Abstract

Single-phased YVO4:RE (RE = Eu3+, Sm3+, Dy3+, Tm3+) phosphors with high efficient photoluminescence properties have been successfully synthesized using NaNO3 as molten salt by the molten salt synthesis (MSS) method. The formation of a single YVO4 phase has been confirmed by X-ray diffraction (XRD) and the photoluminescence spectra of these phosphors have been characterized using photoluminescence spectroscopy. The results indicated that all phosphors showed rare earth ion characteristic emissions (Eu3+, Sm3+, Dy3+, Tm3+) in the YVO4 host. The dependency of the luminescence intensity on doping concentrations and annealing temperatures of YVO4:Eu3+ and YVO4:Sm3+ phosphors has been discussed. It was found that the emission of YVO4:Sm3+ at 647 nm due to 4G5/26H9/2 transition of Sm3+ ions was improved drastically by the MSS method, more than other methods. Moreover, the emission colors are tuned from blue to white and ultimately to yellow through concentration variation of the doping concentration ratio of Tm3+ and Dy3+ in YVO4:Dy3+/Tm3+, and a white light could be achieved from YVO4:1% (Dy0.3Tm0.7) phosphor with chromaticity coordinates of (0.32, 0.31) under excitation at 320 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable photoluminescence properties of Eu(II)- and Sm(III)-coactivated Ca9Y(PO4)7 and energy transfer between Eu(II) and Sm(III)

Huaiyong Li, Hyun Kyoung Yang, Byung Kee Moon, Byung Chun Choi, Jung Hyun Jeong, Kiwan Jang, Ho Sueb Lee, and Soung Soo Yi
Opt. Mater. Express 2(4) 443-451 (2012)

Tunable white-light emission in single-phase Ca9Gd(VO4)7:Tm3+, Eu3+

Ling Li, Hyeon Mi Noh, Byung Kee Moon, Jung Hyun Jeong, Byung Chun Choi, and Xiaoguang Liu
Opt. Mater. Express 4(1) 16-28 (2014)

Synthesis and luminescence properties of Ba3Lu(PO4)3:Sm3+ phosphor for white light-emitting diodes

Zaifa Yang, Denghui Xu, and Jiayue Sun
Opt. Express 25(8) A391-A401 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Fu, Y. Shi, N. Zhang, Y. Tian, M. Xing, and X. Luo, “High-purity red up-conversion emission of Ba5Zn4 Y8O21:Er3+, Yb3+, phosphor excited by 1550 nm laser diode,” Mater. Res. Bull. 84(2), 346–349 (2016).
    [Crossref]
  2. K. Zheng, Z. Liu, Y. Liu, W. Song, and W. Qin, “Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures,” J. Appl. Phys. 114(18), 183–189 (2013).
    [Crossref]
  3. S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 18–34 (2011).
  4. D. Wang, X. Chu, and M. Gong, “Gas-sensing properties of sensors based on single-crystalline SnO2, nanorods prepared by a simple molten-salt method,” Sensor Actuat. Biol. Chem. 117(1), 183–187 (2006).
  5. N. Na, P. Yang, F. He, X. Zhang, S. Gai, C. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+, Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
    [Crossref]
  6. X. Zhang, P. Yang, C. Li, D. Wang, J. Xu, S. Gai, and J. Lin, “Facile and mass production synthesis of β-NaYF4:Yb3+, Er3+/Tm3+ 1D microstructures with multicolor up-conversion luminescence,” Chem. Commun. (Camb.) 47(44), 12143–12145 (2011).
    [Crossref] [PubMed]
  7. M. V. Reddy, R. Jose, T. H. Teng, B. V. R. Chowdari, and S. Ramakrishna, “Preparation and electrochemical studies of electrospun TiO2 nanofibers and molten salt method nanoparticles,” Electrochim. Acta 55(9), 3109–3117 (2010).
    [Crossref]
  8. B. Li, J. Liu, Y. Hu, and Z. Huang, “Preparation and characterization of La9.33Si6O26, powders by molten salt method for solid electrolyte application,” J. Alloys Compd. 509(6), 3172–3176 (2011).
    [Crossref]
  9. Y. Song, B. Shao, Y. Feng, W. Lü, J. Huo, S. Zhao, M. Liu, G. Liu, and H. You, “Emission enhancement and color tuning for GdVO4:Ln3+ (Ln = Dy, Eu) by surface modification at single wavelength excitation,” Inorg. Chem. 56(1), 282–291 (2017).
    [Crossref] [PubMed]
  10. B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
    [Crossref] [PubMed]
  11. Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of Light-Emitting YVO4:Eu3+ Thin Films via Inkjet Printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010).
    [Crossref]
  12. M. Bass, “Electrooptic Q switching of the Nd: YVO4 laser without an intracavity polarizer,” IEEE J. Quantum Electron. 11(12), 938–939 (1975).
    [Crossref]
  13. J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd: yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
    [Crossref]
  14. N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autissier, and C. Sanchez, “New Synthesis Strategies for Luminescent YVO4:Eu and EuVO4 Nanoparticles with H2O2 Selective Sensing Properties,” Chem. Mater. 27(15), 5198–5205 (2015).
    [Crossref]
  15. X. Q. Su and B. Yan, “In situ chemical co-precipitation synthesis of YVO4:RE (RE = Dy3+, Sm3+, Er3+) phosphors by assembling hybrid precursors,” J. Non-Cryst. Solids 351(43-45), 3542–3546 (2005).
    [Crossref]
  16. H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, “Photoluminescence of nanocrystalline YVO4:TmxDy1−x, prepared by a modified Pechini method,” Mater. Lett. 61(2), 308–311 (2007).
    [Crossref]
  17. E. Golyeva, D. Tolstikova, I. Kolesnikov, and M. Mikhailov, “Effect of synthesis conditions and surrounding medium on luminescence properties of YVO4:Eu3+ nanopowders,” J. Rare Earths 33(2), 129–134 (2015).
    [Crossref]
  18. S. Xia, A. Guan, P. Chen, G. Wang, Y. Geng, and L. Zhou, “Sol-gel method for preparing a novel red-emitting phosphor YVO4:Sm3+, Eu3+ with ideal red color emission,” Superlattices Microstruct. 97(2), 319–326 (2016).
    [Crossref]
  19. H. Liu, Y. Liang, X. Gao, and S. Zhang, “Study on white-light emission and light-emitting mechanism of hydrothermally synthesized YVO4:1 mol. % Dy3+, x mol. % Eu3+ phosphor powders,” J. Rare Earths 34(2), 113–117 (2016).
    [Crossref]
  20. S. Yusuke, T. Satoru, and I. Tetsuhiko, “Two photoenergy conversion modes of YVO4:Eu3+ nanoparticles: photoluminescence and photocatalytic activity,” J. Phys. Chem. 119(2), 13502–13508 (2015).
  21. S. Takeshita, Y. Takebayashi, H. Nakamura, and S. Yoda, “Gas-responsive photoluminescence of YVO4:Eu3+ nanoparticles dispersed in an ultralight, three-dimensional nanofiber network,” Chem. Mater. 28(2), 8466–8469 (2016).
    [Crossref]
  22. Y. Liu, X. S. Li, J. Hu, M. Guo, W. J. Liu, Y. M. Feng, J. R. Xie, and G. X. Du, “Fabrication of MPEG-b-PMAA capped YVO4:Eu nanoparticles with biocompatibility for cell imaging,” Colloids Surf. B Biointerfaces 136(2), 721–728 (2015).
    [Crossref] [PubMed]
  23. R. Wiglusz, L. Marciniak, R. Pazik, and W. Strek, “Structural and spectroscopic characterization of Nd3+ doped YVO4 yttrium orthovanadate nanocrystallites,” Cryst. Growth Des. 14(11), 5512–5520 (2014).
    [Crossref]
  24. N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autisser, and C. Sanchez, “New synthesis strategies for luminescent YVO4:Eu and EuVO4 nanoparticles with H2O2 selective sensing properties,” Chem. Mater. 27(2), 5198–5205 (2015).
    [Crossref]
  25. J. Su, X. Mi, J. Sun, L. Yang, C. Hui, L. Lu, Z. Bai, and X. Zhang, “Tunable luminescence and energy transfer properties in YVO4:Bi3+, Eu3+ phosphors,” J. Mater. Sci. 52(2), 782–792 (2017).
    [Crossref]
  26. Y. Liu, C. Yang, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Surfactant assisted synthesis of the YVO4:Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties,” Colloid surface A 502(5), 139–146 (2016).
    [Crossref]
  27. Y. Cheng and K. Sun, “Sol-gel synthesis and upconversion luminescent properties of Yb3+, Er3+, Eu3+ triply-doped in YVO4 phosphors,” J. Fluoresc. 28(1), 285–291 (2018).
    [Crossref] [PubMed]
  28. J. Wang, Y. Xu, M. Hojamberdiev, Y. Cui, H. Liu, and G. Zhu, “Optical properties of porous YVO4:Ln (Ln = Dy3+ and Tm3+) nanoplates obtained by the chemical co-precipitation method,” J. Alloys Compd. 479(1), 772–776 (2009).
    [Crossref]
  29. Z. Xia, D. Chen, M. Yang, and T. Ying, “Synthesis and luminescence properties of YVO4:Eu3+, Bi3+ phosphor with enhanced photoluminescence by Bi3+ doping,” J. Phys. Chem. Solids 71(3), 175–180 (2010).
    [Crossref]
  30. Y. S. Chang, F. M. Huang, Y. Y. Tsai, and L. G. Teoh, “Synthesis and photoluminescent properties of YVO4:Eu3+ nano-crystal phosphor prepared by Pechini process,” J. Lumin. 129(10), 1181–1185 (2009).
    [Crossref]
  31. M. Yu, J. Lin, and J. Fang, “Silica Spheres Coated with YVO4:Eu3+ Layers via Sol-Gel Process: A Simple Method to Obtain Spherical Core-Shell Phosphors,” Chem. Mater. 17(7), 1783–1791 (2005).
    [Crossref]
  32. T. Taniguchi, T. Watanabe, K. I. Katsumata, K. Okada, and N. Matsushita, “Synthesis of Amphipathic YVO4:Eu3+ Nanophosphors by Oleate-Modified Nucleation/Hydrothermal-Growth Process,” J. Phys. Chem. C 114(9), 3763–3769 (2010).
    [Crossref]
  33. F. Zhang, W. Zhang, Z. Zhang, Y. Huang, and Y. Tao, “Luminescent characteristics and energy transfer of a red-emitting YVO4: Sm3+, Eu3+, phosphor,” J. Lumin. 152(2), 160–164 (2014).
    [Crossref]
  34. J. Shi, L. Tong, X. Ren, Q. Li, H. Ding, and H. Yang, “Bifunctional Fe3O4@C/YVO4:Sm3+, composites with the core-shell structure,” Mater. Chem. Phys. 139(1), 73–78 (2013).
    [Crossref]
  35. R. Liu, Y. J. Liang, X. Wu, Y. Z. Li, and Y. S. Gong, “Synthesis and Luminescent Properties of YVO4:Sm3+ Red Phosphor by Molten Salt Synthesis Method,” Chem. J. Chin. Univ. 30(11), 2127–2130 (2009).
  36. M. N. Luwang, R. S. Ningthoujam, S. K. Srivastava, and R. K. Vatsa, “Preparation of white light emitting YVO4:Ln3+ and silica-coated YVO4:Ln3+ (Ln3+ = Eu3+, Dy3+, Tm3+) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: Energy transfer and site symmetry studies,” J. Mater. Chem. 21(14), 5326–5337 (2011).
    [Crossref]
  37. Y. Z. Wang, D. Yu, H. H. Lin, S. Ye, M. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 630–635 (2013).
    [Crossref]
  38. Q. Meng, J. Dai, W. Sun, and C. Wang, “The Size Confinement Effect for Eu3+ Concentration Quenching and Energy Transfer in YVO4 Nanocrystal,” J. Nanosci. Nanotechnol. 16(4), 3772–3776 (2016).
    [Crossref] [PubMed]

