Abstract

Depressed-cladding waveguides are produced in Yb,Na:CaF2 laser crystal by applying ultrafast laser inscription. Under pumping at 946 nm, continuous-wave (CW) and Q-switched laser oscillations with low thresholds are realized in these waveguide structures. With the variation of pumping power, switchable single- and dual-wavelength laser emissions peaking at 1013.9 nm and 1027.9 nm are generated. The maximum output power achieved for CW lasing is about 170 mW, corresponding to an optical-to-optical conversion efficiency as high as 45.3%. A pulse energy of 0.13 μJ is obtained for the waveguide laser operating in the pulsed regime.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
1ps passively mode-locked laser operation of Na,Yb:CaF2 crystal

Juan Du, Xiaoyan Liang, Yonggang Wang, Liangbi Su, Weiwei Feng, Enwen Dai, Zhizhan Xu, and Jun Xu
Opt. Express 13(20) 7970-7975 (2005)

Low-threshold diode-pumped Yb3+,Na+:CaF2 self-Q-switched laser

Liangbi Su, Jun Xu, Yinghong Xue, Chingyue Wang, Lu Chai, Xiaodong Xu, and Guangjun Zhao
Opt. Express 13(15) 5635-5640 (2005)

Continuous wave laser operation in Nd:GGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses

Hongliang Liu, Yuechen Jia, Feng Chen, and Javier R. Vázquez de Aldana
Opt. Mater. Express 3(2) 278-283 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quant. 21(1), 1602106 (2015).
  2. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
    [Crossref] [PubMed]
  3. W. Nie, C. Cheng, Y. Jia, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing,” Opt. Lett. 40(10), 2437–2440 (2015).
    [Crossref] [PubMed]
  4. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
    [Crossref]
  5. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  6. A. Majkić, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
    [Crossref]
  7. M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18(26), 27112–27117 (2010).
    [Crossref] [PubMed]
  8. K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
    [Crossref] [PubMed]
  9. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
    [Crossref]
  10. A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B-Lasers and Optics 89(2–3), 323–328 (2007).
    [Crossref]
  11. H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010).
    [Crossref] [PubMed]
  12. W. Ge, H. Liang, J. Ma, G. Xie, W. Gao, P. Yuan, L. Qian, X. Xu, and J. Xu, “Wavelength-switchable mode-locked Yb:LuAG laser between 1031 nm and 1046 nm,” Opt. Express 22(3), 2423–2428 (2014).
    [Crossref] [PubMed]
  13. Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double- walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
    [Crossref]
  14. X. J. Zhu, C. H. Wang, S. X. Liu, D. F. Hu, J. J. Wang, and C. Y. Zhu, “Switchable dual-wavelength and passively mode-locked all-normal-dispersion Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. 23(14), 956–958 (2011).
    [Crossref]
  15. V. Petit, P. Moretti, P. Camy, J.-L. Doualan, and R. Moncorgé, “Active waveguides produced in Yb3+:CaF2 by H+ implantation for laser applications,” J. Alloys Compd. 451(1), 68–70 (2008).
    [Crossref]
  16. M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Ultrafast laser-written dual-wavelength waveguide laser,” Opt. Lett. 37(6), 993–995 (2012).
    [Crossref] [PubMed]
  17. J. Tu, S. A. FitzGerald, J. A. Campbell, and A. J. Sievers, “Glass-Like Properties Observed in Low-Frequency Raman Scattering of Mixed Fluorite Crystals,” J. Non-Cryst. Solids 203(96), 153–158 (1996).
    [Crossref]
  18. F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance,” Opt. Mater. Express 1(3), 489–502 (2011).
    [Crossref]
  19. A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
    [Crossref] [PubMed]
  20. G. Machinet, P. Sevillano, F. Guichard, R. Dubrasquet, P. Camy, J. L. Doualan, R. Moncorgé, P. Georges, F. Druon, D. Descamps, and E. Cormier, “High-brightness fiber laser-pumped 68 fs-2.3 W Kerr-lens mode-locked Yb:CaF2 oscillator,” Opt. Lett. 38(20), 4008–4010 (2013).
    [Crossref] [PubMed]
  21. M. Kowalczyk, A. Major, and J. Sotor, “High peak power ultrafast Yb:CaF2 oscillator pumped by a single-mode fiber-coupled laser diode,” Opt. Express 25(21), 26289–26295 (2017).
    [Crossref] [PubMed]
  22. J. Körner, J. Hein, H. Liebetrau, R. Seifert, D. Klöpfel, M. Kahle, M. Loeser, M. Siebold, U. Schramm, and M. C. Kaluza, “Efficient burst mode amplifier for ultra-short pulses based on cryogenically cooled Yb3+:CaF2,” Opt. Express 21(23), 29006–29012 (2013).
    [Crossref] [PubMed]
  23. L. Su, J. Xu, H. Li, W. Yang, Z. Zhao, J. Si, Y. Dong, and G. Zhou, “Codoping Na+ to modulate the spectroscopy and photoluminescence properties of Yb3+ in CaF2 laser crystal,” Opt. Lett. 30(9), 1003–1005 (2005).
    [Crossref] [PubMed]
  24. H. T. Zhu, J. Liu, S. Z. Jiang, S. C. Xu, L. B. Su, D. P. Jiang, X. B. Qian, and J. Xu, “Diode-pumped Yb,Y:CaF2 laser mode-locked by monolayer graphene,” Opt. Laser Technol. 75, 83–86 (2015).
    [Crossref]
  25. J. L. Doualan, L. B. Su, G. Brasse, A. Benayad, V. Menard, Y. Y. Zhan, A. Braud, P. Camy, J. Xu, and R. Moncorge, “Improvement of infrared laser properties of Nd:CaF2 crystals via codoping with Y3+ and Lu3+ buffer ions,” J. Opt. Soc. Am. B 30(11), 3018–3021 (2013).
    [Crossref]
  26. J. F. Zhu, L. J. Zhang, Z. Y. Gao, J. L. Wang, Z. H. Wang, L. B. Su, L. H. Zheng, J. Y. Wang, J. Xu, and Z. Y. Wei, “Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser,” Laser Phys. Lett. 12(3), 035801 (2015).
    [Crossref]
  27. J. Xu, L. B. Su, D. Zhang, J. Du, X. Y. Liang, Y. H. Xue, L. Chai, X. D. Xu, and G. J. Zhao, “Thermal, spectroscopic and laser properties of Yb3+, Na+:CaF2 single crystals,” J. Cryst. Growth 291(1), 267–271 (2006).
    [Crossref]
  28. L. Su, J. Xu, Y. Xue, C. Wang, L. Chai, X. Xu, and G. Zhao, “Low-threshold diode-pumped Yb3+,Na+:CaF2 self-Q-switched laser,” Opt. Express 13(15), 5635–5640 (2005).
    [Crossref] [PubMed]
  29. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
    [Crossref]
  30. C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
    [Crossref]
  31. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5(7), 1412–1423 (1988).
    [Crossref]
  32. C. Grivas, “Optically pumped planar waveguide lasers, part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
    [Crossref]
  33. T. Y. Fan and R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd: YAG Laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
    [Crossref]

