Abstract

We report determination of parameters in the nearest-neighbor sp3d5s* tight-binding (TB) model for nine binary compound semiconductors which consist of Al, Ga, or In and of P, As, or Sb based on the hybrid quasi-particle self-consistent GW (QSGW) calculations. We have used the determination parameters to calculated band structures and related properties of the compounds in the bulk phase relevant to mid-infrared applications and of the type-II (InAs)/(GaSb) superlattices. For the type-II (InAs)/(GaSb) superlattices with various superlattice periods, good agreement with photoluminescence measurements on the band gaps has been confirmed. Furthermore, two aspects of the band gap properties from other calculations have been reproduced: the band gap energies rising up to some superlattice periods and shrinking beyond them asymptotically. In both the bulk phase and the superlattices, erroneous flat valence bands have appeared within the nearest-neighbor sp3s* TB model. The present TB model has been eliminated these artifacts, potential obstacles to design advanced superlattices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Long-wavelength infrared (~10-15 μm) electroluminescence from Sb-based interband cascade devices

D. Zhang, E. Dupont, R. Q. Yang, H. C. Liu, C.-H. Lin, M. Buchanan, and S. S. Pei
Opt. Express 1(4) 97-101 (1997)

Electronic band structures and optical properties of type-II superlattice photodetectors with interfacial effect

Peng-Fei Qiao, Shin Mou, and Shun Lien Chuang
Opt. Express 20(3) 2319-2334 (2012)

Investigation of high optical gain in complex type-II InGaAs/InAs/GaAsSb nano-scale heterostructure for MIR applications

