Chem. C 121(30), 16481–16490 (2017).
    [Crossref]
  30. R. Alaee, C. Menzel, U. Huebner, E. Pshenay-Severin, S. Bin Hasan, T. Pertsch, C. Rockstuhl, and F. Lederer, “Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling,” Nano Lett. 13(8), 3482–3486 (2013).
    [Crossref] [PubMed]
  31. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
    [Crossref] [PubMed]
  32. J. A. Montoya, Z.-B. Tian, S. Krishna, and W. J. Padilla, “Ultra-thin infrared metamaterial detector for multicolor imaging applications,” Opt. Express 25(19), 23343–23355 (2017).
    [Crossref] [PubMed]
  33. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
    [Crossref]
  34. I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays,” Phys. Rev. Lett. 103(21), 213902 (2009).
    [Crossref] [PubMed]
  35. S. L. Wadsworth, P. G. Clem, E. D. Branson, and G. D. Boreman, “Broadband circularly-polarized infrared emission from multilayer metamaterials,” Opt. Mater. Express 1(3), 466–479 (2011).
    [Crossref]
  36. Y. Wang, A. C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, and L. Dal Negro, “Tunability of indium tin oxide materials for mid-infrared plasmonics applications,” Opt. Mater. Express 7(8), 2727–2739 (2017).
    [Crossref]
  37. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  38. I. Faniayeu and V. Mizeikis, “Realization of a helix-based perfect absorber for IR spectral range using the direct laser write technique,” Opt. Mater. Express 7(5), 1453–1462 (2017).
    [Crossref]
  39. B. Barho Franziska, F. Gonzalez-Posada, M.-J. Milla, M. Bomers, L. Cerutti, E. Tournié, and T. Taliercio, “Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin,” in Nanophotonics, (2017), p. 507.
  40. S. Ogawa, Y. Takagawa, and M. Kimata, “Broadband polarization-selective uncooled infrared sensors using tapered plasmonic micrograting absorbers,” Sens. Actuators A Phys. 269, 563–568 (2018).
    [Crossref]
  41. S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
    [Crossref]
  42. J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
    [Crossref]
  43. L. Yang, P. Zhou, T. Huang, G. Zhen, L. Zhang, L. Bi, X. Weng, J. Xie, and L. Deng, “Broadband thermal tunable infrared absorber based on the coupling between standing wave and magnetic resonance,” Opt. Mater. Express 7(8), 2767–2776 (2017).
    [Crossref]
  44. K. Üstün and G. Turhan-Sayan, “Wideband long wave infrared metamaterial absorbers based on silicon nitride,” J. Appl. Phys. 120(20), 203101 (2016).
    [Crossref]
  45. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  46. N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
    [Crossref]

2018 (1)

S. Ogawa, Y. Takagawa, and M. Kimata, “Broadband polarization-selective uncooled infrared sensors using tapered plasmonic micrograting absorbers,” Sens. Actuators A Phys. 269, 563–568 (2018).
[Crossref]

2017 (7)

M. Ghaderi, E. Karimi, N. P. Ayerden, and R. F. Wolffenbuttel, “Fabrication Tolerance Sensitivity in Large-Area Mid-Infrared Metamaterial Absorbers,” Proceedings 1(4), 328 (2017).
[Crossref]

Y. Li, D. Li, C. Chi, and B. Huang, “Achieving Strong Field Enhancement and Light Absorption Simultaneously with Plasmonic Nanoantennas Exploiting Film-Coupled Triangular Nanodisks,” J. Phys. Chem. C 121(30), 16481–16490 (2017).
[Crossref]

J. A. Montoya, Z.-B. Tian, S. Krishna, and W. J. Padilla, “Ultra-thin infrared metamaterial detector for multicolor imaging applications,” Opt. Express 25(19), 23343–23355 (2017).
[Crossref] [PubMed]

Y. Wang, A. C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, and L. Dal Negro, “Tunability of indium tin oxide materials for mid-infrared plasmonics applications,” Opt. Mater. Express 7(8), 2727–2739 (2017).
[Crossref]