2017 (1)

2016 (1)

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
[Crossref]

2015 (4)

H. T. Zhu, J. Liu, S. Z. Jiang, S. C. Xu, L. B. Su, D. P. Jiang, X. B. Qian, and J. Xu, “Diode-pumped Yb,Y:CaF2 laser mode-locked by monolayer graphene,” Opt. Laser Technol. 75, 83–86 (2015).
[Crossref]

J. F. Zhu, L. J. Zhang, Z. Y. Gao, J. L. Wang, Z. H. Wang, L. B. Su, L. H. Zheng, J. Y. Wang, J. Xu, and Z. Y. Wei, “Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser,” Laser Phys. Lett. 12(3), 035801 (2015).
[Crossref]

W. Nie, C. Cheng, Y. Jia, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing,” Opt. Lett. 40(10), 2437–2440 (2015).
[Crossref] [PubMed]

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quant. 21(1), 1602106 (2015).

2014 (4)

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

A. Majkić, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

W. Ge, H. Liang, J. Ma, G. Xie, W. Gao, P. Yuan, L. Qian, X. Xu, and J. Xu, “Wavelength-switchable mode-locked Yb:LuAG laser between 1031 nm and 1046 nm,” Opt. Express 22(3), 2423–2428 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (2)

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double- walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Ultrafast laser-written dual-wavelength waveguide laser,” Opt. Lett. 37(6), 993–995 (2012).
[Crossref] [PubMed]

2011 (3)

F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance,” Opt. Mater. Express 1(3), 489–502 (2011).
[Crossref]