Nisha Yadav, Garima Bhardwaj, S. G. Anjum, S. Dalela, M. J. Siddiqui, and P. A. Alvi
Appl. Opt. 56(15) 4243-4249 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Mohseni, M. Razeghi, G.J. Brown, and Y.S. Park, “High-performance InAs/GaSb superlattice photodiodes for the very long wavelength infrared range,” Appl. Phys. Lett. 78(15), 2107–2109 (2001).
    [Crossref]
  2. H.J. Haugan, F. Szmulowicz, G.J. Brown, and K. Mahalingam, “Optimization of mid-infrared InAs/GaSb type-II superlattices,” Appl. Phys. Lett. 84(26), 5410–5412 (2004).
    [Crossref]
  3. P. Delaunay, B.-M. Nguyen, D. Hoffmann, and M. Razeghi, “High-Performance Focal Plane Array Based on InAs-GaSb Superlattices With a 10-µ m Cutoff Wavelength,” IEEE J. Quantum Electron. 44(5), 462–467 (2008).
    [Crossref]
  4. H. J. Haugan, G.J. Brown, F. Szmulowicz, L. Grazulis, W.C. Mitchel, S. Elhamri, and W.D. Mitchell, “InAs/GaSb type-II superlattices for high performance mid-infrared detectors,” J. Cryst. Growth 278, 198–202 (2005).
    [Crossref]
  5. G. J. Sullivan, A. Ikhlassi, J. Bergman, R.E. DeWames, J.R. Waldrop, C. Grein, M. Flatte, K. Mahalingam, H. Yang, M. Zhong, and M. Weimer, “Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors,” J. Vac. Sci. Technol. B 23(3), 1144–1148 (2005).
    [Crossref]
  6. Council of the European Union, “Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment,” Off. J. Eur. UnionL37, 19–23 (2003). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32002L0095
  7. M. Razeghi, A. Haddadi, A. M. Hoang, C. Chen, S. Bogdanov, S. R. Darvish, F. Callawaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Tech. 59, 41–52 (2013).
    [Crossref]
  8. H. Mohseni, V. I. Litvinov, and M. Razeghi, “Interface-induced suppression of the Auger recombination in type-II InAs/GaSb superlattices,” Phys. Rev. B 58(23), 15378–15380 (1998)
    [Crossref]
  9. J. L. Johnson, L. A. Samoska, A. C. Gossard, J. L. Merz, M. D. Jack, G. R. Chapman, B. A. Baumgratz, K. Kosai, and S. M. Johnson, “Electrical and optical properties of infrared photodiodes using the InAs/Ga1−x Inx Sb superlattice in heterojunctions with GaSb,” J. Appl. Phys. 80(2), 1116–1127 (1996).
    [Crossref]
  10. F. Fuchs, U. Weimer, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1−x Inx Sb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
    [Crossref]
  11. C. H. Grein, H. Cruz, M. E. Flatté, and H. Ehrenreich, “Theoretical performance of very long wavelength InAs/Inx Ga1−x Sb superlattice based infrared detectors,” Appl. Phys. Lett. 65(20), 2530–2532 (1994).
    [Crossref]
  12. D.-J. Jang, M. E. Flatté, C. H. Grein, J. T. Olesberg, T. C. Hasenberg, and T. F. Boggess, “Temperature dependence of Auger recombination in a multilayer narrow-band-gap superlattice,” Phys. Rev. B 58(19), 13047–13054 (1998).
    [Crossref]
  13. C. H. Grein, M. E. Flatté, J. T. Olesberg, S. A. Anson, L. Zhang, and T. F. Boggess, “Auger recombination in narrow-gap semiconductor superlattices incorporating antimony,” J. Appl. Phys. 92(12), 7311–7316 (2002).
    [Crossref]
  14. P. Hoenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136(3B), B864–B870 (1964).
    [Crossref]
  15. W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
    [Crossref]
  16. L. Hedin, “New Method for Calculating the One-Particle Green’s Function with Application to the Electron-Gas Problem,” Phys. Rev. 139(3A), A796–A822 (1965).
    [Crossref]
  17. J. Otsuka, T. Kato, H. Sakakibara, and T. Kotani, “Band structures for short-period (InAs)n(GaSb)n superlattices calculated by the quasiparticle self-consistent GW method,” Jpn. J. Appl. Phys. 56(2), 021201 (2017).
    [Crossref]
  18. D. Deguchi, K. Sato, H. Kino, and T. Kotani, “Accurate energy bands calculated by the hybrid quasiparticle self-consistent GW method implemented in the ecalj package,” Jpn. J. Appl. Phys. 55(5), 051201 (2016).
    [Crossref]
  19. S. V. Faleev, M. van Schilfgaarde, and T. Kotani, “All-Electron Self-Consistent GW Approximation: Application to Si, MnO, and NiO,” Phys. Rev. Lett. 93(12), 126406 (2004).
    [Crossref] [PubMed]
  20. A. N. Chantis, M. van Schilfgaarde, and T. Kotani, “Ab Initio Prediction of Conduction Band Spin Splitting in Zinc Blende Semiconductors,” Phys. Rev. Lett. 96(8), 086405 (2006).
    [Crossref] [PubMed]
  21. T. Kotani, M. van Schilfgaarde, and S. V. Faleev, “Quasiparticle self-consistent GW method: A basis for the independent-particle approximation,” Phys. Rev. B. 76(16), 165106 (2007).
    [Crossref]
  22. T. Kotani and H. Kino, “Linearized Augmented Plane-Wave and Muffin-Tin Orbital Method with the PBE Exchange-Correlation: Applied to Molecules from H2 through Kr2,” J. Phys. Soc. Jpn. 82(12), 124714 (2013).
    [Crossref]
  23. T. Kotani, “Quasiparticle Self-Consistent GW Method Based on the Augmented Plane-Wave and Muffin-Tin Orbital Method,” J. Phys. Soc. Jpn. 83(9), 094711 (2014).
    [Crossref]