2018 (1)

Y. Cheng and K. Sun, “Sol-gel synthesis and upconversion luminescent properties of Yb3+, Er3+, Eu3+ triply-doped in YVO4 phosphors,” J. Fluoresc. 28(1), 285–291 (2018).
[Crossref] [PubMed]

2017 (2)

J. Su, X. Mi, J. Sun, L. Yang, C. Hui, L. Lu, Z. Bai, and X. Zhang, “Tunable luminescence and energy transfer properties in YVO4:Bi3+, Eu3+ phosphors,” J. Mater. Sci. 52(2), 782–792 (2017).
[Crossref]

Y. Song, B. Shao, Y. Feng, W. Lü, J. Huo, S. Zhao, M. Liu, G. Liu, and H. You, “Emission enhancement and color tuning for GdVO4:Ln3+ (Ln = Dy, Eu) by surface modification at single wavelength excitation,” Inorg. Chem. 56(1), 282–291 (2017).
[Crossref] [PubMed]

2016 (7)

B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
[Crossref] [PubMed]

Y. Fu, Y. Shi, N. Zhang, Y. Tian, M. Xing, and X. Luo, “High-purity red up-conversion emission of Ba5Zn4 Y8O21:Er3+, Yb3+, phosphor excited by 1550 nm laser diode,” Mater. Res. Bull. 84(2), 346–349 (2016).
[Crossref]

Y. Liu, C. Yang, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Surfactant assisted synthesis of the YVO4:Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties,” Colloid surface A 502(5), 139–146 (2016).
[Crossref]

S. Xia, A. Guan, P. Chen, G. Wang, Y. Geng, and L. Zhou, “Sol-gel method for preparing a novel red-emitting phosphor YVO4:Sm3+, Eu3+ with ideal red color emission,” Superlattices Microstruct. 97(2), 319–326 (2016).
[Crossref]

H. Liu, Y. Liang, X. Gao, and S. Zhang, “Study on white-light emission and light-emitting mechanism of hydrothermally synthesized YVO4:1 mol. % Dy3+, x mol. % Eu3+ phosphor powders,” J. Rare Earths 34(2), 113–117 (2016).
[Crossref]

S. Takeshita, Y. Takebayashi, H. Nakamura, and S. Yoda, “Gas-responsive photoluminescence of YVO4:Eu3+ nanoparticles dispersed in an ultralight, three-dimensional nanofiber network,” Chem. Mater. 28(2), 8466–8469 (2016).
[Crossref]

Q. Meng, J. Dai, W. Sun, and C. Wang, “The Size Confinement Effect for Eu3+ Concentration Quenching and Energy Transfer in YVO4 Nanocrystal,” J. Nanosci. Nanotechnol. 16(4), 3772–3776 (2016).
[Crossref] [PubMed]

2015 (5)

Y. Liu, X. S. Li, J. Hu, M. Guo, W. J. Liu, Y. M. Feng, J. R. Xie, and G. X. Du, “Fabrication of MPEG-b-PMAA capped YVO4:Eu nanoparticles with biocompatibility for cell imaging,” Colloids Surf. B Biointerfaces 136(2), 721–728 (2015).
[Crossref] [PubMed]

S. Yusuke, T. Satoru, and I. Tetsuhiko, “Two photoenergy conversion modes of YVO4:Eu3+ nanoparticles: photoluminescence and photocatalytic activity,” J. Phys. Chem. 119(2), 13502–13508 (2015).

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autisser, and C. Sanchez, “New synthesis strategies for luminescent YVO4:Eu and EuVO4 nanoparticles with H2O2 selective sensing properties,” Chem. Mater. 27(2), 5198–5205 (2015).
[Crossref]

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autissier, and C. Sanchez, “New Synthesis Strategies for Luminescent YVO4:Eu and EuVO4 Nanoparticles with H2O2 Selective Sensing Properties,” Chem. Mater. 27(15), 5198–5205 (2015).
[Crossref]

E. Golyeva, D. Tolstikova, I. Kolesnikov, and M. Mikhailov, “Effect of synthesis conditions and surrounding medium on luminescence properties of YVO4:Eu3+ nanopowders,” J. Rare Earths 33(2), 129–134 (2015).
[Crossref]

2014 (2)

F. Zhang, W. Zhang, Z. Zhang, Y. Huang, and Y. Tao, “Luminescent characteristics and energy transfer of a red-emitting YVO4: Sm3+, Eu3+, phosphor,” J. Lumin. 152(2), 160–164 (2014).
[Crossref]

R. Wiglusz, L. Marciniak, R. Pazik, and W. Strek, “Structural and spectroscopic characterization of Nd3+ doped YVO4 yttrium orthovanadate nanocrystallites,” Cryst. Growth Des. 14(11), 5512–5520 (2014).
[Crossref]

2013 (3)

J. Shi, L. Tong, X. Ren, Q. Li, H. Ding, and H. Yang, “Bifunctional Fe3O4@C/YVO4:Sm3+, composites with the core-shell structure,” Mater. Chem. Phys. 139(1), 73–78 (2013).
[Crossref]

Y. Z. Wang, D. Yu, H. H. Lin, S. Ye, M. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 630–635 (2013).
[Crossref]

K. Zheng, Z. Liu, Y. Liu, W. Song, and W. Qin, “Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures,” J. Appl. Phys. 114(18), 183–189 (2013).
[Crossref]

2012 (1)

N. Na, P. Yang, F. He, X. Zhang, S. Gai, C. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+, Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

2011 (4)

X. Zhang, P. Yang, C. Li, D. Wang, J. Xu, S. Gai, and J. Lin, “Facile and mass production synthesis of β-NaYF4:Yb3+, Er3+/Tm3+ 1D microstructures with multicolor up-conversion luminescence,” Chem. Commun. (Camb.) 47(44), 12143–12145 (2011).
[Crossref] [PubMed]

B. Li, J. Liu, Y. Hu, and Z. Huang, “Preparation and characterization of La9.33Si6O26, powders by molten salt method for solid electrolyte application,” J. Alloys Compd. 509(6), 3172–3176 (2011).
[Crossref]

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 18–34 (2011).

M. N. Luwang, R. S. Ningthoujam, S. K. Srivastava, and R. K. Vatsa, “Preparation of white light emitting YVO4:Ln3+ and silica-coated YVO4:Ln3+ (Ln3+ = Eu3+, Dy3+, Tm3+) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: Energy transfer and site symmetry studies,” J. Mater. Chem. 21(14), 5326–5337 (2011).
[Crossref]

2010 (4)

T. Taniguchi, T. Watanabe, K. I. Katsumata, K. Okada, and N. Matsushita, “Synthesis of Amphipathic YVO4:Eu3+ Nanophosphors by Oleate-Modified Nucleation/Hydrothermal-Growth Process,” J. Phys. Chem. C 114(9), 3763–3769 (2010).
[Crossref]

Z. Xia, D. Chen, M. Yang, and T. Ying, “Synthesis and luminescence properties of YVO4:Eu3+, Bi3+ phosphor with enhanced photoluminescence by Bi3+ doping,” J. Phys. Chem. Solids 71(3), 175–180 (2010).
[Crossref]

Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of Light-Emitting YVO4:Eu3+ Thin Films via Inkjet Printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010).
[Crossref]

M. V. Reddy, R. Jose, T. H. Teng, B. V. R. Chowdari, and S. Ramakrishna, “Preparation and electrochemical studies of electrospun TiO2 nanofibers and molten salt method nanoparticles,” Electrochim. Acta 55(9), 3109–3117 (2010).
[Crossref]

2009 (3)

Y. S. Chang, F. M. Huang, Y. Y. Tsai, and L. G. Teoh, “Synthesis and photoluminescent properties of YVO4:Eu3+ nano-crystal phosphor prepared by Pechini process,” J. Lumin. 129(10), 1181–1185 (2009).
[Crossref]

R. Liu, Y. J. Liang, X. Wu, Y. Z. Li, and Y. S. Gong, “Synthesis and Luminescent Properties of YVO4:Sm3+ Red Phosphor by Molten Salt Synthesis Method,” Chem. J. Chin. Univ. 30(11), 2127–2130 (2009).

J. Wang, Y. Xu, M. Hojamberdiev, Y. Cui, H. Liu, and G. Zhu, “Optical properties of porous YVO4:Ln (Ln = Dy3+ and Tm3+) nanoplates obtained by the chemical co-precipitation method,” J. Alloys Compd. 479(1), 772–776 (2009).
[Crossref]

2007 (1)

H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, “Photoluminescence of nanocrystalline YVO4:TmxDy1−x, prepared by a modified Pechini method,” Mater. Lett. 61(2), 308–311 (2007).
[Crossref]

2006 (1)

D. Wang, X. Chu, and M. Gong, “Gas-sensing properties of sensors based on single-crystalline SnO2, nanorods prepared by a simple molten-salt method,” Sensor Actuat. Biol. Chem. 117(1), 183–187 (2006).

2005 (2)

X. Q. Su and B. Yan, “In situ chemical co-precipitation synthesis of YVO4:RE (RE = Dy3+, Sm3+, Er3+) phosphors by assembling hybrid precursors,” J. Non-Cryst. Solids 351(43-45), 3542–3546 (2005).
[Crossref]

M. Yu, J. Lin, and J. Fang, “Silica Spheres Coated with YVO4:Eu3+ Layers via Sol-Gel Process: A Simple Method to Obtain Spherical Core-Shell Phosphors,” Chem. Mater. 17(7), 1783–1791 (2005).
[Crossref]

2000 (1)

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd: yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

1975 (1)

M. Bass, “Electrooptic Q switching of the Nd: YVO4 laser without an intracavity polarizer,” IEEE J. Quantum Electron. 11(12), 938–939 (1975).
[Crossref]

Ambard, C.