I. Faniayeu and V. Mizeikis, “Realization of a helix-based perfect absorber for IR spectral range using the direct laser write technique,” Opt. Mater. Express 7(5), 1453–1462 (2017).
[Crossref]

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

L. Yang, P. Zhou, T. Huang, G. Zhen, L. Zhang, L. Bi, X. Weng, J. Xie, and L. Deng, “Broadband thermal tunable infrared absorber based on the coupling between standing wave and magnetic resonance,” Opt. Mater. Express 7(8), 2767–2776 (2017).
[Crossref]

2016 (3)

K. Üstün and G. Turhan-Sayan, “Wideband long wave infrared metamaterial absorbers based on silicon nitride,” J. Appl. Phys. 120(20), 203101 (2016).
[Crossref]

N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24(3), 2981–3002 (2016).
[Crossref] [PubMed]

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

2015 (2)

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

2014 (3)

V. J. Gokhale, O. A. Shenderova, G. E. McGuire, and M. Rais-Zadeh, “Infrared Absorption Properties of Carbon Nanotube/Nanodiamond Based Thin Film Coatings,” J. Microelectromech. Syst. 23(1), 191–197 (2014).
[Crossref]

S. Gersen, M. van Essen, G. van Dijk, and H. Levinsky, “Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures,” Combust. Flame 161(10), 2729–2737 (2014).
[Crossref]

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

2013 (3)

2012 (3)

2011 (3)

H. Wu, A. Emadi, P. M. Sarro, G. Graaf, and R. F. Wolffenbuttel, “A surface micromachined thermopile detector array with an interference-based absorber,” J. Micromech. Microeng. 21(7), 074009 (2011).
[Crossref]

H. Wu, S. Vollebregt, A. Emadi, G. de Graaf, R. Ishihara, and R. F. Wolffenbuttel, “Use of multi-wall carbon nanotubes as an absorber in a thermal detector,” Procedia Eng. 25, 523–526 (2011).
[Crossref]

S. L. Wadsworth, P. G. Clem, E. D. Branson, and G. D. Boreman, “Broadband circularly-polarized infrared emission from multilayer metamaterials,” Opt. Mater. Express 1(3), 466–479 (2011).
[Crossref]

2010 (4)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35(22), 3766–3768 (2010).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Metallic Light Absorbers Produced by Femtosecond Laser Pulses,” Adv. Mech. Eng. 2, 452749 (2010).
[Crossref]

2009 (3)

A. Emadi, H. Wu, S. Grabarnik, G. Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[Crossref]

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays,” Phys. Rev. Lett. 103(21), 213902 (2009).
[Crossref] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref] [PubMed]

2008 (2)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

2007 (1)

M. Hirota, Y. Nakajima, M. Saito, and M. Uchiyama, “120×90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber,” Sens. Actuators A Phys. 135(1), 146–151 (2007).
[Crossref]

2005 (2)

J. H. Lehman, C. Engtrakul, T. Gennett, and A. C. Dillon, “Single-wall carbon nanotube coating on a pyroelectric detector,” Appl. Opt. 44(4), 483–488 (2005).
[Crossref] [PubMed]

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

2003 (1)

L. John, T. Evangelos, E. George, and P. Chris, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14(7), 916–922 (2003).
[Crossref]

1998 (1)

1992 (1)

W. Lang, K. Kühl, and H. Sandmaier, “Absorbing layers for thermal infrared detectors,” Sens. Actuators A Phys. 34(3), 243–248 (1992).
[Crossref]

1988 (1)

A. D. Parsons and D. J. Pedder, “Thin‐film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6(3), 1686–1689 (1988).
[Crossref]

Abbas, M. N.

Adomanis, B. M.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Alaee, R.

R. Alaee, C. Menzel, U. Huebner, E. Pshenay-Severin, S. Bin Hasan, T. Pertsch, C. Rockstuhl, and F. Lederer, “Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling,” Nano Lett. 13(8), 3482–3486 (2013).
[Crossref] [PubMed]

Atwater, H. A.

Aydin, K.

Ayerden, N. P.