  24. T. Kotani, H. Kino, and H. Akai, “Formulation of the Augmented Plane-Wave and Muffin-Tin Orbital Method,” J. Phys. Soc. Jpn. 84(3), 034702 (2015).
    [Crossref]
  25. A. Sawamura, J. Otsuka, T. Kato, and T. Kotani, “Nearest-neighbor sp3s* tight-binding parameters based on the hybrid quasi-particle self-consistent GW method verified by modeling of type-II superlattices,” J. Appl. Phys. 121(23), 235704 (2017).
    [Crossref]
  26. J. C. Slater and G. F. Koster, “Simplified LCAO Method for the Periodic Potential Problem,” Phys. Rev. 94(6), 1498–1542 (1954).
    [Crossref]
  27. W. A. Harrison, Electronic Structure and the Properties of Solids (Dover, 1989).
  28. J. Chadi, “Spin-orbit splitting in crystalline and compositionally disordered semiconductors,” Phys. Rev. B 16(2), 790–796 (1977).
    [Crossref]
  29. P. Vogl, H. P. Hjalmarson, and J. D. Dow, “A semi-empirical tight-binding theory of the electronic structure of semiconductors,” J. Phys. Chem. Sol. 44(6), 365–378 (1983).
    [Crossref]
  30. G. Klimeck, R. C. Bowen, T. B. Boykin, and T. A. Cwik, “sp3s* Tight-binding parameters for transport simulations in compound semiconductors,” Superlatt. Microst. 27(5/6), 519–524 (2000).
    [Crossref]
  31. P. Charbonneau, “Genetic algorithms in astronomy and astrophysics,” Astrophys. J. Suppl. Ser. 101(2), 309–334 (1995).
    [Crossref]
  32. P. Charbonneau and B. Knapp, “A user’s guide to PIKAIA 1.0” (NCAR Technical Note 418+IA, 1995).
  33. P. Charbonneau, “An introduction to genetic algorithms for numerical optimization” (NCAR Technical Note 450+IA, 2002).
  34. P. Charbonneau, “Release notes for PIKAIA 1.2” (NCAR Technical Note 451+STR, 2002). http://www.hao.ucar.edu/modeling/pikaia/pikaia.php
  35. T. B. Boykin, G. Klimeck, R. C. Bowen, and R. Lake, “Effective-mass reproducibility of the nearest-neighbor sp3s* models: Analytic results,” Phys. Rev. B 56(7), 4102–4107 (1997);Erratum in Phys. Rev. B 61(7), 5033–5033 (2000).
    [Crossref]
  36. G. Klimeck, R. C. Bowen, T. B. Boykin, C. Salazar-Lazaro, T. A. Cwik, and A. Stoica, “Si tight-binding parameters from genetic algorithm fitting,” Superlatt. Microst. 27(2/3), 77–88 (2000).
    [Crossref]
  37. T. B. Boykin, “Improved fits of the effective masses at Γ in the spin-orbit, second-nearest-neighbor sp3s* model: Results from analytic expressions,” Phys. Rev. B 56(15), 9613–9618 (1997).
    [Crossref]
  38. J.-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, “Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters,” Phys. Rev. B 57(11), 6493–6507 (1998).
    [Crossref]
  39. T.-T. Lu and L. J. Sham, “Valley-mixing effects in short-period superlattices,” Phys. Rev. B 40(8), 5567–5578 (1989).
    [Crossref]
  40. R. Scholz, J.-M. Jancu, F. Beltram, and F. Bassani, “Calculation of electronic states in semiconductor heterostructures with an empirical spds* tight-binding model,” Phys. Stat. Sol. (b) 217(1), 449–460 (2000).
    [Crossref]
  41. T. B. Boykin, G. Klimeck, and F. Oyafuso, “Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization,” Phys. Rev. B 69(11), 115201 (2004).
    [Crossref]
  42. B.-M. Nguyen, D. Goffman, R.-Y. Delaunay, E. K.-W. Huang, M. Razeghi, and J. Pellegrino, “Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes,” Appl. Phys. Lett. 93(16), 163502 (2008).
    [Crossref]
  43. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
    [Crossref]
  44. Y. Wei and M. Razeghi, “Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface enginieering,” Phys. Rev. B 69(08), 085316 (2004).
    [Crossref]
  45. S. Adachi, Handbook on Physical Properties of Semiconductors, vol.2 III-V Compound Semiconductors (Kluwer, 2004).
  46. G. Kresse and J. Hafer, “Ab initio molecular dynamics for open-shell transition metals,” Phys. Rev. B 48(17), 13115–13118 (1993).
    [Crossref]
  47. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
    [Crossref]
  48. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
    [Crossref]
  49. S. Y. Ren, J. D. Dow, and D. J. Wolford, “Pressure dependence of deep levels in GaAs,” Phys. Rev. B 25(12), 7661–7765 (1982).
    [Crossref]
  50. A. P. Ongstad, R. Kaspi, C. E. Moeller, M. L. Tilton, D. M. Gianardi, J. R. Chavez, and G. C. Dente, “Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs-GaSb type-II superlattices,” J. Appl. Phys. 89(4), 2185–2188 (2001).
    [Crossref]
  51. K. Miura, Transmission Device Laboratory, Sumitomo Electric Industries, Ltd., Yokohama244–8588, Japan (unpublished, 2016).
  52. P. Piquini, A. Zunger, and R. Margi, “Pseudopotential calculations of band gaps and band edges of short-period (InAs)n/(GaSb)m superlattices with different substrates, layer orientations, and interfacial bonds,” Phys. Rev. B 77(11), 115314 (2008).
    [Crossref]
  53. T. Kato and S. Souma, “sp3s* tight-binding calculations of band edges and effective masses of (InAs)n(GaSb)n superlattices with different interface structures” (submitted, 2018).