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autissier, and C. Sanchez, “New Synthesis Strategies for Luminescent YVO4:Eu and EuVO4 Nanoparticles with H2O2 Selective Sensing Properties,” Chem. Mater. 27(15), 5198–5205 (2015).
[Crossref]

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autisser, and C. Sanchez, “New synthesis strategies for luminescent YVO4:Eu and EuVO4 nanoparticles with H2O2 selective sensing properties,” Chem. Mater. 27(2), 5198–5205 (2015).
[Crossref]

Autisser, D.

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autisser, and C. Sanchez, “New synthesis strategies for luminescent YVO4:Eu and EuVO4 nanoparticles with H2O2 selective sensing properties,” Chem. Mater. 27(2), 5198–5205 (2015).
[Crossref]

Autissier, D.

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autissier, and C. Sanchez, “New Synthesis Strategies for Luminescent YVO4:Eu and EuVO4 Nanoparticles with H2O2 Selective Sensing Properties,” Chem. Mater. 27(15), 5198–5205 (2015).
[Crossref]

Bai, Z.

J. Su, X. Mi, J. Sun, L. Yang, C. Hui, L. Lu, Z. Bai, and X. Zhang, “Tunable luminescence and energy transfer properties in YVO4:Bi3+, Eu3+ phosphors,” J. Mater. Sci. 52(2), 782–792 (2017).
[Crossref]

Bass, M.

M. Bass, “Electrooptic Q switching of the Nd: YVO4 laser without an intracavity polarizer,” IEEE J. Quantum Electron. 11(12), 938–939 (1975).
[Crossref]

Chang, Y. S.

Y. S. Chang, F. M. Huang, Y. Y. Tsai, and L. G. Teoh, “Synthesis and photoluminescent properties of YVO4:Eu3+ nano-crystal phosphor prepared by Pechini process,” J. Lumin. 129(10), 1181–1185 (2009).
[Crossref]

Chen, D.

Z. Xia, D. Chen, M. Yang, and T. Ying, “Synthesis and luminescence properties of YVO4:Eu3+, Bi3+ phosphor with enhanced photoluminescence by Bi3+ doping,” J. Phys. Chem. Solids 71(3), 175–180 (2010).
[Crossref]

Chen, P.

S. Xia, A. Guan, P. Chen, G. Wang, Y. Geng, and L. Zhou, “Sol-gel method for preparing a novel red-emitting phosphor YVO4:Sm3+, Eu3+ with ideal red color emission,” Superlattices Microstruct. 97(2), 319–326 (2016).
[Crossref]

Cheng, Y.

Y. Cheng and K. Sun, “Sol-gel synthesis and upconversion luminescent properties of Yb3+, Er3+, Eu3+ triply-doped in YVO4 phosphors,” J. Fluoresc. 28(1), 285–291 (2018).
[Crossref] [PubMed]

Cheng, Z.

Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of Light-Emitting YVO4:Eu3+ Thin Films via Inkjet Printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010).
[Crossref]

Chowdari, B. V. R.

M. V. Reddy, R. Jose, T. H. Teng, B. V. R. Chowdari, and S. Ramakrishna, “Preparation and electrochemical studies of electrospun TiO2 nanofibers and molten salt method nanoparticles,” Electrochim. Acta 55(9), 3109–3117 (2010).
[Crossref]

Chu, X.

D. Wang, X. Chu, and M. Gong, “Gas-sensing properties of sensors based on single-crystalline SnO2, nanorods prepared by a simple molten-salt method,” Sensor Actuat. Biol. Chem. 117(1), 183–187 (2006).

Cui, Y.

J. Wang, Y. Xu, M. Hojamberdiev, Y. Cui, H. Liu, and G. Zhu, “Optical properties of porous YVO4:Ln (Ln = Dy3+ and Tm3+) nanoplates obtained by the chemical co-precipitation method,” J. Alloys Compd. 479(1), 772–776 (2009).
[Crossref]

Dai, J.

Q. Meng, J. Dai, W. Sun, and C. Wang, “The Size Confinement Effect for Eu3+ Concentration Quenching and Energy Transfer in YVO4 Nanocrystal,” J. Nanosci. Nanotechnol. 16(4), 3772–3776 (2016).
[Crossref] [PubMed]

Ding, H.

J. Shi, L. Tong, X. Ren, Q. Li, H. Ding, and H. Yang, “Bifunctional Fe3O4@C/YVO4:Sm3+, composites with the core-shell structure,” Mater. Chem. Phys. 139(1), 73–78 (2013).
[Crossref]

Du, G. X.

Y. Liu, X. S. Li, J. Hu, M. Guo, W. J. Liu, Y. M. Feng, J. R. Xie, and G. X. Du, “Fabrication of MPEG-b-PMAA capped YVO4:Eu nanoparticles with biocompatibility for cell imaging,” Colloids Surf. B Biointerfaces 136(2), 721–728 (2015).
[Crossref] [PubMed]

Duee, N.

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autisser, and C. Sanchez, “New synthesis strategies for luminescent YVO4:Eu and EuVO4 nanoparticles with H2O2 selective sensing properties,” Chem. Mater. 27(2), 5198–5205 (2015).
[Crossref]

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autissier, and C. Sanchez, “New Synthesis Strategies for Luminescent YVO4:Eu and EuVO4 Nanoparticles with H2O2 Selective Sensing Properties,” Chem. Mater. 27(15), 5198–5205 (2015).
[Crossref]

Fang, J.

M. Yu, J. Lin, and J. Fang, “Silica Spheres Coated with YVO4:Eu3+ Layers via Sol-Gel Process: A Simple Method to Obtain Spherical Core-Shell Phosphors,” Chem. Mater. 17(7), 1783–1791 (2005).
[Crossref]

Feng, Y.

Y. Song, B. Shao, Y. Feng, W. Lü, J. Huo, S. Zhao, M. Liu, G. Liu, and H. You, “Emission enhancement and color tuning for GdVO4:Ln3+ (Ln = Dy, Eu) by surface modification at single wavelength excitation,” Inorg. Chem. 56(1), 282–291 (2017).
[Crossref] [PubMed]

B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
[Crossref] [PubMed]

Feng, Y. M.

Y. Liu, X. S. Li, J. Hu, M. Guo, W. J. Liu, Y. M. Feng, J. R. Xie, and G. X. Du, “Fabrication of MPEG-b-PMAA capped YVO4:Eu nanoparticles with biocompatibility for cell imaging,” Colloids Surf. B Biointerfaces 136(2), 721–728 (2015).
[Crossref] [PubMed]

Fu, X.

H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, “Photoluminescence of nanocrystalline YVO4:TmxDy1−x, prepared by a modified Pechini method,” Mater. Lett. 61(2), 308–311 (2007).
[Crossref]

Fu, Y.

Y. Fu, Y. Shi, N. Zhang, Y. Tian, M. Xing, and X. Luo, “High-purity red up-conversion emission of Ba5Zn4 Y8O21:Er3+, Yb3+, phosphor excited by 1550 nm laser diode,” Mater. Res. Bull. 84(2), 346–349 (2016).
[Crossref]

Gai, S.

N. Na, P. Yang, F. He, X. Zhang, S. Gai, C. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+, Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

X. Zhang, P. Yang, C. Li, D. Wang, J. Xu, S. Gai, and J. Lin, “Facile and mass production synthesis of β-NaYF4:Yb3+, Er3+/Tm3+ 1D microstructures with multicolor up-conversion luminescence,” Chem. Commun. (Camb.) 47(44), 12143–12145 (2011).
[Crossref] [PubMed]

Gan, S.

Y. Liu, C. Yang, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Surfactant assisted synthesis of the YVO4:Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties,” Colloid surface A 502(5), 139–146 (2016).
[Crossref]

Gao, X.

H. Liu, Y. Liang, X. Gao, and S. Zhang, “Study on white-light emission and light-emitting mechanism of hydrothermally synthesized YVO4:1 mol. % Dy3+, x mol. % Eu3+ phosphor powders,” J. Rare Earths 34(2), 113–117 (2016).
[Crossref]

Geng, Y.

S. Xia, A. Guan, P. Chen, G. Wang, Y. Geng, and L. Zhou, “Sol-gel method for preparing a novel red-emitting phosphor YVO4:Sm3+, Eu3+ with ideal red color emission,” Superlattices Microstruct. 97(2), 319–326 (2016).
[Crossref]

Golyeva, E.

E. Golyeva, D. Tolstikova, I. Kolesnikov, and M. Mikhailov, “Effect of synthesis conditions and surrounding medium on luminescence properties of YVO4:Eu3+ nanopowders,” J. Rare Earths 33(2), 129–134 (2015).
[Crossref]

Gong, M.

D. Wang, X. Chu, and M. Gong, “Gas-sensing properties of sensors based on single-crystalline SnO2, nanorods prepared by a simple molten-salt method,” Sensor Actuat. Biol. Chem. 117(1), 183–187 (2006).

Gong, Y. S.

R. Liu, Y. J. Liang, X. Wu, Y. Z. Li, and Y. S. Gong, “Synthesis and Luminescent Properties of YVO4:Sm3+ Red Phosphor by Molten Salt Synthesis Method,” Chem. J. Chin. Univ. 30(11), 2127–2130 (2009).

Guan, A.

S. Xia, A. Guan, P. Chen, G. Wang, Y. Geng, and L. Zhou, “Sol-gel method for preparing a novel red-emitting phosphor YVO4:Sm3+, Eu3+ with ideal red color emission,” Superlattices Microstruct. 97(2), 319–326 (2016).
[Crossref]

Guo, M.

Y. Liu, X. S. Li, J. Hu, M. Guo, W. J. Liu, Y. M. Feng, J. R. Xie, and G. X. Du, “Fabrication of MPEG-b-PMAA capped YVO4:Eu nanoparticles with biocompatibility for cell imaging,” Colloids Surf. B Biointerfaces 136(2), 721–728 (2015).
[Crossref] [PubMed]

He, F.

N. Na, P. Yang, F. He, X. Zhang, S. Gai, C. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+, Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

Hojamberdiev, M.

J. Wang, Y. Xu, M. Hojamberdiev, Y. Cui, H. Liu, and G. Zhu, “Optical properties of porous YVO4:Ln (Ln = Dy3+ and Tm3+) nanoplates obtained by the chemical co-precipitation method,” J. Alloys Compd. 479(1), 772–776 (2009).
[Crossref]

Hou, Z.

Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of Light-Emitting YVO4:Eu3+ Thin Films via Inkjet Printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010).
[Crossref]

Hu, J.

Y. Liu, X. S. Li, J. Hu, M. Guo, W. J. Liu, Y. M. Feng, J. R. Xie, and G. X. Du, “Fabrication of MPEG-b-PMAA capped YVO4:Eu nanoparticles with biocompatibility for cell imaging,” Colloids Surf. B Biointerfaces 136(2), 721–728 (2015).
[Crossref] [PubMed]

Hu, Y.

B. Li, J. Liu, Y. Hu, and Z. Huang, “Preparation and characterization of La9.33Si6O26, powders by molten salt method for solid electrolyte application,” J. Alloys Compd. 509(6), 3172–3176 (2011).
[Crossref]

Huang, F. M.

Y. S. Chang, F. M. Huang, Y. Y. Tsai, and L. G. Teoh, “Synthesis and photoluminescent properties of YVO4:Eu3+ nano-crystal phosphor prepared by Pechini process,” J. Lumin. 129(10), 1181–1185 (2009).
[Crossref]

Huang, S.

Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of Light-Emitting YVO4:Eu3+ Thin Films via Inkjet Printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010).
[Crossref]

Huang, Y.

F. Zhang, W. Zhang, Z. Zhang, Y. Huang, and Y. Tao, “Luminescent characteristics and energy transfer of a red-emitting YVO4: Sm3+, Eu3+, phosphor,” J. Lumin. 152(2), 160–164 (2014).
[Crossref]

Huang, Z.

B. Li, J. Liu, Y. Hu, and Z. Huang, “Preparation and characterization of La9.33Si6O26, powders by molten salt method for solid electrolyte application,” J. Alloys Compd. 509(6), 3172–3176 (2011).
[Crossref]

Hui, C.

J. Su, X. Mi, J. Sun, L. Yang, C. Hui, L. Lu, Z. Bai, and X. Zhang, “Tunable luminescence and energy transfer properties in YVO4:Bi3+, Eu3+ phosphors,” J. Mater. Sci. 52(2), 782–792 (2017).
[Crossref]

Huo, J.

Y. Song, B. Shao, Y. Feng, W. Lü, J. Huo, S. Zhao, M. Liu, G. Liu, and H. You, “Emission enhancement and color tuning for GdVO4:Ln3+ (Ln = Dy, Eu) by surface modification at single wavelength excitation,” Inorg. Chem. 56(1), 282–291 (2017).
[Crossref] [PubMed]

Jiao, M.

B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
[Crossref] [PubMed]

Jose, R.

M. V. Reddy, R. Jose, T. H. Teng, B. V. R. Chowdari, and S. Ramakrishna, “Preparation and electrochemical studies of electrospun TiO2 nanofibers and molten salt method nanoparticles,” Electrochim. Acta 55(9), 3109–3117 (2010).
[Crossref]

Kaminskii, A. A.

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd: yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Katsumata, K. I.

T. Taniguchi, T. Watanabe, K. I. Katsumata, K. Okada, and N. Matsushita, “Synthesis of Amphipathic YVO4:Eu3+ Nanophosphors by Oleate-Modified Nucleation/Hydrothermal-Growth Process,” J. Phys. Chem. C 114(9), 3763–3769 (2010).
[Crossref]

Kolesnikov, I.

E. Golyeva, D. Tolstikova, I. Kolesnikov, and M. Mikhailov, “Effect of synthesis conditions and surrounding medium on luminescence properties of YVO4:Eu3+ nanopowders,” J. Rare Earths 33(2), 129–134 (2015).
[Crossref]

Leng, Z.

Y. Liu, C. Yang, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Surfactant assisted synthesis of the YVO4:Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties,” Colloid surface A 502(5), 139–146 (2016).
[Crossref]

Li, B.

B. Li, J. Liu, Y. Hu, and Z. Huang, “Preparation and characterization of La9.33Si6O26, powders by molten salt method for solid electrolyte application,” J. Alloys Compd. 509(6), 3172–3176 (2011).
[Crossref]

Li, C.

N. Na, P. Yang, F. He, X. Zhang, S. Gai, C. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+, Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

X. Zhang, P. Yang, C. Li, D. Wang, J. Xu, S. Gai, and J. Lin, “Facile and mass production synthesis of β-NaYF4:Yb3+, Er3+/Tm3+ 1D microstructures with multicolor up-conversion luminescence,” Chem. Commun. (Camb.) 47(44), 12143–12145 (2011).
[Crossref] [PubMed]

Li, Q.

J. Shi, L. Tong, X. Ren, Q. Li, H. Ding, and H. Yang, “Bifunctional Fe3O4@C/YVO4:Sm3+, composites with the core-shell structure,” Mater. Chem. Phys. 139(1), 73–78 (2013).
[Crossref]

Li, R.

Y. Liu, C. Yang, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Surfactant assisted synthesis of the YVO4:Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties,” Colloid surface A 502(5), 139–146 (2016).
[Crossref]

Li, X. S.

Y. Liu, X. S. Li, J. Hu, M. Guo, W. J. Liu, Y. M. Feng, J. R. Xie, and G. X. Du, “Fabrication of MPEG-b-PMAA capped YVO4:Eu nanoparticles with biocompatibility for cell imaging,” Colloids Surf. B Biointerfaces 136(2), 721–728 (2015).
[Crossref] [PubMed]

Li, Y. Z.

R. Liu, Y. J. Liang, X. Wu, Y. Z. Li, and Y. S. Gong, “Synthesis and Luminescent Properties of YVO4:Sm3+ Red Phosphor by Molten Salt Synthesis Method,” Chem. J. Chin. Univ. 30(11), 2127–2130 (2009).

Liang, Y.

H. Liu, Y. Liang, X. Gao, and S. Zhang, “Study on white-light emission and light-emitting mechanism of hydrothermally synthesized YVO4:1 mol. % Dy3+, x mol. % Eu3+ phosphor powders,” J. Rare Earths 34(2), 113–117 (2016).
[Crossref]

Liang, Y. J.

R. Liu, Y. J. Liang, X. Wu, Y. Z. Li, and Y. S. Gong, “Synthesis and Luminescent Properties of YVO4:Sm3+ Red Phosphor by Molten Salt Synthesis Method,” Chem. J. Chin. Univ. 30(11), 2127–2130 (2009).

Lin, H. H.

Y. Z. Wang, D. Yu, H. H. Lin, S. Ye, M. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 630–635 (2013).
[Crossref]

Lin, J.

N. Na, P. Yang, F. He, X. Zhang, S. Gai, C. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+, Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

X. Zhang, P. Yang, C. Li, D. Wang, J. Xu, S. Gai, and J. Lin, “Facile and mass production synthesis of β-NaYF4:Yb3+, Er3+/Tm3+ 1D microstructures with multicolor up-conversion luminescence,” Chem. Commun. (Camb.) 47(44), 12143–12145 (2011).
[Crossref] [PubMed]

Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of Light-Emitting YVO4:Eu3+ Thin Films via Inkjet Printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010).
[Crossref]

M. Yu, J. Lin, and J. Fang, “Silica Spheres Coated with YVO4:Eu3+ Layers via Sol-Gel Process: A Simple Method to Obtain Spherical Core-Shell Phosphors,” Chem. Mater. 17(7), 1783–1791 (2005).
[Crossref]

Liu, G.

Y. Song, B. Shao, Y. Feng, W. Lü, J. Huo, S. Zhao, M. Liu, G. Liu, and H. You, “Emission enhancement and color tuning for GdVO4:Ln3+ (Ln = Dy, Eu) by surface modification at single wavelength excitation,” Inorg. Chem. 56(1), 282–291 (2017).
[Crossref] [PubMed]

Liu, H.

H. Liu, Y. Liang, X. Gao, and S. Zhang, “Study on white-light emission and light-emitting mechanism of hydrothermally synthesized YVO4:1 mol. % Dy3+, x mol. % Eu3+ phosphor powders,” J. Rare Earths 34(2), 113–117 (2016).
[Crossref]

J. Wang, Y. Xu, M. Hojamberdiev, Y. Cui, H. Liu, and G. Zhu, “Optical properties of porous YVO4:Ln (Ln = Dy3+ and Tm3+) nanoplates obtained by the chemical co-precipitation method,” J. Alloys Compd. 479(1), 772–776 (2009).
[Crossref]

Liu, J.

B. Li, J. Liu, Y. Hu, and Z. Huang, “Preparation and characterization of La9.33Si6O26, powders by molten salt method for solid electrolyte application,” J. Alloys Compd. 509(6), 3172–3176 (2011).
[Crossref]

Liu, M.

Y. Song, B. Shao, Y. Feng, W. Lü, J. Huo, S. Zhao, M. Liu, G. Liu, and H. You, “Emission enhancement and color tuning for GdVO4:Ln3+ (Ln = Dy, Eu) by surface modification at single wavelength excitation,” Inorg. Chem. 56(1), 282–291 (2017).
[Crossref] [PubMed]

Liu, R.

R. Liu, Y. J. Liang, X. Wu, Y. Z. Li, and Y. S. Gong, “Synthesis and Luminescent Properties of YVO4:Sm3+ Red Phosphor by Molten Salt Synthesis Method,” Chem. J. Chin. Univ. 30(11), 2127–2130 (2009).

Liu, W. J.

Y. Liu, X. S. Li, J. Hu, M. Guo, W. J. Liu, Y. M. Feng, J. R. Xie, and G. X. Du, “Fabrication of MPEG-b-PMAA capped YVO4:Eu nanoparticles with biocompatibility for cell imaging,” Colloids Surf. B Biointerfaces 136(2), 721–728 (2015).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, C. Yang, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Surfactant assisted synthesis of the YVO4:Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties,” Colloid surface A 502(5), 139–146 (2016).
[Crossref]

Y. Liu, X. S. Li, J. Hu, M. Guo, W. J. Liu, Y. M. Feng, J. R. Xie, and G. X. Du, “Fabrication of MPEG-b-PMAA capped YVO4:Eu nanoparticles with biocompatibility for cell imaging,” Colloids Surf. B Biointerfaces 136(2), 721–728 (2015).
[Crossref] [PubMed]

K. Zheng, Z. Liu, Y. Liu, W. Song, and W. Qin, “Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures,” J. Appl. Phys. 114(18), 183–189 (2013).
[Crossref]

Liu, Z.

K. Zheng, Z. Liu, Y. Liu, W. Song, and W. Qin, “Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures,” J. Appl. Phys. 114(18), 183–189 (2013).
[Crossref]

Lu, J.

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd: yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Lu, L.