X. J. Zhu, C. H. Wang, S. X. Liu, D. F. Hu, J. J. Wang, and C. Y. Zhu, “Switchable dual-wavelength and passively mode-locked all-normal-dispersion Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. 23(14), 956–958 (2011).
[Crossref]

C. Grivas, “Optically pumped planar waveguide lasers, part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

2010 (2)

2008 (2)

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[Crossref] [PubMed]

V. Petit, P. Moretti, P. Camy, J.-L. Doualan, and R. Moncorgé, “Active waveguides produced in Yb3+:CaF2 by H+ implantation for laser applications,” J. Alloys Compd. 451(1), 68–70 (2008).
[Crossref]

2007 (1)

A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B-Lasers and Optics 89(2–3), 323–328 (2007).
[Crossref]

2006 (1)

J. Xu, L. B. Su, D. Zhang, J. Du, X. Y. Liang, Y. H. Xue, L. Chai, X. D. Xu, and G. J. Zhao, “Thermal, spectroscopic and laser properties of Yb3+, Na+:CaF2 single crystals,” J. Cryst. Growth 291(1), 267–271 (2006).
[Crossref]

2005 (3)

2004 (1)

1996 (1)

J. Tu, S. A. FitzGerald, J. A. Campbell, and A. J. Sievers, “Glass-Like Properties Observed in Low-Frequency Raman Scattering of Mixed Fluorite Crystals,” J. Non-Cryst. Solids 203(96), 153–158 (1996).
[Crossref]

1993 (1)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

1988 (1)

1987 (1)

T. Y. Fan and R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd: YAG Laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

1977 (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

Ams, M.

Balembois, F.

Benayad, A.

Brasse, G.

Braud, A.

Brenier, A.

A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B-Lasers and Optics 89(2–3), 323–328 (2007).
[Crossref]

Brown, G.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quant. 21(1), 1602106 (2015).

Byer, R. L.

T. Y. Fan and R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd: YAG Laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

Campbell, J. A.

J. Tu, S. A. FitzGerald, J. A. Campbell, and A. J. Sievers, “Glass-Like Properties Observed in Low-Frequency Raman Scattering of Mixed Fluorite Crystals,” J. Non-Cryst. Solids 203(96), 153–158 (1996).
[Crossref]

Camy, P.

Chai, L.

J. Xu, L. B. Su, D. Zhang, J. Du, X. Y. Liang, Y. H. Xue, L. Chai, X. D. Xu, and G. J. Zhao, “Thermal, spectroscopic and laser properties of Yb3+, Na+:CaF2 single crystals,” J. Cryst. Growth 291(1), 267–271 (2006).
[Crossref]

L. Su, J. Xu, Y. Xue, C. Wang, L. Chai, X. Xu, and G. Zhao, “Low-threshold diode-pumped Yb3+,Na+:CaF2 self-Q-switched laser,” Opt. Express 13(15), 5635–5640 (2005).
[Crossref] [PubMed]

Chen, F.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quant. 21(1), 1602106 (2015).

W. Nie, C. Cheng, Y. Jia, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing,” Opt. Lett. 40(10), 2437–2440 (2015).
[Crossref] [PubMed]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Cheng, C.

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Cormier, E.

Courjaud, A.

Debourg, G.

Dekker, P.

Demetriou, G.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quant. 21(1), 1602106 (2015).

Descamps, D.

Dong, Y.

Doualan, J. L.

Doualan, J.-L.

V. Petit, P. Moretti, P. Camy, J.-L. Doualan, and R. Moncorgé, “Active waveguides produced in Yb3+:CaF2 by H+ implantation for laser applications,” J. Alloys Compd. 451(1), 68–70 (2008).
[Crossref]

Druon, F.

Du, J.

J. Xu, L. B. Su, D. Zhang, J. Du, X. Y. Liang, Y. H. Xue, L. Chai, X. D. Xu, and G. J. Zhao, “Thermal, spectroscopic and laser properties of Yb3+, Na+:CaF2 single crystals,” J. Cryst. Growth 291(1), 267–271 (2006).
[Crossref]

Dubrasquet, R.

Fallahi, M.

Fan, T. Y.

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

T. Y. Fan and R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd: YAG Laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

Ferrari, A. C.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quant. 21(1), 1602106 (2015).

FitzGerald, S. A.

J. Tu, S. A. FitzGerald, J. A. Campbell, and A. J. Sievers, “Glass-Like Properties Observed in Low-Frequency Raman Scattering of Mixed Fluorite Crystals,” J. Non-Cryst. Solids 203(96), 153–158 (1996).
[Crossref]

Fujiwara, M.