M. Ghaderi, E. Karimi, N. P. Ayerden, and R. F. Wolffenbuttel, “Fabrication Tolerance Sensitivity in Large-Area Mid-Infrared Metamaterial Absorbers,” Proceedings 1(4), 328 (2017).
[Crossref]

N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24(3), 2981–3002 (2016).
[Crossref] [PubMed]

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

Bi, L.

Bin Hasan, S.

R. Alaee, C. Menzel, U. Huebner, E. Pshenay-Severin, S. Bin Hasan, T. Pertsch, C. Rockstuhl, and F. Lederer, “Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling,” Nano Lett. 13(8), 3482–3486 (2013).
[Crossref] [PubMed]

Bingham, C.

Boltasseva, A.

Boreman, G. D.

Boyd, E. M.

Branson, E. D.

Bringuier, J. N.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Brueckl, H.

Capasso, F.

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

Chang, Y.-C.

Cheng, C.-W.

Chi, C.

Y. Li, D. Li, C. Chi, and B. Huang, “Achieving Strong Field Enhancement and Light Absorption Simultaneously with Plasmonic Nanoantennas Exploiting Film-Coupled Triangular Nanodisks,” J. Phys. Chem. C 121(30), 16481–16490 (2017).
[Crossref]

Chiu, C.-W.

Chris, P.

L. John, T. Evangelos, E. George, and P. Chris, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14(7), 916–922 (2003).
[Crossref]

Clem, P. G.

Correia, J. H.

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

Dal Negro, L.

de Graaf, G.

Deng, L.

Dicken, M. J.

Dillon, A. C.

Djurišic, A. B.

Elazar, J. M.

Emadi, A.

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
[Crossref] [PubMed]

H. Wu, A. Emadi, P. M. Sarro, G. Graaf, and R. F. Wolffenbuttel, “A surface micromachined thermopile detector array with an interference-based absorber,” J. Micromech. Microeng. 21(7), 074009 (2011).
[Crossref]

H. Wu, S. Vollebregt, A. Emadi, G. de Graaf, R. Ishihara, and R. F. Wolffenbuttel, “Use of multi-wall carbon nanotubes as an absorber in a thermal detector,” Procedia Eng. 25, 523–526 (2011).
[Crossref]

A. Emadi, H. Wu, S. Grabarnik, G. Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[Crossref]

Engtrakul, C.

Enoksson, P.

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

Evangelos, T.

L. John, T. Evangelos, E. George, and P. Chris, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14(7), 916–922 (2003).
[Crossref]

Fan, K.

Faniayeu, I.

Frimmer, M.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays,” Phys. Rev. Lett. 103(21), 213902 (2009).
[Crossref] [PubMed]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

Fujisawa, D.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Gennett, T.

George, E.

L. John, T. Evangelos, E. George, and P. Chris, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14(7), 916–922 (2003).
[Crossref]

Gersen, S.

S. Gersen, M. van Essen, G. van Dijk, and H. Levinsky, “Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures,” Combust. Flame 161(10), 2729–2737 (2014).
[Crossref]

Ghaderi, M.

M. Ghaderi, E. Karimi, N. P. Ayerden, and R. F. Wolffenbuttel, “Fabrication Tolerance Sensitivity in Large-Area Mid-Infrared Metamaterial Absorbers,” Proceedings 1(4), 328 (2017).
[Crossref]

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Gokhale, V. J.

V. J. Gokhale, O. A. Shenderova, G. E. McGuire, and M. Rais-Zadeh, “Infrared Absorption Properties of Carbon Nanotube/Nanodiamond Based Thin Film Coatings,” J. Microelectromech. Syst. 23(1), 191–197 (2014).
[Crossref]

Graaf, G.

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

H. Wu, A. Emadi, P. M. Sarro, G. Graaf, and R. F. Wolffenbuttel, “A surface micromachined thermopile detector array with an interference-based absorber,” J. Micromech. Microeng. 21(7), 074009 (2011).
[Crossref]

A. Emadi, H. Wu, S. Grabarnik, G. Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[Crossref]

Grabarnik, S.

A. Emadi, H. Wu, S. Grabarnik, G. Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[Crossref]

Guo, C.