2017 (2)

J. Otsuka, T. Kato, H. Sakakibara, and T. Kotani, “Band structures for short-period (InAs)n(GaSb)n superlattices calculated by the quasiparticle self-consistent GW method,” Jpn. J. Appl. Phys. 56(2), 021201 (2017).
[Crossref]

A. Sawamura, J. Otsuka, T. Kato, and T. Kotani, “Nearest-neighbor sp3s* tight-binding parameters based on the hybrid quasi-particle self-consistent GW method verified by modeling of type-II superlattices,” J. Appl. Phys. 121(23), 235704 (2017).
[Crossref]

2016 (1)

D. Deguchi, K. Sato, H. Kino, and T. Kotani, “Accurate energy bands calculated by the hybrid quasiparticle self-consistent GW method implemented in the ecalj package,” Jpn. J. Appl. Phys. 55(5), 051201 (2016).
[Crossref]

2015 (1)

T. Kotani, H. Kino, and H. Akai, “Formulation of the Augmented Plane-Wave and Muffin-Tin Orbital Method,” J. Phys. Soc. Jpn. 84(3), 034702 (2015).
[Crossref]

2014 (1)

T. Kotani, “Quasiparticle Self-Consistent GW Method Based on the Augmented Plane-Wave and Muffin-Tin Orbital Method,” J. Phys. Soc. Jpn. 83(9), 094711 (2014).
[Crossref]

2013 (2)

T. Kotani and H. Kino, “Linearized Augmented Plane-Wave and Muffin-Tin Orbital Method with the PBE Exchange-Correlation: Applied to Molecules from H2 through Kr2,” J. Phys. Soc. Jpn. 82(12), 124714 (2013).
[Crossref]

M. Razeghi, A. Haddadi, A. M. Hoang, C. Chen, S. Bogdanov, S. R. Darvish, F. Callawaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Tech. 59, 41–52 (2013).
[Crossref]

2008 (3)

P. Delaunay, B.-M. Nguyen, D. Hoffmann, and M. Razeghi, “High-Performance Focal Plane Array Based on InAs-GaSb Superlattices With a 10-µ m Cutoff Wavelength,” IEEE J. Quantum Electron. 44(5), 462–467 (2008).
[Crossref]

B.-M. Nguyen, D. Goffman, R.-Y. Delaunay, E. K.-W. Huang, M. Razeghi, and J. Pellegrino, “Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes,” Appl. Phys. Lett. 93(16), 163502 (2008).
[Crossref]

P. Piquini, A. Zunger, and R. Margi, “Pseudopotential calculations of band gaps and band edges of short-period (InAs)n/(GaSb)m superlattices with different substrates, layer orientations, and interfacial bonds,” Phys. Rev. B 77(11), 115314 (2008).
[Crossref]

2007 (1)

