Abstract

Traditional microwave absorbers usually use the epoxy resin dielectric board, which is neither flexible nor optically transparent, so cannot be used in certain applications. In this work, a flexible and optical-transparent broadband absorber is reported, which is based on the indium tin oxide (ITO) and polyethylene terephthalate (PET) material system with an ITO-PET-ITO structure. It showed more than 75% transmittance in the visible light range. The microwave absorption was above 0.8 from 19.9 GHz to 51.8 GHz. The absorption decreased when the absorber was bent, though the variation was not big. Further analysis pointed out that the absorption decrease could be attributed to the change of the incident angle. Theoretical simulation results agreed well with the measured absorption spectra.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Transparent transmission-selective radar-infrared bi-stealth structure

Shuomin Zhong, Lijie Wu, Taijun Liu, Jifu Huang, Wei Jiang, and Yungui Ma
Opt. Express 26(13) 16466-16476 (2018)

Transparent broadband metamaterial absorber enhanced by water-substrate incorporation

Yang Shen, Jieqiu Zhang, Yongqiang Pang, Jiafu Wang, Hua Ma, and Shaobo Qu
Opt. Express 26(12) 15665-15674 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. A. K. Rashid, Z. Shen, and S. Aditya, “Wideband Microwave Absorber Based on a Two-Dimensional Periodic Array of Microstrip Lines,” IEEE Trans. Antenn. Propag. 58(12), 3913–3922 (2010).
    [Crossref]
  3. D. Kundu, A. Mohan, and A. Chakrabarty, “Single-Layer Wideband Microwave Absorber Using Array of Crossed Dipoles,” IEEE Antennas Wirel. Propag. Lett. 15, 1589–1592 (2016).
    [Crossref]
  4. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
    [Crossref]
  5. C. Sudhendra, V. Mahule, A. C. R. Pillai, and A. Mohanty, “A novel space cloth using resistor grid network for radar absorbers in stealth applications,” In International Conference on Communications and Signal Processing, (Academic, 2011), pp. 83 - 86.
    [Crossref]
  6. S. Mishra and T. F. Pavlasek, “Design of Absorber-Lined Chambers for EMC Measurements Using a Geometrical Optics Approach,” IEEE Trans. Electromagn. Compat. 26, 111–119 (1984).
    [Crossref]
  7. X. Liu, J. Gao, H. Yang, X. Wang, and C. Guo, “Multiple infrared bands absorber based on multilayer gratings,” Opt. Commun. 410, 438–442 (2018).
    [Crossref]
  8. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  9. J. Tak, Y. Jin, and J. Choi, “A dual‐band metamaterial microwave absorber,” Microw. Opt. Technol. Lett. 58(9), 2052–2057 (2016).
    [Crossref]
  10. H. Nornikman, B. H. Ahmad, M. Z. A. Abdul Aziz, M. R. Kamarudirr, and A. R. Othman, “Effect of spiral split ring resonator (S-SRR) structure on truncated pyramidal microwave absorber design,” In International Symposium on Antennas and Propagation, (Academic, 2012),pp. 1188–1191.
  11. T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
    [Crossref]
  12. P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
    [Crossref]
  13. S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultra- broadband microwave absorber,” IEEE Photonics J. 9(6), 5503310 (2017).
    [Crossref]
  14. D. Sood and C. C. Tripathi, “Broadband ultrathin low-profile metamaterial microwave absorber,” Appl. Phys., A Mater. Sci. Process. 122(4), 332 (2016).
    [Crossref]

2018 (1)

X. Liu, J. Gao, H. Yang, X. Wang, and C. Guo, “Multiple infrared bands absorber based on multilayer gratings,” Opt. Commun. 410, 438–442 (2018).
[Crossref]

2017 (1)

S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultra- broadband microwave absorber,” IEEE Photonics J. 9(6), 5503310 (2017).
[Crossref]

2016 (3)

D. Sood and C. C. Tripathi, “Broadband ultrathin low-profile metamaterial microwave absorber,” Appl. Phys., A Mater. Sci. Process. 122(4), 332 (2016).
[Crossref]

J. Tak, Y. Jin, and J. Choi, “A dual‐band metamaterial microwave absorber,” Microw. Opt. Technol. Lett. 58(9), 2052–2057 (2016).
[Crossref]

D. Kundu, A. Mohan, and A. Chakrabarty, “Single-Layer Wideband Microwave Absorber Using Array of Crossed Dipoles,” IEEE Antennas Wirel. Propag. Lett. 15, 1589–1592 (2016).
[Crossref]

2014 (1)

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

2011 (1)

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

2010 (1)

A. K. Rashid, Z. Shen, and S. Aditya, “Wideband Microwave Absorber Based on a Two-Dimensional Periodic Array of Microstrip Lines,” IEEE Trans. Antenn. Propag. 58(12), 3913–3922 (2010).
[Crossref]

2009 (1)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

1984 (1)

S. Mishra and T. F. Pavlasek, “Design of Absorber-Lined Chambers for EMC Measurements Using a Geometrical Optics Approach,” IEEE Trans. Electromagn. Compat. 26, 111–119 (1984).
[Crossref]

Abdul Aziz, M. Z. A.