Gao, W.

Gao, Z. Y.

J. F. Zhu, L. J. Zhang, Z. Y. Gao, J. L. Wang, Z. H. Wang, L. B. Su, L. H. Zheng, J. Y. Wang, J. Xu, and Z. Y. Wei, “Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser,” Laser Phys. Lett. 12(3), 035801 (2015).
[Crossref]

Ge, W.

Georges, P.

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
[Crossref]

C. Grivas, “Optically pumped planar waveguide lasers, part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Guichard, F.

Gunter, P.

A. Majkić, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

Hashimoto, H.

Hein, J.

Hu, D. F.

X. J. Zhu, C. H. Wang, S. X. Liu, D. F. Hu, J. J. Wang, and C. Y. Zhu, “Switchable dual-wavelength and passively mode-locked all-normal-dispersion Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. 23(14), 956–958 (2011).
[Crossref]

Ito, H.

Jacquemet, M.

Jazbinsek, M.

A. Majkić, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

Jia, Y.

Jiang, D. P.

H. T. Zhu, J. Liu, S. Z. Jiang, S. C. Xu, L. B. Su, D. P. Jiang, X. B. Qian, and J. Xu, “Diode-pumped Yb,Y:CaF2 laser mode-locked by monolayer graphene,” Opt. Laser Technol. 75, 83–86 (2015).
[Crossref]

Jiang, S. Z.

H. T. Zhu, J. Liu, S. Z. Jiang, S. C. Xu, L. B. Su, D. P. Jiang, X. B. Qian, and J. Xu, “Diode-pumped Yb,Y:CaF2 laser mode-locked by monolayer graphene,” Opt. Laser Technol. 75, 83–86 (2015).
[Crossref]

Kahle, M.

Kaluza, M. C.

Kar, A. K.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quant. 21(1), 1602106 (2015).

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Khrushchev, I.

Klöpfel, D.

Koch, M.

Koch, S. W.

Körner, J.

Kowalczyk, M.

Li, H.

Li, J. F.

A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B-Lasers and Optics 89(2–3), 323–328 (2007).
[Crossref]

Liang, H.

Liang, X. Y.

J. Xu, L. B. Su, D. Zhang, J. Du, X. Y. Liang, Y. H. Xue, L. Chai, X. D. Xu, and G. J. Zhao, “Thermal, spectroscopic and laser properties of Yb3+, Na+:CaF2 single crystals,” J. Cryst. Growth 291(1), 267–271 (2006).
[Crossref]

Liebetrau, H.

Liu, D. H.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double- walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Liu, J.

H. T. Zhu, J. Liu, S. Z. Jiang, S. C. Xu, L. B. Su, D. P. Jiang, X. B. Qian, and J. Xu, “Diode-pumped Yb,Y:CaF2 laser mode-locked by monolayer graphene,” Opt. Laser Technol. 75, 83–86 (2015).
[Crossref]

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double- walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Liu, S. X.

X. J. Zhu, C. H. Wang, S. X. Liu, D. F. Hu, J. J. Wang, and C. Y. Zhu, “Switchable dual-wavelength and passively mode-locked all-normal-dispersion Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. 23(14), 956–958 (2011).
[Crossref]

Loeser, M.

Lucca, A.

Ma, J.

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Machinet, G.

Majkic, A.

A. Majkić, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

Major, A.

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

Marshall, G. D.

Mary, R.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quant. 21(1), 1602106 (2015).

Medrano, C.

A. Majkić, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

Menard, V.

Minamide, H.

Mitchell, J.

Miyamoto, K.

Moloney, J. V.

Moncorge, R.

Moncorgé, R.

Moretti, P.

V. Petit, P. Moretti, P. Camy, J.-L. Doualan, and R. Moncorgé, “Active waveguides produced in Yb3+:CaF2 by H+ implantation for laser applications,” J. Alloys Compd. 451(1), 68–70 (2008).
[Crossref]

Mottay, E.

Nakamura, S.

Nie, W.

Ogawa, T.

Okhrimchuk, A. G.

Papadopoulos, D. N.

Pellegrina, A.

Petelin, A.

A. Majkić, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

Petit, V.

V. Petit, P. Moretti, P. Camy, J.-L. Doualan, and R. Moncorgé, “Active waveguides produced in Yb3+:CaF2 by H+ implantation for laser applications,” J. Alloys Compd. 451(1), 68–70 (2008).
[Crossref]

Popa, D.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quant. 21(1), 1602106 (2015).