T. Kotani, M. van Schilfgaarde, and S. V. Faleev, “Quasiparticle self-consistent GW method: A basis for the independent-particle approximation,” Phys. Rev. B. 76(16), 165106 (2007).
[Crossref]

2006 (1)

A. N. Chantis, M. van Schilfgaarde, and T. Kotani, “Ab Initio Prediction of Conduction Band Spin Splitting in Zinc Blende Semiconductors,” Phys. Rev. Lett. 96(8), 086405 (2006).
[Crossref] [PubMed]

2005 (2)

H. J. Haugan, G.J. Brown, F. Szmulowicz, L. Grazulis, W.C. Mitchel, S. Elhamri, and W.D. Mitchell, “InAs/GaSb type-II superlattices for high performance mid-infrared detectors,” J. Cryst. Growth 278, 198–202 (2005).
[Crossref]

G. J. Sullivan, A. Ikhlassi, J. Bergman, R.E. DeWames, J.R. Waldrop, C. Grein, M. Flatte, K. Mahalingam, H. Yang, M. Zhong, and M. Weimer, “Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors,” J. Vac. Sci. Technol. B 23(3), 1144–1148 (2005).
[Crossref]

2004 (4)

H.J. Haugan, F. Szmulowicz, G.J. Brown, and K. Mahalingam, “Optimization of mid-infrared InAs/GaSb type-II superlattices,” Appl. Phys. Lett. 84(26), 5410–5412 (2004).
[Crossref]

S. V. Faleev, M. van Schilfgaarde, and T. Kotani, “All-Electron Self-Consistent GW Approximation: Application to Si, MnO, and NiO,” Phys. Rev. Lett. 93(12), 126406 (2004).
[Crossref] [PubMed]

Y. Wei and M. Razeghi, “Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface enginieering,” Phys. Rev. B 69(08), 085316 (2004).
[Crossref]

T. B. Boykin, G. Klimeck, and F. Oyafuso, “Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization,” Phys. Rev. B 69(11), 115201 (2004).
[Crossref]

2002 (1)

C. H. Grein, M. E. Flatté, J. T. Olesberg, S. A. Anson, L. Zhang, and T. F. Boggess, “Auger recombination in narrow-gap semiconductor superlattices incorporating antimony,” J. Appl. Phys. 92(12), 7311–7316 (2002).
[Crossref]

2001 (3)

H. Mohseni, M. Razeghi, G.J. Brown, and Y.S. Park, “High-performance InAs/GaSb superlattice photodiodes for the very long wavelength infrared range,” Appl. Phys. Lett. 78(15), 2107–2109 (2001).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

A. P. Ongstad, R. Kaspi, C. E. Moeller, M. L. Tilton, D. M. Gianardi, J. R. Chavez, and G. C. Dente, “Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs-GaSb type-II superlattices,” J. Appl. Phys. 89(4), 2185–2188 (2001).
[Crossref]

2000 (3)

G. Klimeck, R. C. Bowen, T. B. Boykin, and T. A. Cwik, “sp3s* Tight-binding parameters for transport simulations in compound semiconductors,” Superlatt. Microst. 27(5/6), 519–524 (2000).
[Crossref]

G. Klimeck, R. C. Bowen, T. B. Boykin, C. Salazar-Lazaro, T. A. Cwik, and A. Stoica, “Si tight-binding parameters from genetic algorithm fitting,” Superlatt. Microst. 27(2/3), 77–88 (2000).
[Crossref]

R. Scholz, J.-M. Jancu, F. Beltram, and F. Bassani, “Calculation of electronic states in semiconductor heterostructures with an empirical spds* tight-binding model,” Phys. Stat. Sol. (b) 217(1), 449–460 (2000).
[Crossref]

1999 (1)

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

1998 (3)

J.-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, “Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters,” Phys. Rev. B 57(11), 6493–6507 (1998).
[Crossref]

H. Mohseni, V. I. Litvinov, and M. Razeghi, “Interface-induced suppression of the Auger recombination in type-II InAs/GaSb superlattices,” Phys. Rev. B 58(23), 15378–15380 (1998)
[Crossref]