H. Nornikman, B. H. Ahmad, M. Z. A. Abdul Aziz, M. R. Kamarudirr, and A. R. Othman, “Effect of spiral split ring resonator (S-SRR) structure on truncated pyramidal microwave absorber design,” In International Symposium on Antennas and Propagation, (Academic, 2012),pp. 1188–1191.

Aditya, S.

A. K. Rashid, Z. Shen, and S. Aditya, “Wideband Microwave Absorber Based on a Two-Dimensional Periodic Array of Microstrip Lines,” IEEE Trans. Antenn. Propag. 58(12), 3913–3922 (2010).
[Crossref]

Afsar, M. N.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Ahmad, B. H.

H. Nornikman, B. H. Ahmad, M. Z. A. Abdul Aziz, M. R. Kamarudirr, and A. R. Othman, “Effect of spiral split ring resonator (S-SRR) structure on truncated pyramidal microwave absorber design,” In International Symposium on Antennas and Propagation, (Academic, 2012),pp. 1188–1191.

Averitt, R. D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Chakrabarty, A.

D. Kundu, A. Mohan, and A. Chakrabarty, “Single-Layer Wideband Microwave Absorber Using Array of Crossed Dipoles,” IEEE Antennas Wirel. Propag. Lett. 15, 1589–1592 (2016).
[Crossref]

Choi, J.

J. Tak, Y. Jin, and J. Choi, “A dual‐band metamaterial microwave absorber,” Microw. Opt. Technol. Lett. 58(9), 2052–2057 (2016).
[Crossref]

F. Pavlasek, T.

S. Mishra and T. F. Pavlasek, “Design of Absorber-Lined Chambers for EMC Measurements Using a Geometrical Optics Approach,” IEEE Trans. Electromagn. Compat. 26, 111–119 (1984).
[Crossref]

Fan, K.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Gao, J.

X. Liu, J. Gao, H. Yang, X. Wang, and C. Guo, “Multiple infrared bands absorber based on multilayer gratings,” Opt. Commun. 410, 438–442 (2018).
[Crossref]

Gu, W.

S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultra- broadband microwave absorber,” IEEE Photonics J. 9(6), 5503310 (2017).
[Crossref]

Guo, C.

X. Liu, J. Gao, H. Yang, X. Wang, and C. Guo, “Multiple infrared bands absorber based on multilayer gratings,” Opt. Commun. 410, 438–442 (2018).
[Crossref]

Guo, L. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Jang, T.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Jin, Y.

J. Tak, Y. Jin, and J. Choi, “A dual‐band metamaterial microwave absorber,” Microw. Opt. Technol. Lett. 58(9), 2052–2057 (2016).
[Crossref]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Kamarudirr, M. R.

H. Nornikman, B. H. Ahmad, M. Z. A. Abdul Aziz, M. R. Kamarudirr, and A. R. Othman, “Effect of spiral split ring resonator (S-SRR) structure on truncated pyramidal microwave absorber design,” In International Symposium on Antennas and Propagation, (Academic, 2012),pp. 1188–1191.

Korolev, K. A.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Kundu, D.

D. Kundu, A. Mohan, and A. Chakrabarty, “Single-Layer Wideband Microwave Absorber Using Array of Crossed Dipoles,” IEEE Antennas Wirel. Propag. Lett. 15, 1589–1592 (2016).
[Crossref]

Lai, S.

S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultra- broadband microwave absorber,” IEEE Photonics J. 9(6), 5503310 (2017).
[Crossref]

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Liu, X.

X. Liu, J. Gao, H. Yang, X. Wang, and C. Guo, “Multiple infrared bands absorber based on multilayer gratings,” Opt. Commun. 410, 438–442 (2018).
[Crossref]

Mahule, V.

C. Sudhendra, V. Mahule, A. C. R. Pillai, and A. Mohanty, “A novel space cloth using resistor grid network for radar absorbers in stealth applications,” In International Conference on Communications and Signal Processing, (Academic, 2011), pp. 83 - 86.
[Crossref]

Mishra, S.

S. Mishra and T. F. Pavlasek, “Design of Absorber-Lined Chambers for EMC Measurements Using a Geometrical Optics Approach,” IEEE Trans. Electromagn. Compat. 26, 111–119 (1984).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Mohan, A.