Qian, L.

Qian, X. B.

H. T. Zhu, J. Liu, S. Z. Jiang, S. C. Xu, L. B. Su, D. P. Jiang, X. B. Qian, and J. Xu, “Diode-pumped Yb,Y:CaF2 laser mode-locked by monolayer graphene,” Opt. Laser Technol. 75, 83–86 (2015).
[Crossref]

Ren, Y. Y.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quant. 21(1), 1602106 (2015).

Ricaud, S.

Risk, W. P.

Romero, C.

Ruiz, B.

A. Majkić, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

Scheller, M.

Schramm, U.

Seifert, R.

Sevillano, P.

Shestakov, A. V.

Si, J.

Siebold, M.

Sievers, A. J.

J. Tu, S. A. FitzGerald, J. A. Campbell, and A. J. Sievers, “Glass-Like Properties Observed in Low-Frequency Raman Scattering of Mixed Fluorite Crystals,” J. Non-Cryst. Solids 203(96), 153–158 (1996).
[Crossref]

Sotor, J.

Su, L.

Su, L. B.

H. T. Zhu, J. Liu, S. Z. Jiang, S. C. Xu, L. B. Su, D. P. Jiang, X. B. Qian, and J. Xu, “Diode-pumped Yb,Y:CaF2 laser mode-locked by monolayer graphene,” Opt. Laser Technol. 75, 83–86 (2015).
[Crossref]

J. F. Zhu, L. J. Zhang, Z. Y. Gao, J. L. Wang, Z. H. Wang, L. B. Su, L. H. Zheng, J. Y. Wang, J. Xu, and Z. Y. Wei, “Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser,” Laser Phys. Lett. 12(3), 035801 (2015).
[Crossref]

J. L. Doualan, L. B. Su, G. Brasse, A. Benayad, V. Menard, Y. Y. Zhan, A. Braud, P. Camy, J. Xu, and R. Moncorge, “Improvement of infrared laser properties of Nd:CaF2 crystals via codoping with Y3+ and Lu3+ buffer ions,” J. Opt. Soc. Am. B 30(11), 3018–3021 (2013).
[Crossref]

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double- walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

J. Xu, L. B. Su, D. Zhang, J. Du, X. Y. Liang, Y. H. Xue, L. Chai, X. D. Xu, and G. J. Zhao, “Thermal, spectroscopic and laser properties of Yb3+, Na+:CaF2 single crystals,” J. Cryst. Growth 291(1), 267–271 (2006).
[Crossref]

Torrisi, F.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quant. 21(1), 1602106 (2015).

Tu, C. Y.

A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B-Lasers and Optics 89(2–3), 323–328 (2007).
[Crossref]

Tu, J.

J. Tu, S. A. FitzGerald, J. A. Campbell, and A. J. Sievers, “Glass-Like Properties Observed in Low-Frequency Raman Scattering of Mixed Fluorite Crystals,” J. Non-Cryst. Solids 203(96), 153–158 (1996).
[Crossref]

Vázquez de Aldana, J. R.

W. Nie, C. Cheng, Y. Jia, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing,” Opt. Lett. 40(10), 2437–2440 (2015).
[Crossref] [PubMed]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Wada, S.

Wang, C.

Wang, C. H.

X. J. Zhu, C. H. Wang, S. X. Liu, D. F. Hu, J. J. Wang, and C. Y. Zhu, “Switchable dual-wavelength and passively mode-locked all-normal-dispersion Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. 23(14), 956–958 (2011).
[Crossref]

Wang, J. J.

X. J. Zhu, C. H. Wang, S. X. Liu, D. F. Hu, J. J. Wang, and C. Y. Zhu, “Switchable dual-wavelength and passively mode-locked all-normal-dispersion Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. 23(14), 956–958 (2011).
[Crossref]

Wang, J. L.

J. F. Zhu, L. J. Zhang, Z. Y. Gao, J. L. Wang, Z. H. Wang, L. B. Su, L. H. Zheng, J. Y. Wang, J. Xu, and Z. Y. Wei, “Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser,” Laser Phys. Lett. 12(3), 035801 (2015).
[Crossref]

Wang, J. Y.

J. F. Zhu, L. J. Zhang, Z. Y. Gao, J. L. Wang, Z. H. Wang, L. B. Su, L. H. Zheng, J. Y. Wang, J. Xu, and Z. Y. Wei, “Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser,” Laser Phys. Lett. 12(3), 035801 (2015).
[Crossref]

Wang, Y. G.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double- walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Wang, Z. H.