A. Y. Vorobyev and C. Guo, “Metallic Light Absorbers Produced by Femtosecond Laser Pulses,” Adv. Mech. Eng. 2, 452749 (2010).
[Crossref]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Guo, J.

Hata, H.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Hendrickson, J.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hirota, M.

M. Hirota, Y. Nakajima, M. Saito, and M. Uchiyama, “120×90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber,” Sens. Actuators A Phys. 135(1), 146–151 (2007).
[Crossref]

Huang, B.

Y. Li, D. Li, C. Chi, and B. Huang, “Achieving Strong Field Enhancement and Light Absorption Simultaneously with Plasmonic Nanoantennas Exploiting Film-Coupled Triangular Nanodisks,” J. Phys. Chem. C 121(30), 16481–16490 (2017).
[Crossref]

Huang, T.

Huebner, U.

R. Alaee, C. Menzel, U. Huebner, E. Pshenay-Severin, S. Bin Hasan, T. Pertsch, C. Rockstuhl, and F. Lederer, “Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling,” Nano Lett. 13(8), 3482–3486 (2013).
[Crossref] [PubMed]

Ishihara, R.

H. Wu, S. Vollebregt, A. Emadi, G. de Graaf, R. Ishihara, and R. F. Wolffenbuttel, “Use of multi-wall carbon nanotubes as an absorber in a thermal detector,” Procedia Eng. 25, 523–526 (2011).
[Crossref]

John, L.

L. John, T. Evangelos, E. George, and P. Chris, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14(7), 916–922 (2003).
[Crossref]

Jokerst, N. M.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

Karimi, E.

M. Ghaderi, E. Karimi, N. P. Ayerden, and R. F. Wolffenbuttel, “Fabrication Tolerance Sensitivity in Large-Area Mid-Infrared Metamaterial Absorbers,” Proceedings 1(4), 328 (2017).
[Crossref]

Kats, M. A.

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

Kildishev, A. V.

Kimata, M.

S. Ogawa, Y. Takagawa, and M. Kimata, “Broadband polarization-selective uncooled infrared sensors using tapered plasmonic micrograting absorbers,” Sens. Actuators A Phys. 269, 563–568 (2018).
[Crossref]

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Koenderink, A. F.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays,” Phys. Rev. Lett. 103(21), 213902 (2009).
[Crossref] [PubMed]

Koirala, M.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Krishna, S.

Kühl, K.

W. Lang, K. Kühl, and H. Sandmaier, “Absorbing layers for thermal infrared detectors,” Sens. Actuators A Phys. 34(3), 243–248 (1992).
[Crossref]

Lai, K.-T.

Lang, W.

W. Lang, K. Kühl, and H. Sandmaier, “Absorbing layers for thermal infrared detectors,” Sens. Actuators A Phys. 34(3), 243–248 (1992).
[Crossref]

Lederer, F.

R. Alaee, C. Menzel, U. Huebner, E. Pshenay-Severin, S. Bin Hasan, T. Pertsch, C. Rockstuhl, and F. Lederer, “Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling,” Nano Lett. 13(8), 3482–3486 (2013).
[Crossref] [PubMed]

Lehman, J. H.

Levinsky, H.

S. Gersen, M. van Essen, G. van Dijk, and H. Levinsky, “Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures,” Combust. Flame 161(10), 2729–2737 (2014).
[Crossref]

Li, D.

Y. Li, D. Li, C. Chi, and B. Huang, “Achieving Strong Field Enhancement and Light Absorption Simultaneously with Plasmonic Nanoantennas Exploiting Film-Coupled Triangular Nanodisks,” J. Phys. Chem. C 121(30), 16481–16490 (2017).
[Crossref]

Li, Y.

Y. Li, D. Li, C. Chi, and B. Huang, “Achieving Strong Field Enhancement and Light Absorption Simultaneously with Plasmonic Nanoantennas Exploiting Film-Coupled Triangular Nanodisks,” J. Phys. Chem. C 121(30), 16481–16490 (2017).
[Crossref]

Li, Y. Y.

Li, Z.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Liu, X.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Ma, J.