D. Kundu, A. Mohan, and A. Chakrabarty, “Single-Layer Wideband Microwave Absorber Using Array of Crossed Dipoles,” IEEE Antennas Wirel. Propag. Lett. 15, 1589–1592 (2016).
[Crossref]

Mohanty, A.

C. Sudhendra, V. Mahule, A. C. R. Pillai, and A. Mohanty, “A novel space cloth using resistor grid network for radar absorbers in stealth applications,” In International Conference on Communications and Signal Processing, (Academic, 2011), pp. 83 - 86.
[Crossref]

Nornikman, H.

H. Nornikman, B. H. Ahmad, M. Z. A. Abdul Aziz, M. R. Kamarudirr, and A. R. Othman, “Effect of spiral split ring resonator (S-SRR) structure on truncated pyramidal microwave absorber design,” In International Symposium on Antennas and Propagation, (Academic, 2012),pp. 1188–1191.

Othman, A. R.

H. Nornikman, B. H. Ahmad, M. Z. A. Abdul Aziz, M. R. Kamarudirr, and A. R. Othman, “Effect of spiral split ring resonator (S-SRR) structure on truncated pyramidal microwave absorber design,” In International Symposium on Antennas and Propagation, (Academic, 2012),pp. 1188–1191.

Padilla, W. J.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pillai, A. C. R.

C. Sudhendra, V. Mahule, A. C. R. Pillai, and A. Mohanty, “A novel space cloth using resistor grid network for radar absorbers in stealth applications,” In International Conference on Communications and Signal Processing, (Academic, 2011), pp. 83 - 86.
[Crossref]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Rashid, A. K.

A. K. Rashid, Z. Shen, and S. Aditya, “Wideband Microwave Absorber Based on a Two-Dimensional Periodic Array of Microstrip Lines,” IEEE Trans. Antenn. Propag. 58(12), 3913–3922 (2010).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Shen, Z.

A. K. Rashid, Z. Shen, and S. Aditya, “Wideband Microwave Absorber Based on a Two-Dimensional Periodic Array of Microstrip Lines,” IEEE Trans. Antenn. Propag. 58(12), 3913–3922 (2010).
[Crossref]

Shin, Y. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Singh, P. K.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sonkusale, S.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Sood, D.

D. Sood and C. C. Tripathi, “Broadband ultrathin low-profile metamaterial microwave absorber,” Appl. Phys., A Mater. Sci. Process. 122(4), 332 (2016).
[Crossref]

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Sudhendra, C.

C. Sudhendra, V. Mahule, A. C. R. Pillai, and A. Mohanty, “A novel space cloth using resistor grid network for radar absorbers in stealth applications,” In International Conference on Communications and Signal Processing, (Academic, 2011), pp. 83 - 86.
[Crossref]

Tak, J.

J. Tak, Y. Jin, and J. Choi, “A dual‐band metamaterial microwave absorber,” Microw. Opt. Technol. Lett. 58(9), 2052–2057 (2016).
[Crossref]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Tripathi, C. C.

D. Sood and C. C. Tripathi, “Broadband ultrathin low-profile metamaterial microwave absorber,” Appl. Phys., A Mater. Sci. Process. 122(4), 332 (2016).
[Crossref]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Wang, X.

X. Liu, J. Gao, H. Yang, X. Wang, and C. Guo, “Multiple infrared bands absorber based on multilayer gratings,” Opt. Commun. 410, 438–442 (2018).
[Crossref]

Wu, W.

S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultra- broadband microwave absorber,” IEEE Photonics J. 9(6), 5503310 (2017).
[Crossref]

Wu, Y.

S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultra- broadband microwave absorber,” IEEE Photonics J. 9(6), 5503310 (2017).
[Crossref]

Yang, H.

X. Liu, J. Gao, H. Yang, X. Wang, and C. Guo, “Multiple infrared bands absorber based on multilayer gratings,” Opt. Commun. 410, 438–442 (2018).
[Crossref]

Youn, H.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Zhang, X.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Zhu, X.

S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultra- broadband microwave absorber,” IEEE Photonics J. 9(6), 5503310 (2017).
[Crossref]

ACS Photonics (1)

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Appl. Phys. Lett. (1)

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

D. Sood and C. C. Tripathi, “Broadband ultrathin low-profile metamaterial microwave absorber,” Appl. Phys., A Mater. Sci. Process. 122(4), 332 (2016).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

D. Kundu, A. Mohan, and A. Chakrabarty, “Single-Layer Wideband Microwave Absorber Using Array of Crossed Dipoles,” IEEE Antennas Wirel. Propag. Lett. 15, 1589–1592 (2016).
[Crossref]

IEEE Photonics J. (1)