J. F. Zhu, L. J. Zhang, Z. Y. Gao, J. L. Wang, Z. H. Wang, L. B. Su, L. H. Zheng, J. Y. Wang, J. Xu, and Z. Y. Wei, “Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser,” Laser Phys. Lett. 12(3), 035801 (2015).
[Crossref]

Wei, Z. Y.

J. F. Zhu, L. J. Zhang, Z. Y. Gao, J. L. Wang, Z. H. Wang, L. B. Su, L. H. Zheng, J. Y. Wang, J. Xu, and Z. Y. Wei, “Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser,” Laser Phys. Lett. 12(3), 035801 (2015).
[Crossref]

Withford, M. J.

Xie, G.

Xu, J.

J. F. Zhu, L. J. Zhang, Z. Y. Gao, J. L. Wang, Z. H. Wang, L. B. Su, L. H. Zheng, J. Y. Wang, J. Xu, and Z. Y. Wei, “Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser,” Laser Phys. Lett. 12(3), 035801 (2015).
[Crossref]

H. T. Zhu, J. Liu, S. Z. Jiang, S. C. Xu, L. B. Su, D. P. Jiang, X. B. Qian, and J. Xu, “Diode-pumped Yb,Y:CaF2 laser mode-locked by monolayer graphene,” Opt. Laser Technol. 75, 83–86 (2015).
[Crossref]

W. Ge, H. Liang, J. Ma, G. Xie, W. Gao, P. Yuan, L. Qian, X. Xu, and J. Xu, “Wavelength-switchable mode-locked Yb:LuAG laser between 1031 nm and 1046 nm,” Opt. Express 22(3), 2423–2428 (2014).
[Crossref] [PubMed]

J. L. Doualan, L. B. Su, G. Brasse, A. Benayad, V. Menard, Y. Y. Zhan, A. Braud, P. Camy, J. Xu, and R. Moncorge, “Improvement of infrared laser properties of Nd:CaF2 crystals via codoping with Y3+ and Lu3+ buffer ions,” J. Opt. Soc. Am. B 30(11), 3018–3021 (2013).
[Crossref]

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double- walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

J. Xu, L. B. Su, D. Zhang, J. Du, X. Y. Liang, Y. H. Xue, L. Chai, X. D. Xu, and G. J. Zhao, “Thermal, spectroscopic and laser properties of Yb3+, Na+:CaF2 single crystals,” J. Cryst. Growth 291(1), 267–271 (2006).
[Crossref]

L. Su, J. Xu, Y. Xue, C. Wang, L. Chai, X. Xu, and G. Zhao, “Low-threshold diode-pumped Yb3+,Na+:CaF2 self-Q-switched laser,” Opt. Express 13(15), 5635–5640 (2005).
[Crossref] [PubMed]

L. Su, J. Xu, H. Li, W. Yang, Z. Zhao, J. Si, Y. Dong, and G. Zhou, “Codoping Na+ to modulate the spectroscopy and photoluminescence properties of Yb3+ in CaF2 laser crystal,” Opt. Lett. 30(9), 1003–1005 (2005).
[Crossref] [PubMed]

Xu, S. C.

H. T. Zhu, J. Liu, S. Z. Jiang, S. C. Xu, L. B. Su, D. P. Jiang, X. B. Qian, and J. Xu, “Diode-pumped Yb,Y:CaF2 laser mode-locked by monolayer graphene,” Opt. Laser Technol. 75, 83–86 (2015).
[Crossref]

Xu, X.

Xu, X. D.

J. Xu, L. B. Su, D. Zhang, J. Du, X. Y. Liang, Y. H. Xue, L. Chai, X. D. Xu, and G. J. Zhao, “Thermal, spectroscopic and laser properties of Yb3+, Na+:CaF2 single crystals,” J. Cryst. Growth 291(1), 267–271 (2006).
[Crossref]

Xue, Y.

Xue, Y. H.

J. Xu, L. B. Su, D. Zhang, J. Du, X. Y. Liang, Y. H. Xue, L. Chai, X. D. Xu, and G. J. Zhao, “Thermal, spectroscopic and laser properties of Yb3+, Na+:CaF2 single crystals,” J. Cryst. Growth 291(1), 267–271 (2006).
[Crossref]

Yang, Q.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double- walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Yang, W.