J. Su, X. Mi, J. Sun, L. Yang, C. Hui, L. Lu, Z. Bai, and X. Zhang, “Tunable luminescence and energy transfer properties in YVO4:Bi3+, Eu3+ phosphors,” J. Mater. Sci. 52(2), 782–792 (2017).
[Crossref]

Lü, W.

Y. Song, B. Shao, Y. Feng, W. Lü, J. Huo, S. Zhao, M. Liu, G. Liu, and H. You, “Emission enhancement and color tuning for GdVO4:Ln3+ (Ln = Dy, Eu) by surface modification at single wavelength excitation,” Inorg. Chem. 56(1), 282–291 (2017).
[Crossref] [PubMed]

B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
[Crossref] [PubMed]

Luo, X.

Y. Fu, Y. Shi, N. Zhang, Y. Tian, M. Xing, and X. Luo, “High-purity red up-conversion emission of Ba5Zn4 Y8O21:Er3+, Yb3+, phosphor excited by 1550 nm laser diode,” Mater. Res. Bull. 84(2), 346–349 (2016).
[Crossref]

Luwang, M. N.

M. N. Luwang, R. S. Ningthoujam, S. K. Srivastava, and R. K. Vatsa, “Preparation of white light emitting YVO4:Ln3+ and silica-coated YVO4:Ln3+ (Ln3+ = Eu3+, Dy3+, Tm3+) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: Energy transfer and site symmetry studies,” J. Mater. Chem. 21(14), 5326–5337 (2011).
[Crossref]

Ma, Y. Y.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 18–34 (2011).

Marciniak, L.

R. Wiglusz, L. Marciniak, R. Pazik, and W. Strek, “Structural and spectroscopic characterization of Nd3+ doped YVO4 yttrium orthovanadate nanocrystallites,” Cryst. Growth Des. 14(11), 5512–5520 (2014).
[Crossref]

Matsushita, N.

T. Taniguchi, T. Watanabe, K. I. Katsumata, K. Okada, and N. Matsushita, “Synthesis of Amphipathic YVO4:Eu3+ Nanophosphors by Oleate-Modified Nucleation/Hydrothermal-Growth Process,” J. Phys. Chem. C 114(9), 3763–3769 (2010).
[Crossref]

Meng, Q.

Q. Meng, J. Dai, W. Sun, and C. Wang, “The Size Confinement Effect for Eu3+ Concentration Quenching and Energy Transfer in YVO4 Nanocrystal,” J. Nanosci. Nanotechnol. 16(4), 3772–3776 (2016).
[Crossref] [PubMed]

Mi, X.

J. Su, X. Mi, J. Sun, L. Yang, C. Hui, L. Lu, Z. Bai, and X. Zhang, “Tunable luminescence and energy transfer properties in YVO4:Bi3+, Eu3+ phosphors,” J. Mater. Sci. 52(2), 782–792 (2017).
[Crossref]

Mikhailov, M.

E. Golyeva, D. Tolstikova, I. Kolesnikov, and M. Mikhailov, “Effect of synthesis conditions and surrounding medium on luminescence properties of YVO4:Eu3+ nanopowders,” J. Rare Earths 33(2), 129–134 (2015).
[Crossref]

Na, N.

N. Na, P. Yang, F. He, X. Zhang, S. Gai, C. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+, Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

Nakamura, H.

S. Takeshita, Y. Takebayashi, H. Nakamura, and S. Yoda, “Gas-responsive photoluminescence of YVO4:Eu3+ nanoparticles dispersed in an ultralight, three-dimensional nanofiber network,” Chem. Mater. 28(2), 8466–8469 (2016).
[Crossref]

Ningthoujam, R. S.

M. N. Luwang, R. S. Ningthoujam, S. K. Srivastava, and R. K. Vatsa, “Preparation of white light emitting YVO4:Ln3+ and silica-coated YVO4:Ln3+ (Ln3+ = Eu3+, Dy3+, Tm3+) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: Energy transfer and site symmetry studies,” J. Mater. Chem. 21(14), 5326–5337 (2011).
[Crossref]

Niu, S.

H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, “Photoluminescence of nanocrystalline YVO4:TmxDy1−x, prepared by a modified Pechini method,” Mater. Lett. 61(2), 308–311 (2007).
[Crossref]

Okada, K.

T. Taniguchi, T. Watanabe, K. I. Katsumata, K. Okada, and N. Matsushita, “Synthesis of Amphipathic YVO4:Eu3+ Nanophosphors by Oleate-Modified Nucleation/Hydrothermal-Growth Process,” J. Phys. Chem. C 114(9), 3763–3769 (2010).
[Crossref]

Pan, Y. X.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 18–34 (2011).

Pazik, R.

R. Wiglusz, L. Marciniak, R. Pazik, and W. Strek, “Structural and spectroscopic characterization of Nd3+ doped YVO4 yttrium orthovanadate nanocrystallites,” Cryst. Growth Des. 14(11), 5512–5520 (2014).
[Crossref]

Peng, M.

Y. Z. Wang, D. Yu, H. H. Lin, S. Ye, M. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 630–635 (2013).
[Crossref]

Pereira, F.

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autisser, and C. Sanchez, “New synthesis strategies for luminescent YVO4:Eu and EuVO4 nanoparticles with H2O2 selective sensing properties,” Chem. Mater. 27(2), 5198–5205 (2015).
[Crossref]

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autissier, and C. Sanchez, “New Synthesis Strategies for Luminescent YVO4:Eu and EuVO4 Nanoparticles with H2O2 Selective Sensing Properties,” Chem. Mater. 27(15), 5198–5205 (2015).
[Crossref]

Portehault, D.

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autissier, and C. Sanchez, “New Synthesis Strategies for Luminescent YVO4:Eu and EuVO4 Nanoparticles with H2O2 Selective Sensing Properties,” Chem. Mater. 27(15), 5198–5205 (2015).
[Crossref]

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autisser, and C. Sanchez, “New synthesis strategies for luminescent YVO4:Eu and EuVO4 nanoparticles with H2O2 selective sensing properties,” Chem. Mater. 27(2), 5198–5205 (2015).
[Crossref]

Prabhu, M.

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd: yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Qin, W.

K. Zheng, Z. Liu, Y. Liu, W. Song, and W. Qin, “Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures,” J. Appl. Phys. 114(18), 183–189 (2013).
[Crossref]

Ramakrishna, S.

M. V. Reddy, R. Jose, T. H. Teng, B. V. R. Chowdari, and S. Ramakrishna, “Preparation and electrochemical studies of electrospun TiO2 nanofibers and molten salt method nanoparticles,” Electrochim. Acta 55(9), 3109–3117 (2010).
[Crossref]

Reddy, M. V.

M. V. Reddy, R. Jose, T. H. Teng, B. V. R. Chowdari, and S. Ramakrishna, “Preparation and electrochemical studies of electrospun TiO2 nanofibers and molten salt method nanoparticles,” Electrochim. Acta 55(9), 3109–3117 (2010).
[Crossref]

Ren, X.

J. Shi, L. Tong, X. Ren, Q. Li, H. Ding, and H. Yang, “Bifunctional Fe3O4@C/YVO4:Sm3+, composites with the core-shell structure,” Mater. Chem. Phys. 139(1), 73–78 (2013).
[Crossref]

Sanchez, C.

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autisser, and C. Sanchez, “New synthesis strategies for luminescent YVO4:Eu and EuVO4 nanoparticles with H2O2 selective sensing properties,” Chem. Mater. 27(2), 5198–5205 (2015).
[Crossref]

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autissier, and C. Sanchez, “New Synthesis Strategies for Luminescent YVO4:Eu and EuVO4 Nanoparticles with H2O2 Selective Sensing Properties,” Chem. Mater. 27(15), 5198–5205 (2015).
[Crossref]

Satoru, T.

S. Yusuke, T. Satoru, and I. Tetsuhiko, “Two photoenergy conversion modes of YVO4:Eu3+ nanoparticles: photoluminescence and photocatalytic activity,” J. Phys. Chem. 119(2), 13502–13508 (2015).

Shao, B.

Y. Song, B. Shao, Y. Feng, W. Lü, J. Huo, S. Zhao, M. Liu, G. Liu, and H. You, “Emission enhancement and color tuning for GdVO4:Ln3+ (Ln = Dy, Eu) by surface modification at single wavelength excitation,” Inorg. Chem. 56(1), 282–291 (2017).
[Crossref] [PubMed]

B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
[Crossref] [PubMed]

Shi, J.

J. Shi, L. Tong, X. Ren, Q. Li, H. Ding, and H. Yang, “Bifunctional Fe3O4@C/YVO4:Sm3+, composites with the core-shell structure,” Mater. Chem. Phys. 139(1), 73–78 (2013).
[Crossref]

Shi, Y.

Y. Fu, Y. Shi, N. Zhang, Y. Tian, M. Xing, and X. Luo, “High-purity red up-conversion emission of Ba5Zn4 Y8O21:Er3+, Yb3+, phosphor excited by 1550 nm laser diode,” Mater. Res. Bull. 84(2), 346–349 (2016).
[Crossref]

Song, W.

K. Zheng, Z. Liu, Y. Liu, W. Song, and W. Qin, “Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures,” J. Appl. Phys. 114(18), 183–189 (2013).
[Crossref]

Song, Y.

Y. Song, B. Shao, Y. Feng, W. Lü, J. Huo, S. Zhao, M. Liu, G. Liu, and H. You, “Emission enhancement and color tuning for GdVO4:Ln3+ (Ln = Dy, Eu) by surface modification at single wavelength excitation,” Inorg. Chem. 56(1), 282–291 (2017).
[Crossref] [PubMed]

B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
[Crossref] [PubMed]

Srivastava, S. K.

M. N. Luwang, R. S. Ningthoujam, S. K. Srivastava, and R. K. Vatsa, “Preparation of white light emitting YVO4:Ln3+ and silica-coated YVO4:Ln3+ (Ln3+ = Eu3+, Dy3+, Tm3+) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: Energy transfer and site symmetry studies,” J. Mater. Chem. 21(14), 5326–5337 (2011).
[Crossref]

Strek, W.

R. Wiglusz, L. Marciniak, R. Pazik, and W. Strek, “Structural and spectroscopic characterization of Nd3+ doped YVO4 yttrium orthovanadate nanocrystallites,” Cryst. Growth Des. 14(11), 5512–5520 (2014).
[Crossref]

Su, J.

J. Su, X. Mi, J. Sun, L. Yang, C. Hui, L. Lu, Z. Bai, and X. Zhang, “Tunable luminescence and energy transfer properties in YVO4:Bi3+, Eu3+ phosphors,” J. Mater. Sci. 52(2), 782–792 (2017).
[Crossref]

Su, X. Q.