Maier, T.

Majewski, M. L.

McGuire, G. E.

V. J. Gokhale, O. A. Shenderova, G. E. McGuire, and M. Rais-Zadeh, “Infrared Absorption Properties of Carbon Nanotube/Nanodiamond Based Thin Film Coatings,” J. Microelectromech. Syst. 23(1), 191–197 (2014).
[Crossref]

Menzel, C.

R. Alaee, C. Menzel, U. Huebner, E. Pshenay-Severin, S. Bin Hasan, T. Pertsch, C. Rockstuhl, and F. Lederer, “Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling,” Nano Lett. 13(8), 3482–3486 (2013).
[Crossref] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Misaki, K.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Mizeikis, V.

Montoya, J.

Montoya, J. A.

Naik, G. V.

Nakajima, Y.

M. Hirota, Y. Nakajima, M. Saito, and M. Uchiyama, “120×90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber,” Sens. Actuators A Phys. 135(1), 146–151 (2007).
[Crossref]

Ni, X.

Ogawa, S.

S. Ogawa, Y. Takagawa, and M. Kimata, “Broadband polarization-selective uncooled infrared sensors using tapered plasmonic micrograting absorbers,” Sens. Actuators A Phys. 269, 563–568 (2018).
[Crossref]

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Overvig, A. C.

Padilla, W. J.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

J. A. Montoya, Z.-B. Tian, S. Krishna, and W. J. Padilla, “Ultra-thin infrared metamaterial detector for multicolor imaging applications,” Opt. Express 25(19), 23343–23355 (2017).
[Crossref] [PubMed]

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Parsons, A. D.

A. D. Parsons and D. J. Pedder, “Thin‐film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6(3), 1686–1689 (1988).
[Crossref]

Pedder, D. J.

A. D. Parsons and D. J. Pedder, “Thin‐film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6(3), 1686–1689 (1988).
[Crossref]

Pertsch, T.

R. Alaee, C. Menzel, U. Huebner, E. Pshenay-Severin, S. Bin Hasan, T. Pertsch, C. Rockstuhl, and F. Lederer, “Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling,” Nano Lett. 13(8), 3482–3486 (2013).
[Crossref] [PubMed]

Pryce, I. M.

Pshenay-Severin, E.

R. Alaee, C. Menzel, U. Huebner, E. Pshenay-Severin, S. Bin Hasan, T. Pertsch, C. Rockstuhl, and F. Lederer, “Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling,” Nano Lett. 13(8), 3482–3486 (2013).
[Crossref] [PubMed]

Rais-Zadeh, M.

V. J. Gokhale, O. A. Shenderova, G. E. McGuire, and M. Rais-Zadeh, “Infrared Absorption Properties of Carbon Nanotube/Nanodiamond Based Thin Film Coatings,” J. Microelectromech. Syst. 23(1), 191–197 (2014).
[Crossref]

Rakic, A. D.

Rockstuhl, C.

R. Alaee, C. Menzel, U. Huebner, E. Pshenay-Severin, S. Bin Hasan, T. Pertsch, C. Rockstuhl, and F. Lederer, “Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling,” Nano Lett. 13(8), 3482–3486 (2013).
[Crossref] [PubMed]

Saito, M.

M. Hirota, Y. Nakajima, M. Saito, and M. Uchiyama, “120×90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber,” Sens. Actuators A Phys. 135(1), 146–151 (2007).
[Crossref]

Sandmaier, H.

W. Lang, K. Kühl, and H. Sandmaier, “Absorbing layers for thermal infrared detectors,” Sens. Actuators A Phys. 34(3), 243–248 (1992).
[Crossref]

Sands, T. D.

Sarro, P. M.

H. Wu, A. Emadi, P. M. Sarro, G. Graaf, and R. F. Wolffenbuttel, “A surface micromachined thermopile detector array with an interference-based absorber,” J. Micromech. Microeng. 21(7), 074009 (2011).
[Crossref]

Schroeder, J. L.

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

Sersic, I.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays,” Phys. Rev. Lett. 103(21), 213902 (2009).
[Crossref] [PubMed]

Shenderova, O. A.