Yarborough, J. M.

Yoshioka, H.

Yuan, P.

Zgonik, M.

A. Majkić, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

Zhan, Y. Y.

Zhang, D.

J. Xu, L. B. Su, D. Zhang, J. Du, X. Y. Liang, Y. H. Xue, L. Chai, X. D. Xu, and G. J. Zhao, “Thermal, spectroscopic and laser properties of Yb3+, Na+:CaF2 single crystals,” J. Cryst. Growth 291(1), 267–271 (2006).
[Crossref]

Zhang, L. J.

J. F. Zhu, L. J. Zhang, Z. Y. Gao, J. L. Wang, Z. H. Wang, L. B. Su, L. H. Zheng, J. Y. Wang, J. Xu, and Z. Y. Wei, “Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser,” Laser Phys. Lett. 12(3), 035801 (2015).
[Crossref]

Zhao, G.

Zhao, G. J.

J. Xu, L. B. Su, D. Zhang, J. Du, X. Y. Liang, Y. H. Xue, L. Chai, X. D. Xu, and G. J. Zhao, “Thermal, spectroscopic and laser properties of Yb3+, Na+:CaF2 single crystals,” J. Cryst. Growth 291(1), 267–271 (2006).
[Crossref]

Zhao, Z.

Zheng, L. H.

J. F. Zhu, L. J. Zhang, Z. Y. Gao, J. L. Wang, Z. H. Wang, L. B. Su, L. H. Zheng, J. Y. Wang, J. Xu, and Z. Y. Wei, “Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser,” Laser Phys. Lett. 12(3), 035801 (2015).
[Crossref]

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double- walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Zhou, G.

Zhu, C. Y.

X. J. Zhu, C. H. Wang, S. X. Liu, D. F. Hu, J. J. Wang, and C. Y. Zhu, “Switchable dual-wavelength and passively mode-locked all-normal-dispersion Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. 23(14), 956–958 (2011).
[Crossref]

Zhu, H. T.

H. T. Zhu, J. Liu, S. Z. Jiang, S. C. Xu, L. B. Su, D. P. Jiang, X. B. Qian, and J. Xu, “Diode-pumped Yb,Y:CaF2 laser mode-locked by monolayer graphene,” Opt. Laser Technol. 75, 83–86 (2015).
[Crossref]

Zhu, J. F.

J. F. Zhu, L. J. Zhang, Z. Y. Gao, J. L. Wang, Z. H. Wang, L. B. Su, L. H. Zheng, J. Y. Wang, J. Xu, and Z. Y. Wei, “Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser,” Laser Phys. Lett. 12(3), 035801 (2015).
[Crossref]

Zhu, X. J.

X. J. Zhu, C. H. Wang, S. X. Liu, D. F. Hu, J. J. Wang, and C. Y. Zhu, “Switchable dual-wavelength and passively mode-locked all-normal-dispersion Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. 23(14), 956–958 (2011).
[Crossref]

Zhu, Z. J.

A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B-Lasers and Optics 89(2–3), 323–328 (2007).
[Crossref]

Appl. Phys. B-Lasers and Optics (1)

A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B-Lasers and Optics 89(2–3), 323–328 (2007).
[Crossref]

Appl. Phys. Lett. (1)

A. Majkić, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, “Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1,” Appl. Phys. Lett. 105(14), 141115 (2014).
[Crossref]

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Y. Fan and R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd: YAG Laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz Graphene-Based 2-μm Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quant. 21(1), 1602106 (2015).

IEEE Photonics Technol. Lett. (1)

X. J. Zhu, C. H. Wang, S. X. Liu, D. F. Hu, J. J. Wang, and C. Y. Zhu, “Switchable dual-wavelength and passively mode-locked all-normal-dispersion Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. 23(14), 956–958 (2011).
[Crossref]

J. Alloys Compd. (1)

V. Petit, P. Moretti, P. Camy, J.-L. Doualan, and R. Moncorgé, “Active waveguides produced in Yb3+:CaF2 by H+ implantation for laser applications,” J. Alloys Compd. 451(1), 68–70 (2008).
[Crossref]

J. Cryst. Growth (1)

J. Xu, L. B. Su, D. Zhang, J. Du, X. Y. Liang, Y. H. Xue, L. Chai, X. D. Xu, and G. J. Zhao, “Thermal, spectroscopic and laser properties of Yb3+, Na+:CaF2 single crystals,” J. Cryst. Growth 291(1), 267–271 (2006).
[Crossref]