S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultra- broadband microwave absorber,” IEEE Photonics J. 9(6), 5503310 (2017).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

A. K. Rashid, Z. Shen, and S. Aditya, “Wideband Microwave Absorber Based on a Two-Dimensional Periodic Array of Microstrip Lines,” IEEE Trans. Antenn. Propag. 58(12), 3913–3922 (2010).
[Crossref]

IEEE Trans. Electromagn. Compat. (1)

S. Mishra and T. F. Pavlasek, “Design of Absorber-Lined Chambers for EMC Measurements Using a Geometrical Optics Approach,” IEEE Trans. Electromagn. Compat. 26, 111–119 (1984).
[Crossref]

Microw. Opt. Technol. Lett. (1)

J. Tak, Y. Jin, and J. Choi, “A dual‐band metamaterial microwave absorber,” Microw. Opt. Technol. Lett. 58(9), 2052–2057 (2016).
[Crossref]

Opt. Commun. (1)

X. Liu, J. Gao, H. Yang, X. Wang, and C. Guo, “Multiple infrared bands absorber based on multilayer gratings,” Opt. Commun. 410, 438–442 (2018).
[Crossref]

Phys. Rev. B (2)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Other (2)

C. Sudhendra, V. Mahule, A. C. R. Pillai, and A. Mohanty, “A novel space cloth using resistor grid network for radar absorbers in stealth applications,” In International Conference on Communications and Signal Processing, (Academic, 2011), pp. 83 - 86.
[Crossref]

H. Nornikman, B. H. Ahmad, M. Z. A. Abdul Aziz, M. R. Kamarudirr, and A. R. Othman, “Effect of spiral split ring resonator (S-SRR) structure on truncated pyramidal microwave absorber design,” In International Symposium on Antennas and Propagation, (Academic, 2012),pp. 1188–1191.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Illustration of the structure unit: (a) the ITO-PET-ITO sandwich structure; (b) top view of the ITO pattern unit; (c) a microscope picture of one unit of the fabricated sample (the white part is ITO and the dark part is PET). Scale bar: 100 μm.
Fig. 2
Fig. 2 Simulation results of the absorption spectrum of the proposed structure.
Fig. 3
Fig. 3 Spectra of the normalized input impedance.
Fig. 4
Fig. 4 (a) Illustration of the polarization angle φ, where φ = 0 was defined as the direction parallel to one side of the rectangular open ring. (b) Absorption spectra at different polarization angles at normal incidence.
Fig. 5
Fig. 5 (a) Illustration of the incident angle definition, where normal incidence was defined as θ = 0; (b) The absorption spectra at different incident angles.
Fig. 6
Fig. 6 (a) The flexible absorber sample placed on top of a piece of white paper with printed logo. (b) The optical transmittance spectrum of the absorber sample.
Fig. 7
Fig. 7 The measured absorption spectrum of the absorber sample, agreeing well with the HFSS simulation results.
Fig. 8
Fig. 8 (a) The ITO-PET-ITO absorber sample can be easily bent. (b) The absorption spectra of the sample at different curvature radii: r = 6 cm, 12 cm, and ∞ (flat surface).
Fig. 9
Fig. 9 Illustration of the integration of the reflection from a bent surface.
Fig. 10
Fig. 10 Comparison of the simulation results and experiment data at different curvature radii r: (a) r = 6 cm, (b) r = 12 cm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

A( ω )=1T( ω )-R( ω ) =1 | S 11 ( ω ) | 2 | S 21 ( ω ) | 2
R( ω )= [ Z( ω ) Z 0 ]/ [ Z( ω )+ Z 0 ]
Z( ω )={ μ r ( ω )· μ 0 / [ ε r ( ω )· ε 0 ] } 1 2
Z 0 = ( μ 0 / ε 0 ) 1 2 377Ω
A( ω )=1R( ω )=1 | S 11 ( ω ) | 2
Z=± { [ ( 1+ S 11 ) 2 S 21 2 ]/ [ ( 1 S 11 ) 2 S 21 2 ] } 1 2 =± ( 1+ S 11 )/ ( 1 S 11 )
A( θ )=1 S 11 ( θ ) 2 =1 P r ( θ )/ P i ( θ )
Pr ITO = L Pr ITO ( θ )dl L Pr ITO ( θ )dl= Pr ITO ( θ 1 )· L 1 + Pr ITO ( θ 2 )·2 L 2 ++ Pr ITO ( θ 7 )·2 L 7 Pr cu = L Pr cu ( θ )dl L Pr cu ( θ )dl= Pr cu ( θ 1 )· L 1 + Pr cu ( θ 2 )·2 L 2 ++ Pr cu ( θ 7 )·2 L 7
Pr= Pr ITO / Pr cu
A=1 Pr/ Pi

Metrics