V. J. Gokhale, O. A. Shenderova, G. E. McGuire, and M. Rais-Zadeh, “Infrared Absorption Properties of Carbon Nanotube/Nanodiamond Based Thin Film Coatings,” J. Microelectromech. Syst. 23(1), 191–197 (2014).
[Crossref]

Shih, M.-H.

Shrestha, S.

Shu, S.

Sriram, S.

Starr, A. F.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Stenger, V.

Suen, J. Y.

Sweatlock, L. A.

Takagawa, Y.

S. Ogawa, Y. Takagawa, and M. Kimata, “Broadband polarization-selective uncooled infrared sensors using tapered plasmonic micrograting absorbers,” Sens. Actuators A Phys. 269, 563–568 (2018).
[Crossref]

Tian, Z.-B.

Turhan-Sayan, G.

K. Üstün and G. Turhan-Sayan, “Wideband long wave infrared metamaterial absorbers based on silicon nitride,” J. Appl. Phys. 120(20), 203101 (2016).
[Crossref]

Tyler, T.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Uchiyama, M.

M. Hirota, Y. Nakajima, M. Saito, and M. Uchiyama, “120×90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber,” Sens. Actuators A Phys. 135(1), 146–151 (2007).
[Crossref]

Uetsuki, M.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Üstün, K.

K. Üstün and G. Turhan-Sayan, “Wideband long wave infrared metamaterial absorbers based on silicon nitride,” J. Appl. Phys. 120(20), 203101 (2016).
[Crossref]

van Dijk, G.

S. Gersen, M. van Essen, G. van Dijk, and H. Levinsky, “Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures,” Combust. Flame 161(10), 2729–2737 (2014).
[Crossref]

van Essen, M.

S. Gersen, M. van Essen, G. van Dijk, and H. Levinsky, “Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures,” Combust. Flame 161(10), 2729–2737 (2014).
[Crossref]

Verhagen, E.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays,” Phys. Rev. Lett. 103(21), 213902 (2009).
[Crossref] [PubMed]

Vollebregt, S.

H. Wu, S. Vollebregt, A. Emadi, G. de Graaf, R. Ishihara, and R. F. Wolffenbuttel, “Use of multi-wall carbon nanotubes as an absorber in a thermal detector,” Procedia Eng. 25, 523–526 (2011).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Metallic Light Absorbers Produced by Femtosecond Laser Pulses,” Adv. Mech. Eng. 2, 452749 (2010).
[Crossref]

Wadsworth, S. L.

Walavalkar, S.

Wang, R.

Wang, Y.

Watts, C. M.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Weng, X.

West, K. G.

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Wolffenbuttel, R.

Wolffenbuttel, R. F.

M. Ghaderi, E. Karimi, N. P. Ayerden, and R. F. Wolffenbuttel, “Fabrication Tolerance Sensitivity in Large-Area Mid-Infrared Metamaterial Absorbers,” Proceedings 1(4), 328 (2017).
[Crossref]

N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24(3), 2981–3002 (2016).
[Crossref] [PubMed]

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

H. Wu, A. Emadi, P. M. Sarro, G. Graaf, and R. F. Wolffenbuttel, “A surface micromachined thermopile detector array with an interference-based absorber,” J. Micromech. Microeng. 21(7), 074009 (2011).
[Crossref]

H. Wu, S. Vollebregt, A. Emadi, G. de Graaf, R. Ishihara, and R. F. Wolffenbuttel, “Use of multi-wall carbon nanotubes as an absorber in a thermal detector,” Procedia Eng. 25, 523–526 (2011).
[Crossref]

A. Emadi, H. Wu, S. Grabarnik, G. Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[Crossref]

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

Wu, H.

A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
[Crossref] [PubMed]

H. Wu, A. Emadi, P. M. Sarro, G. Graaf, and R. F. Wolffenbuttel, “A surface micromachined thermopile detector array with an interference-based absorber,” J. Micromech. Microeng. 21(7), 074009 (2011).
[Crossref]

H. Wu, S. Vollebregt, A. Emadi, G. de Graaf, R. Ishihara, and R. F. Wolffenbuttel, “Use of multi-wall carbon nanotubes as an absorber in a thermal detector,” Procedia Eng. 25, 523–526 (2011).
[Crossref]

A. Emadi, H. Wu, S. Grabarnik, G. Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[Crossref]

Xie, J.