X. Q. Su and B. Yan, “In situ chemical co-precipitation synthesis of YVO4:RE (RE = Dy3+, Sm3+, Er3+) phosphors by assembling hybrid precursors,” J. Non-Cryst. Solids 351(43-45), 3542–3546 (2005).
[Crossref]

Sun, G.

H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, “Photoluminescence of nanocrystalline YVO4:TmxDy1−x, prepared by a modified Pechini method,” Mater. Lett. 61(2), 308–311 (2007).
[Crossref]

Sun, J.

J. Su, X. Mi, J. Sun, L. Yang, C. Hui, L. Lu, Z. Bai, and X. Zhang, “Tunable luminescence and energy transfer properties in YVO4:Bi3+, Eu3+ phosphors,” J. Mater. Sci. 52(2), 782–792 (2017).
[Crossref]

Sun, K.

Y. Cheng and K. Sun, “Sol-gel synthesis and upconversion luminescent properties of Yb3+, Er3+, Eu3+ triply-doped in YVO4 phosphors,” J. Fluoresc. 28(1), 285–291 (2018).
[Crossref] [PubMed]

Sun, W.

Q. Meng, J. Dai, W. Sun, and C. Wang, “The Size Confinement Effect for Eu3+ Concentration Quenching and Energy Transfer in YVO4 Nanocrystal,” J. Nanosci. Nanotechnol. 16(4), 3772–3776 (2016).
[Crossref] [PubMed]

Takebayashi, Y.

S. Takeshita, Y. Takebayashi, H. Nakamura, and S. Yoda, “Gas-responsive photoluminescence of YVO4:Eu3+ nanoparticles dispersed in an ultralight, three-dimensional nanofiber network,” Chem. Mater. 28(2), 8466–8469 (2016).
[Crossref]

Takeshita, S.

S. Takeshita, Y. Takebayashi, H. Nakamura, and S. Yoda, “Gas-responsive photoluminescence of YVO4:Eu3+ nanoparticles dispersed in an ultralight, three-dimensional nanofiber network,” Chem. Mater. 28(2), 8466–8469 (2016).
[Crossref]

Taniguchi, T.

T. Taniguchi, T. Watanabe, K. I. Katsumata, K. Okada, and N. Matsushita, “Synthesis of Amphipathic YVO4:Eu3+ Nanophosphors by Oleate-Modified Nucleation/Hydrothermal-Growth Process,” J. Phys. Chem. C 114(9), 3763–3769 (2010).
[Crossref]

Tao, Y.

F. Zhang, W. Zhang, Z. Zhang, Y. Huang, and Y. Tao, “Luminescent characteristics and energy transfer of a red-emitting YVO4: Sm3+, Eu3+, phosphor,” J. Lumin. 152(2), 160–164 (2014).
[Crossref]

Teng, T. H.

M. V. Reddy, R. Jose, T. H. Teng, B. V. R. Chowdari, and S. Ramakrishna, “Preparation and electrochemical studies of electrospun TiO2 nanofibers and molten salt method nanoparticles,” Electrochim. Acta 55(9), 3109–3117 (2010).
[Crossref]

Teoh, L. G.

Y. S. Chang, F. M. Huang, Y. Y. Tsai, and L. G. Teoh, “Synthesis and photoluminescent properties of YVO4:Eu3+ nano-crystal phosphor prepared by Pechini process,” J. Lumin. 129(10), 1181–1185 (2009).
[Crossref]

Tetsuhiko, I.

S. Yusuke, T. Satoru, and I. Tetsuhiko, “Two photoenergy conversion modes of YVO4:Eu3+ nanoparticles: photoluminescence and photocatalytic activity,” J. Phys. Chem. 119(2), 13502–13508 (2015).

Tian, Y.

Y. Fu, Y. Shi, N. Zhang, Y. Tian, M. Xing, and X. Luo, “High-purity red up-conversion emission of Ba5Zn4 Y8O21:Er3+, Yb3+, phosphor excited by 1550 nm laser diode,” Mater. Res. Bull. 84(2), 346–349 (2016).
[Crossref]

Tolstikova, D.

E. Golyeva, D. Tolstikova, I. Kolesnikov, and M. Mikhailov, “Effect of synthesis conditions and surrounding medium on luminescence properties of YVO4:Eu3+ nanopowders,” J. Rare Earths 33(2), 129–134 (2015).
[Crossref]

Tong, L.

J. Shi, L. Tong, X. Ren, Q. Li, H. Ding, and H. Yang, “Bifunctional Fe3O4@C/YVO4:Sm3+, composites with the core-shell structure,” Mater. Chem. Phys. 139(1), 73–78 (2013).
[Crossref]

Tsai, Y. Y.

Y. S. Chang, F. M. Huang, Y. Y. Tsai, and L. G. Teoh, “Synthesis and photoluminescent properties of YVO4:Eu3+ nano-crystal phosphor prepared by Pechini process,” J. Lumin. 129(10), 1181–1185 (2009).
[Crossref]

Ueda, K.

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd: yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Valle, K.

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autissier, and C. Sanchez, “New Synthesis Strategies for Luminescent YVO4:Eu and EuVO4 Nanoparticles with H2O2 Selective Sensing Properties,” Chem. Mater. 27(15), 5198–5205 (2015).
[Crossref]

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autisser, and C. Sanchez, “New synthesis strategies for luminescent YVO4:Eu and EuVO4 nanoparticles with H2O2 selective sensing properties,” Chem. Mater. 27(2), 5198–5205 (2015).
[Crossref]

Vatsa, R. K.

M. N. Luwang, R. S. Ningthoujam, S. K. Srivastava, and R. K. Vatsa, “Preparation of white light emitting YVO4:Ln3+ and silica-coated YVO4:Ln3+ (Ln3+ = Eu3+, Dy3+, Tm3+) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: Energy transfer and site symmetry studies,” J. Mater. Chem. 21(14), 5326–5337 (2011).
[Crossref]

Viana, B.

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autisser, and C. Sanchez, “New synthesis strategies for luminescent YVO4:Eu and EuVO4 nanoparticles with H2O2 selective sensing properties,” Chem. Mater. 27(2), 5198–5205 (2015).
[Crossref]

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autissier, and C. Sanchez, “New Synthesis Strategies for Luminescent YVO4:Eu and EuVO4 Nanoparticles with H2O2 Selective Sensing Properties,” Chem. Mater. 27(15), 5198–5205 (2015).
[Crossref]

Wang, C.

Q. Meng, J. Dai, W. Sun, and C. Wang, “The Size Confinement Effect for Eu3+ Concentration Quenching and Energy Transfer in YVO4 Nanocrystal,” J. Nanosci. Nanotechnol. 16(4), 3772–3776 (2016).
[Crossref] [PubMed]

Wang, D.

X. Zhang, P. Yang, C. Li, D. Wang, J. Xu, S. Gai, and J. Lin, “Facile and mass production synthesis of β-NaYF4:Yb3+, Er3+/Tm3+ 1D microstructures with multicolor up-conversion luminescence,” Chem. Commun. (Camb.) 47(44), 12143–12145 (2011).
[Crossref] [PubMed]

D. Wang, X. Chu, and M. Gong, “Gas-sensing properties of sensors based on single-crystalline SnO2, nanorods prepared by a simple molten-salt method,” Sensor Actuat. Biol. Chem. 117(1), 183–187 (2006).

Wang, G.

S. Xia, A. Guan, P. Chen, G. Wang, Y. Geng, and L. Zhou, “Sol-gel method for preparing a novel red-emitting phosphor YVO4:Sm3+, Eu3+ with ideal red color emission,” Superlattices Microstruct. 97(2), 319–326 (2016).
[Crossref]

Wang, J.

J. Wang, Y. Xu, M. Hojamberdiev, Y. Cui, H. Liu, and G. Zhu, “Optical properties of porous YVO4:Ln (Ln = Dy3+ and Tm3+) nanoplates obtained by the chemical co-precipitation method,” J. Alloys Compd. 479(1), 772–776 (2009).
[Crossref]

Wang, Y. Z.

Y. Z. Wang, D. Yu, H. H. Lin, S. Ye, M. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 630–635 (2013).
[Crossref]

Watanabe, T.

T. Taniguchi, T. Watanabe, K. I. Katsumata, K. Okada, and N. Matsushita, “Synthesis of Amphipathic YVO4:Eu3+ Nanophosphors by Oleate-Modified Nucleation/Hydrothermal-Growth Process,” J. Phys. Chem. C 114(9), 3763–3769 (2010).
[Crossref]

Wiglusz, R.

R. Wiglusz, L. Marciniak, R. Pazik, and W. Strek, “Structural and spectroscopic characterization of Nd3+ doped YVO4 yttrium orthovanadate nanocrystallites,” Cryst. Growth Des. 14(11), 5512–5520 (2014).
[Crossref]

Wu, X.

R. Liu, Y. J. Liang, X. Wu, Y. Z. Li, and Y. S. Gong, “Synthesis and Luminescent Properties of YVO4:Sm3+ Red Phosphor by Molten Salt Synthesis Method,” Chem. J. Chin. Univ. 30(11), 2127–2130 (2009).

Xia, S.

S. Xia, A. Guan, P. Chen, G. Wang, Y. Geng, and L. Zhou, “Sol-gel method for preparing a novel red-emitting phosphor YVO4:Sm3+, Eu3+ with ideal red color emission,” Superlattices Microstruct. 97(2), 319–326 (2016).
[Crossref]

Xia, Z.

Z. Xia, D. Chen, M. Yang, and T. Ying, “Synthesis and luminescence properties of YVO4:Eu3+, Bi3+ phosphor with enhanced photoluminescence by Bi3+ doping,” J. Phys. Chem. Solids 71(3), 175–180 (2010).
[Crossref]

Xiao, F.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 18–34 (2011).

Xie, J. R.

Y. Liu, X. S. Li, J. Hu, M. Guo, W. J. Liu, Y. M. Feng, J. R. Xie, and G. X. Du, “Fabrication of MPEG-b-PMAA capped YVO4:Eu nanoparticles with biocompatibility for cell imaging,” Colloids Surf. B Biointerfaces 136(2), 721–728 (2015).
[Crossref] [PubMed]

Xin, Q.

H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, “Photoluminescence of nanocrystalline YVO4:TmxDy1−x, prepared by a modified Pechini method,” Mater. Lett. 61(2), 308–311 (2007).
[Crossref]

Xing, M.

Y. Fu, Y. Shi, N. Zhang, Y. Tian, M. Xing, and X. Luo, “High-purity red up-conversion emission of Ba5Zn4 Y8O21:Er3+, Yb3+, phosphor excited by 1550 nm laser diode,” Mater. Res. Bull. 84(2), 346–349 (2016).
[Crossref]

Xing, R.

Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of Light-Emitting YVO4:Eu3+ Thin Films via Inkjet Printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010).
[Crossref]

Xiong, H.

Y. Liu, C. Yang, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Surfactant assisted synthesis of the YVO4:Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties,” Colloid surface A 502(5), 139–146 (2016).
[Crossref]

Xu, J.

X. Zhang, P. Yang, C. Li, D. Wang, J. Xu, S. Gai, and J. Lin, “Facile and mass production synthesis of β-NaYF4:Yb3+, Er3+/Tm3+ 1D microstructures with multicolor up-conversion luminescence,” Chem. Commun. (Camb.) 47(44), 12143–12145 (2011).
[Crossref] [PubMed]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd: yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Xu, Y.

J. Wang, Y. Xu, M. Hojamberdiev, Y. Cui, H. Liu, and G. Zhu, “Optical properties of porous YVO4:Ln (Ln = Dy3+ and Tm3+) nanoplates obtained by the chemical co-precipitation method,” J. Alloys Compd. 479(1), 772–776 (2009).
[Crossref]

Yagi, H.

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd: yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Yan, B.

X. Q. Su and B. Yan, “In situ chemical co-precipitation synthesis of YVO4:RE (RE = Dy3+, Sm3+, Er3+) phosphors by assembling hybrid precursors,” J. Non-Cryst. Solids 351(43-45), 3542–3546 (2005).
[Crossref]

Yanagitani, T.

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd: yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Yang, C.

Y. Liu, C. Yang, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Surfactant assisted synthesis of the YVO4:Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties,” Colloid surface A 502(5), 139–146 (2016).
[Crossref]

Yang, H.

J. Shi, L. Tong, X. Ren, Q. Li, H. Ding, and H. Yang, “Bifunctional Fe3O4@C/YVO4:Sm3+, composites with the core-shell structure,” Mater. Chem. Phys. 139(1), 73–78 (2013).
[Crossref]

Yang, L.

J. Su, X. Mi, J. Sun, L. Yang, C. Hui, L. Lu, Z. Bai, and X. Zhang, “Tunable luminescence and energy transfer properties in YVO4:Bi3+, Eu3+ phosphors,” J. Mater. Sci. 52(2), 782–792 (2017).
[Crossref]

Yang, M.

Z. Xia, D. Chen, M. Yang, and T. Ying, “Synthesis and luminescence properties of YVO4:Eu3+, Bi3+ phosphor with enhanced photoluminescence by Bi3+ doping,” J. Phys. Chem. Solids 71(3), 175–180 (2010).
[Crossref]

Yang, P.

N. Na, P. Yang, F. He, X. Zhang, S. Gai, C. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+, Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

X. Zhang, P. Yang, C. Li, D. Wang, J. Xu, S. Gai, and J. Lin, “Facile and mass production synthesis of β-NaYF4:Yb3+, Er3+/Tm3+ 1D microstructures with multicolor up-conversion luminescence,” Chem. Commun. (Camb.) 47(44), 12143–12145 (2011).
[Crossref] [PubMed]

Ye, S.

Y. Z. Wang, D. Yu, H. H. Lin, S. Ye, M. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 630–635 (2013).
[Crossref]

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 18–34 (2011).

Ying, T.

Z. Xia, D. Chen, M. Yang, and T. Ying, “Synthesis and luminescence properties of YVO4:Eu3+, Bi3+ phosphor with enhanced photoluminescence by Bi3+ doping,” J. Phys. Chem. Solids 71(3), 175–180 (2010).
[Crossref]

Yoda, S.

S. Takeshita, Y. Takebayashi, H. Nakamura, and S. Yoda, “Gas-responsive photoluminescence of YVO4:Eu3+ nanoparticles dispersed in an ultralight, three-dimensional nanofiber network,” Chem. Mater. 28(2), 8466–8469 (2016).
[Crossref]

You, H.

Y. Song, B. Shao, Y. Feng, W. Lü, J. Huo, S. Zhao, M. Liu, G. Liu, and H. You, “Emission enhancement and color tuning for GdVO4:Ln3+ (Ln = Dy, Eu) by surface modification at single wavelength excitation,” Inorg. Chem. 56(1), 282–291 (2017).
[Crossref] [PubMed]

B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
[Crossref] [PubMed]

Yu, D.

Y. Z. Wang, D. Yu, H. H. Lin, S. Ye, M. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 630–635 (2013).
[Crossref]

Yu, M.

M. Yu, J. Lin, and J. Fang, “Silica Spheres Coated with YVO4:Eu3+ Layers via Sol-Gel Process: A Simple Method to Obtain Spherical Core-Shell Phosphors,” Chem. Mater. 17(7), 1783–1791 (2005).
[Crossref]

Yusuke, S.

S. Yusuke, T. Satoru, and I. Tetsuhiko, “Two photoenergy conversion modes of YVO4:Eu3+ nanoparticles: photoluminescence and photocatalytic activity,” J. Phys. Chem. 119(2), 13502–13508 (2015).

Zhang, F.

F. Zhang, W. Zhang, Z. Zhang, Y. Huang, and Y. Tao, “Luminescent characteristics and energy transfer of a red-emitting YVO4: Sm3+, Eu3+, phosphor,” J. Lumin. 152(2), 160–164 (2014).
[Crossref]

Zhang, H.

H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, “Photoluminescence of nanocrystalline YVO4:TmxDy1−x, prepared by a modified Pechini method,” Mater. Lett. 61(2), 308–311 (2007).
[Crossref]

Zhang, N.

Y. Liu, C. Yang, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Surfactant assisted synthesis of the YVO4:Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties,” Colloid surface A 502(5), 139–146 (2016).
[Crossref]

Y. Fu, Y. Shi, N. Zhang, Y. Tian, M. Xing, and X. Luo, “High-purity red up-conversion emission of Ba5Zn4 Y8O21:Er3+, Yb3+, phosphor excited by 1550 nm laser diode,” Mater. Res. Bull. 84(2), 346–349 (2016).
[Crossref]

Zhang, Q. Y.

Y. Z. Wang, D. Yu, H. H. Lin, S. Ye, M. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 630–635 (2013).
[Crossref]

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 18–34 (2011).

Zhang, S.

H. Liu, Y. Liang, X. Gao, and S. Zhang, “Study on white-light emission and light-emitting mechanism of hydrothermally synthesized YVO4:1 mol. % Dy3+, x mol. % Eu3+ phosphor powders,” J. Rare Earths 34(2), 113–117 (2016).
[Crossref]

Zhang, W.

F. Zhang, W. Zhang, Z. Zhang, Y. Huang, and Y. Tao, “Luminescent characteristics and energy transfer of a red-emitting YVO4: Sm3+, Eu3+, phosphor,” J. Lumin. 152(2), 160–164 (2014).
[Crossref]

Zhang, X.

J. Su, X. Mi, J. Sun, L. Yang, C. Hui, L. Lu, Z. Bai, and X. Zhang, “Tunable luminescence and energy transfer properties in YVO4:Bi3+, Eu3+ phosphors,” J. Mater. Sci. 52(2), 782–792 (2017).
[Crossref]

N. Na, P. Yang, F. He, X. Zhang, S. Gai, C. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+, Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

X. Zhang, P. Yang, C. Li, D. Wang, J. Xu, S. Gai, and J. Lin, “Facile and mass production synthesis of β-NaYF4:Yb3+, Er3+/Tm3+ 1D microstructures with multicolor up-conversion luminescence,” Chem. Commun. (Camb.) 47(44), 12143–12145 (2011).
[Crossref] [PubMed]

Zhang, Z.

F. Zhang, W. Zhang, Z. Zhang, Y. Huang, and Y. Tao, “Luminescent characteristics and energy transfer of a red-emitting YVO4: Sm3+, Eu3+, phosphor,” J. Lumin. 152(2), 160–164 (2014).
[Crossref]

Zhao, S.

Y. Song, B. Shao, Y. Feng, W. Lü, J. Huo, S. Zhao, M. Liu, G. Liu, and H. You, “Emission enhancement and color tuning for GdVO4:Ln3+ (Ln = Dy, Eu) by surface modification at single wavelength excitation,” Inorg. Chem. 56(1), 282–291 (2017).
[Crossref] [PubMed]

Zheng, K.

K. Zheng, Z. Liu, Y. Liu, W. Song, and W. Qin, “Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures,” J. Appl. Phys. 114(18), 183–189 (2013).
[Crossref]

Zhou, L.

S. Xia, A. Guan, P. Chen, G. Wang, Y. Geng, and L. Zhou, “Sol-gel method for preparing a novel red-emitting phosphor YVO4:Sm3+, Eu3+ with ideal red color emission,” Superlattices Microstruct. 97(2), 319–326 (2016).
[Crossref]

Zhu, G.

J. Wang, Y. Xu, M. Hojamberdiev, Y. Cui, H. Liu, and G. Zhu, “Optical properties of porous YVO4:Ln (Ln = Dy3+ and Tm3+) nanoplates obtained by the chemical co-precipitation method,” J. Alloys Compd. 479(1), 772–776 (2009).
[Crossref]

Appl. Phys. Lett. (1)

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd: yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Chem. Commun. (Camb.) (1)

X. Zhang, P. Yang, C. Li, D. Wang, J. Xu, S. Gai, and J. Lin, “Facile and mass production synthesis of β-NaYF4:Yb3+, Er3+/Tm3+ 1D microstructures with multicolor up-conversion luminescence,” Chem. Commun. (Camb.) 47(44), 12143–12145 (2011).
[Crossref] [PubMed]

Chem. J. Chin. Univ. (1)

R. Liu, Y. J. Liang, X. Wu, Y. Z. Li, and Y. S. Gong, “Synthesis and Luminescent Properties of YVO4:Sm3+ Red Phosphor by Molten Salt Synthesis Method,” Chem. J. Chin. Univ. 30(11), 2127–2130 (2009).