J. Non-Cryst. Solids (1)

J. Tu, S. A. FitzGerald, J. A. Campbell, and A. J. Sievers, “Glass-Like Properties Observed in Low-Frequency Raman Scattering of Mixed Fluorite Crystals,” J. Non-Cryst. Solids 203(96), 153–158 (1996).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (2)

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Laser Phys. Lett. (2)

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double- walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

J. F. Zhu, L. J. Zhang, Z. Y. Gao, J. L. Wang, Z. H. Wang, L. B. Su, L. H. Zheng, J. Y. Wang, J. Xu, and Z. Y. Wei, “Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser,” Laser Phys. Lett. 12(3), 035801 (2015).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

H. T. Zhu, J. Liu, S. Z. Jiang, S. C. Xu, L. B. Su, D. P. Jiang, X. B. Qian, and J. Xu, “Diode-pumped Yb,Y:CaF2 laser mode-locked by monolayer graphene,” Opt. Laser Technol. 75, 83–86 (2015).
[Crossref]

Opt. Lett. (7)

L. Su, J. Xu, H. Li, W. Yang, Z. Zhao, J. Si, Y. Dong, and G. Zhou, “Codoping Na+ to modulate the spectroscopy and photoluminescence properties of Yb3+ in CaF2 laser crystal,” Opt. Lett. 30(9), 1003–1005 (2005).
[Crossref] [PubMed]

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[Crossref] [PubMed]

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
[Crossref] [PubMed]

W. Nie, C. Cheng, Y. Jia, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing,” Opt. Lett. 40(10), 2437–2440 (2015).
[Crossref] [PubMed]

M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Ultrafast laser-written dual-wavelength waveguide laser,” Opt. Lett. 37(6), 993–995 (2012).
[Crossref] [PubMed]

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[Crossref] [PubMed]

G. Machinet, P. Sevillano, F. Guichard, R. Dubrasquet, P. Camy, J. L. Doualan, R. Moncorgé, P. Georges, F. Druon, D. Descamps, and E. Cormier, “High-brightness fiber laser-pumped 68 fs-2.3 W Kerr-lens mode-locked Yb:CaF2 oscillator,” Opt. Lett. 38(20), 4008–4010 (2013).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Prog. Quantum Electron. (2)

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
[Crossref]

C. Grivas, “Optically pumped planar waveguide lasers, part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (Color Online) (a) Fabrication schematic of cladding waveguides in Yb,Na:CaF2 crystal with ultrafast laser.(b) The microscopic views of the output facets of cladding waveguides. (c)-(f) The measured TE mode distributions of cladding waveguides at 632.8 nm.
Fig. 2
Fig. 2 The CW waveguide laser output power as a function of the incident pump power of WG1 (a) and WG2-WG4 (b). The inset of (a) shows the normalized spatial intensity distribution of the output laser mode obtained from WG1.
Fig. 3
Fig. 3 (a) Normalized laser spectra of the waveguide laser in CW regime obtained under different pump powers. (b) The intensity ratio of peak 1 and peak 2 vs. the incident pump power. (c) Laser spectra with an intensity ratio of ~1:1. (d) The measured total laser (red), calculated laser power of peak 1 (blue) and peak 2 (green) as a function of incident pump power.
Fig. 4
Fig. 4 The luminescence emission spectrum of Yb,Na:CaF2 and energy level diagram of the Yb3+ ions corresponding to 1012.2 nm and 1029.9 nm emissions.
Fig. 5
Fig. 5 (a) Spectra and fundamental mode profile of Q-switched waveguide laser obtained from WG1. (b) The sequence of Q-switched pulses. (c) A zoomed-in version of the pulse with pulse width of 500 nm. (d) The average output power as a function of the incident pump power obtained from WG1-WG3.
Fig. 6
Fig. 6 (a) The repetition rate and pulse duration of Q-switched pulses generated from WG1 as a function of incident pump power. (b) Pulse energy and peak power obtained from WG1, WG2 and WG3 under fixed incident power.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P out = P in (1R) 2 e αL T
T= ( 2 ω 1 ω 2 ω 1 2 + ω 2 2 ) 2
η= ln( 1 R ) ln( 1 R )+2 α p l λ s λ p [ 1exp( α abs l) ] dS dF
f rep = g 0 2ΔR τ L
PW= η ρ 1 α 0 l t 1 φ p ( r1 )

Metrics