Yang, L.

Yu, N.

Zhang, B.

Zhang, L.

Zhang, R.

Zhen, G.

Zhou, P.

Adv. Mater. (1)

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

Adv. Mech. Eng. (1)

A. Y. Vorobyev and C. Guo, “Metallic Light Absorbers Produced by Femtosecond Laser Pulses,” Adv. Mech. Eng. 2, 452749 (2010).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

B. M. Adomanis, C. M. Watts, M. Koirala, X. Liu, T. Tyler, K. G. West, T. Starr, J. N. Bringuier, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Bi-layer metamaterials as fully functional near-perfect infrared absorbers,” Appl. Phys. Lett. 107(2), 021107 (2015).
[Crossref]

Combust. Flame (1)

S. Gersen, M. van Essen, G. van Dijk, and H. Levinsky, “Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures,” Combust. Flame 161(10), 2729–2737 (2014).
[Crossref]

J. Appl. Phys. (1)

K. Üstün and G. Turhan-Sayan, “Wideband long wave infrared metamaterial absorbers based on silicon nitride,” J. Appl. Phys. 120(20), 203101 (2016).
[Crossref]

J. Microelectromech. Syst. (1)

V. J. Gokhale, O. A. Shenderova, G. E. McGuire, and M. Rais-Zadeh, “Infrared Absorption Properties of Carbon Nanotube/Nanodiamond Based Thin Film Coatings,” J. Microelectromech. Syst. 23(1), 191–197 (2014).
[Crossref]

J. Micromech. Microeng. (4)

M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. Graaf, and R. F. Wolffenbuttel, “Design, fabrication and characterization of infrared LVOFs for measuring gas composition,” J. Micromech. Microeng. 24(8), 084001 (2014).
[Crossref]

A. Emadi, H. Wu, S. Grabarnik, G. Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[Crossref]

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

H. Wu, A. Emadi, P. M. Sarro, G. Graaf, and R. F. Wolffenbuttel, “A surface micromachined thermopile detector array with an interference-based absorber,” J. Micromech. Microeng. 21(7), 074009 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

Y. Li, D. Li, C. Chi, and B. Huang, “Achieving Strong Field Enhancement and Light Absorption Simultaneously with Plasmonic Nanoantennas Exploiting Film-Coupled Triangular Nanodisks,” J. Phys. Chem. C 121(30), 16481–16490 (2017).
[Crossref]

J. Vac. Sci. Technol. A (1)

A. D. Parsons and D. J. Pedder, “Thin‐film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6(3), 1686–1689 (1988).
[Crossref]

Laser Photonics Rev. (1)

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

Meas. Sci. Technol. (1)

L. John, T. Evangelos, E. George, and P. Chris, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14(7), 916–922 (2003).
[Crossref]

Nano Lett. (2)

R. Alaee, C. Menzel, U. Huebner, E. Pshenay-Severin, S. Bin Hasan, T. Pertsch, C. Rockstuhl, and F. Lederer, “Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling,” Nano Lett. 13(8), 3482–3486 (2013).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. Express (5)

Optica (1)

Phys. Rev. Lett. (2)

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays,” Phys. Rev. Lett. 103(21), 213902 (2009).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Procedia Eng. (1)

H. Wu, S. Vollebregt, A. Emadi, G. de Graaf, R. Ishihara, and R. F. Wolffenbuttel, “Use of multi-wall carbon nanotubes as an absorber in a thermal detector,” Procedia Eng. 25, 523–526 (2011).
[Crossref]

Proceedings (1)

M. Ghaderi, E. Karimi, N. P. Ayerden, and R. F. Wolffenbuttel, “Fabrication Tolerance Sensitivity in Large-Area Mid-Infrared Metamaterial Absorbers,” Proceedings 1(4), 328 (2017).
[Crossref]