Chem. Mater. (4)

M. Yu, J. Lin, and J. Fang, “Silica Spheres Coated with YVO4:Eu3+ Layers via Sol-Gel Process: A Simple Method to Obtain Spherical Core-Shell Phosphors,” Chem. Mater. 17(7), 1783–1791 (2005).
[Crossref]

S. Takeshita, Y. Takebayashi, H. Nakamura, and S. Yoda, “Gas-responsive photoluminescence of YVO4:Eu3+ nanoparticles dispersed in an ultralight, three-dimensional nanofiber network,” Chem. Mater. 28(2), 8466–8469 (2016).
[Crossref]

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autisser, and C. Sanchez, “New synthesis strategies for luminescent YVO4:Eu and EuVO4 nanoparticles with H2O2 selective sensing properties,” Chem. Mater. 27(2), 5198–5205 (2015).
[Crossref]

N. Duee, C. Ambard, F. Pereira, D. Portehault, B. Viana, K. Valle, D. Autissier, and C. Sanchez, “New Synthesis Strategies for Luminescent YVO4:Eu and EuVO4 Nanoparticles with H2O2 Selective Sensing Properties,” Chem. Mater. 27(15), 5198–5205 (2015).
[Crossref]

Colloid surface A (1)

Y. Liu, C. Yang, H. Xiong, N. Zhang, Z. Leng, R. Li, and S. Gan, “Surfactant assisted synthesis of the YVO4:Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties,” Colloid surface A 502(5), 139–146 (2016).
[Crossref]

Colloids Surf. B Biointerfaces (1)

Y. Liu, X. S. Li, J. Hu, M. Guo, W. J. Liu, Y. M. Feng, J. R. Xie, and G. X. Du, “Fabrication of MPEG-b-PMAA capped YVO4:Eu nanoparticles with biocompatibility for cell imaging,” Colloids Surf. B Biointerfaces 136(2), 721–728 (2015).
[Crossref] [PubMed]

Cryst. Growth Des. (1)

R. Wiglusz, L. Marciniak, R. Pazik, and W. Strek, “Structural and spectroscopic characterization of Nd3+ doped YVO4 yttrium orthovanadate nanocrystallites,” Cryst. Growth Des. 14(11), 5512–5520 (2014).
[Crossref]

Electrochim. Acta (1)

M. V. Reddy, R. Jose, T. H. Teng, B. V. R. Chowdari, and S. Ramakrishna, “Preparation and electrochemical studies of electrospun TiO2 nanofibers and molten salt method nanoparticles,” Electrochim. Acta 55(9), 3109–3117 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Bass, “Electrooptic Q switching of the Nd: YVO4 laser without an intracavity polarizer,” IEEE J. Quantum Electron. 11(12), 938–939 (1975).
[Crossref]

Inorg. Chem. (2)

Y. Song, B. Shao, Y. Feng, W. Lü, J. Huo, S. Zhao, M. Liu, G. Liu, and H. You, “Emission enhancement and color tuning for GdVO4:Ln3+ (Ln = Dy, Eu) by surface modification at single wavelength excitation,” Inorg. Chem. 56(1), 282–291 (2017).
[Crossref] [PubMed]

B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
[Crossref] [PubMed]

J. Alloys Compd. (2)

B. Li, J. Liu, Y. Hu, and Z. Huang, “Preparation and characterization of La9.33Si6O26, powders by molten salt method for solid electrolyte application,” J. Alloys Compd. 509(6), 3172–3176 (2011).
[Crossref]

J. Wang, Y. Xu, M. Hojamberdiev, Y. Cui, H. Liu, and G. Zhu, “Optical properties of porous YVO4:Ln (Ln = Dy3+ and Tm3+) nanoplates obtained by the chemical co-precipitation method,” J. Alloys Compd. 479(1), 772–776 (2009).
[Crossref]

J. Appl. Phys. (2)

K. Zheng, Z. Liu, Y. Liu, W. Song, and W. Qin, “Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures,” J. Appl. Phys. 114(18), 183–189 (2013).
[Crossref]

Y. Z. Wang, D. Yu, H. H. Lin, S. Ye, M. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 630–635 (2013).
[Crossref]

J. Fluoresc. (1)

Y. Cheng and K. Sun, “Sol-gel synthesis and upconversion luminescent properties of Yb3+, Er3+, Eu3+ triply-doped in YVO4 phosphors,” J. Fluoresc. 28(1), 285–291 (2018).
[Crossref] [PubMed]

J. Lumin. (2)

Y. S. Chang, F. M. Huang, Y. Y. Tsai, and L. G. Teoh, “Synthesis and photoluminescent properties of YVO4:Eu3+ nano-crystal phosphor prepared by Pechini process,” J. Lumin. 129(10), 1181–1185 (2009).
[Crossref]

F. Zhang, W. Zhang, Z. Zhang, Y. Huang, and Y. Tao, “Luminescent characteristics and energy transfer of a red-emitting YVO4: Sm3+, Eu3+, phosphor,” J. Lumin. 152(2), 160–164 (2014).
[Crossref]

J. Mater. Chem. (2)

M. N. Luwang, R. S. Ningthoujam, S. K. Srivastava, and R. K. Vatsa, “Preparation of white light emitting YVO4:Ln3+ and silica-coated YVO4:Ln3+ (Ln3+ = Eu3+, Dy3+, Tm3+) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: Energy transfer and site symmetry studies,” J. Mater. Chem. 21(14), 5326–5337 (2011).
[Crossref]

N. Na, P. Yang, F. He, X. Zhang, S. Gai, C. Li, and J. Lin, “Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+, Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures,” J. Mater. Chem. 22(21), 10889–10899 (2012).
[Crossref]

J. Mater. Sci. (1)

J. Su, X. Mi, J. Sun, L. Yang, C. Hui, L. Lu, Z. Bai, and X. Zhang, “Tunable luminescence and energy transfer properties in YVO4:Bi3+, Eu3+ phosphors,” J. Mater. Sci. 52(2), 782–792 (2017).
[Crossref]

J. Nanosci. Nanotechnol. (1)

Q. Meng, J. Dai, W. Sun, and C. Wang, “The Size Confinement Effect for Eu3+ Concentration Quenching and Energy Transfer in YVO4 Nanocrystal,” J. Nanosci. Nanotechnol. 16(4), 3772–3776 (2016).
[Crossref] [PubMed]

J. Non-Cryst. Solids (1)

X. Q. Su and B. Yan, “In situ chemical co-precipitation synthesis of YVO4:RE (RE = Dy3+, Sm3+, Er3+) phosphors by assembling hybrid precursors,” J. Non-Cryst. Solids 351(43-45), 3542–3546 (2005).
[Crossref]

J. Phys. Chem. (1)

S. Yusuke, T. Satoru, and I. Tetsuhiko, “Two photoenergy conversion modes of YVO4:Eu3+ nanoparticles: photoluminescence and photocatalytic activity,” J. Phys. Chem. 119(2), 13502–13508 (2015).

J. Phys. Chem. C (2)

T. Taniguchi, T. Watanabe, K. I. Katsumata, K. Okada, and N. Matsushita, “Synthesis of Amphipathic YVO4:Eu3+ Nanophosphors by Oleate-Modified Nucleation/Hydrothermal-Growth Process,” J. Phys. Chem. C 114(9), 3763–3769 (2010).
[Crossref]

Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of Light-Emitting YVO4:Eu3+ Thin Films via Inkjet Printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010).
[Crossref]

J. Phys. Chem. Solids (1)

Z. Xia, D. Chen, M. Yang, and T. Ying, “Synthesis and luminescence properties of YVO4:Eu3+, Bi3+ phosphor with enhanced photoluminescence by Bi3+ doping,” J. Phys. Chem. Solids 71(3), 175–180 (2010).
[Crossref]

J. Rare Earths (2)

H. Liu, Y. Liang, X. Gao, and S. Zhang, “Study on white-light emission and light-emitting mechanism of hydrothermally synthesized YVO4:1 mol. % Dy3+, x mol. % Eu3+ phosphor powders,” J. Rare Earths 34(2), 113–117 (2016).
[Crossref]

E. Golyeva, D. Tolstikova, I. Kolesnikov, and M. Mikhailov, “Effect of synthesis conditions and surrounding medium on luminescence properties of YVO4:Eu3+ nanopowders,” J. Rare Earths 33(2), 129–134 (2015).
[Crossref]

Mater. Chem. Phys. (1)

J. Shi, L. Tong, X. Ren, Q. Li, H. Ding, and H. Yang, “Bifunctional Fe3O4@C/YVO4:Sm3+, composites with the core-shell structure,” Mater. Chem. Phys. 139(1), 73–78 (2013).
[Crossref]

Mater. Lett. (1)

H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, “Photoluminescence of nanocrystalline YVO4:TmxDy1−x, prepared by a modified Pechini method,” Mater. Lett. 61(2), 308–311 (2007).
[Crossref]

Mater. Res. Bull. (1)

Y. Fu, Y. Shi, N. Zhang, Y. Tian, M. Xing, and X. Luo, “High-purity red up-conversion emission of Ba5Zn4 Y8O21:Er3+, Yb3+, phosphor excited by 1550 nm laser diode,” Mater. Res. Bull. 84(2), 346–349 (2016).
[Crossref]

Mater. Sci. Eng. Rep. (1)

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 18–34 (2011).

Sensor Actuat. Biol. Chem. (1)

D. Wang, X. Chu, and M. Gong, “Gas-sensing properties of sensors based on single-crystalline SnO2, nanorods prepared by a simple molten-salt method,” Sensor Actuat. Biol. Chem. 117(1), 183–187 (2006).

Superlattices Microstruct. (1)

S. Xia, A. Guan, P. Chen, G. Wang, Y. Geng, and L. Zhou, “Sol-gel method for preparing a novel red-emitting phosphor YVO4:Sm3+, Eu3+ with ideal red color emission,” Superlattices Microstruct. 97(2), 319–326 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 XRD patterns of YVO4 doped with Eu3+ ions calcined at different temperatures in air for 5 h. (a) 350 °C, (b) 400 °C, (c) 450 °C, (d) 500 °C, (e) 500 °C + diluted HNO3 wash.
Fig. 2
Fig. 2 SEM images of YVO4:Eu3+ phosphors (a) and (b), and the measured size distribution of the particle (c).
Fig. 3
Fig. 3 Excitation and emission spectra of YVO4:Eu3+ (a), YVO4:Sm3+ (b), YVO4:Dy3+ (c), YVO4:Tm3+ (d) phosphors.
Fig. 4
Fig. 4 Emission spectra of YVO4:xRE (RE = Eu3+, Sm3+) (x = 0.5%, 1.0%, 2.0%, 3.0%, 5.0%), the inset shows the dependence of integrated emission intensity on the concentration of RE ions in YVO4 with λ = 313 nm for Eu3+ (a) and λ = 256 nm for Sm3+ (b).
Fig. 5
Fig. 5 The excitation and emission spectra of YVO4:DyxTm1-x (x = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) under λem of 475 nm and λex of 320 nm at room temperature.
Fig. 6
Fig. 6 The CIE 1931 chromaticity coordinates of YVO4:RE (RE = Eu3+, Sm3+, Dy3+, Tm3+) and YVO4:DyxTm1-x (x = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) phosphors.

Tables (1)

Tables Icon

Tab. 1 Characteristic and International commission on illumination (CIE) chromaticity coordinates of YVO4:RE (RE = Eu3+, Sm3+, Dy3+, Tm3+) and YVO4:DyxTm1-x (x = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) phosphors

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N H 4 V O 3 Δ N H 3 + V 2 O 5 + H 2 O