Sens. Actuators A Phys. (3)

M. Hirota, Y. Nakajima, M. Saito, and M. Uchiyama, “120×90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber,” Sens. Actuators A Phys. 135(1), 146–151 (2007).
[Crossref]

W. Lang, K. Kühl, and H. Sandmaier, “Absorbing layers for thermal infrared detectors,” Sens. Actuators A Phys. 34(3), 243–248 (1992).
[Crossref]

S. Ogawa, Y. Takagawa, and M. Kimata, “Broadband polarization-selective uncooled infrared sensors using tapered plasmonic micrograting absorbers,” Sens. Actuators A Phys. 269, 563–568 (2018).
[Crossref]

Other (5)

Y. P. Lee, J. Y. Rhee, Y. J. Yoo, and K. W. Kim, Metamaterials for perfect absorption (Springer, 2016), Vol. 236.

“Optical filter guide www.spectrofilm.com/optical-filter-guide-spectrofilm.pdf .

R. F. Wolffenbuttel, “Optical Sensors Based on Photon Detection,” in Smart Sensor Systems, G. C. M. Meijer, ed. (Wiley, 2008), pp. 79–120.

E. K. Shahmarvandi, M. Ghaderi, N. P. Ayerden, G. d. Graaf, and R. F. Wolffenbuttel, “CMOS-compatible metamaterial-based wideband mid-infrared absorber for microspectrometer applications,” in SPIE Photonics Europe, (SPIE, 2016), 9.

B. Barho Franziska, F. Gonzalez-Posada, M.-J. Milla, M. Bomers, L. Cerutti, E. Tournié, and T. Taliercio, “Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin,” in Nanophotonics, (2017), p. 507.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Unit-cell structure used in Finite Element analysis. (b). Absorption spectra for metamaterial structures with different disk radii as obtained using Finite Element simulations.
Fig. 2
Fig. 2 Resonance wavelength and FWHM of absorbance peak for single disk resonator metamaterial absorbers as obtained using Finite Element simulation.
Fig. 3
Fig. 3 (a) The electric field at E-plane shows the electric field enhancement at the edge of the disks. (b) The magnetic field at the H-plane; magnetic field resonance between the back metal and pattern.
Fig. 4
Fig. 4 (a) Schematic of the staggered metamaterial absorber; p = 3200 nm and r1 to r4 are 480 nm, 495 nm, 545 nm, and 600 nm respectively. (b) Simulated spectra for staggered resonators. The grayed area shows the ± 20 nm tolerance in disk radius.
Fig. 5
Fig. 5 Schematic of the fabrication process. (a) Deposition of the aluminum back reflector, SiO2 spacer, and (b) photoresist spin coating. (c) Patterning of the photoresist with a negative mask. (d) O2 Plasma flash and deposition of aluminum and (e) lift-off. A fabricated metamaterial structure is shown in (f).
Fig. 6
Fig. 6 Surface roughness after PECVD deposition of SiO2 on Aluminum: (a) before the surface treatment in HNO3 and (b) after. Some particles are also generated on the surface during the PECVD deposition.
Fig. 7
Fig. 7 SEM image of the fabricated metamaterial absorbers on SiO2 spacer with no treatment (Ra = 30 nm) and with surface treatment (Ra = 6 nm). The exposure was varied from 40 to 44 mJ/cm2.
Fig. 8
Fig. 8 Absorbance of samples with (a) surface roughness average of 6 nm and 30 nm and (b) with different exposure dose measured using FTIR at 12° incident angle.
Fig. 9
Fig. 9 The absorbance spectra contours as a function of the incident angle for a sample fabricated at (a) 40 mJ/cm2 and (b) 44 mJ/cm2.
Fig. 10
Fig. 10 The typical unit-cell and center wavelength for the state of the art mid-infrared metamaterial absorbers, fabricated using e-beam [22–25, 29–37], standard UV [39–43], Deep DUV/DWL [21], and direct laser writing (DLW) [38] lithography methods. The metamaterial structure presented in this paper is also shown for comparison. (note that for wideband absorbers the shortest wavelength is listed).

Metrics