D.-J. Jang, M. E. Flatté, C. H. Grein, J. T. Olesberg, T. C. Hasenberg, and T. F. Boggess, “Temperature dependence of Auger recombination in a multilayer narrow-band-gap superlattice,” Phys. Rev. B 58(19), 13047–13054 (1998).
[Crossref]

1997 (3)

F. Fuchs, U. Weimer, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1−x Inx Sb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

T. B. Boykin, G. Klimeck, R. C. Bowen, and R. Lake, “Effective-mass reproducibility of the nearest-neighbor sp3s* models: Analytic results,” Phys. Rev. B 56(7), 4102–4107 (1997);Erratum in Phys. Rev. B 61(7), 5033–5033 (2000).
[Crossref]

T. B. Boykin, “Improved fits of the effective masses at Γ in the spin-orbit, second-nearest-neighbor sp3s* model: Results from analytic expressions,” Phys. Rev. B 56(15), 9613–9618 (1997).
[Crossref]

1996 (2)

J. L. Johnson, L. A. Samoska, A. C. Gossard, J. L. Merz, M. D. Jack, G. R. Chapman, B. A. Baumgratz, K. Kosai, and S. M. Johnson, “Electrical and optical properties of infrared photodiodes using the InAs/Ga1−x Inx Sb superlattice in heterojunctions with GaSb,” J. Appl. Phys. 80(2), 1116–1127 (1996).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

1995 (1)

P. Charbonneau, “Genetic algorithms in astronomy and astrophysics,” Astrophys. J. Suppl. Ser. 101(2), 309–334 (1995).
[Crossref]

1994 (1)

C. H. Grein, H. Cruz, M. E. Flatté, and H. Ehrenreich, “Theoretical performance of very long wavelength InAs/Inx Ga1−x Sb superlattice based infrared detectors,” Appl. Phys. Lett. 65(20), 2530–2532 (1994).
[Crossref]

1993 (1)

G. Kresse and J. Hafer, “Ab initio molecular dynamics for open-shell transition metals,” Phys. Rev. B 48(17), 13115–13118 (1993).
[Crossref]

1989 (1)

T.-T. Lu and L. J. Sham, “Valley-mixing effects in short-period superlattices,” Phys. Rev. B 40(8), 5567–5578 (1989).
[Crossref]

1983 (1)

P. Vogl, H. P. Hjalmarson, and J. D. Dow, “A semi-empirical tight-binding theory of the electronic structure of semiconductors,” J. Phys. Chem. Sol. 44(6), 365–378 (1983).
[Crossref]

1982 (1)

S. Y. Ren, J. D. Dow, and D. J. Wolford, “Pressure dependence of deep levels in GaAs,” Phys. Rev. B 25(12), 7661–7765 (1982).
[Crossref]

1977 (1)

J. Chadi, “Spin-orbit splitting in crystalline and compositionally disordered semiconductors,” Phys. Rev. B 16(2), 790–796 (1977).
[Crossref]

1965 (2)

W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

L. Hedin, “New Method for Calculating the One-Particle Green’s Function with Application to the Electron-Gas Problem,” Phys. Rev. 139(3A), A796–A822 (1965).
[Crossref]

1964 (1)

P. Hoenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136(3B), B864–B870 (1964).
[Crossref]

1954 (1)

J. C. Slater and G. F. Koster, “Simplified LCAO Method for the Periodic Potential Problem,” Phys. Rev. 94(6), 1498–1542 (1954).
[Crossref]

Adachi, S.

S. Adachi, Handbook on Physical Properties of Semiconductors, vol.2 III-V Compound Semiconductors (Kluwer, 2004).

Ahlswede, E.

F. Fuchs, U. Weimer, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1−x Inx Sb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

Akai, H.

T. Kotani, H. Kino, and H. Akai, “Formulation of the Augmented Plane-Wave and Muffin-Tin Orbital Method,” J. Phys. Soc. Jpn. 84(3), 034702 (2015).
[Crossref]

Anson, S. A.

C. H. Grein, M. E. Flatté, J. T. Olesberg, S. A. Anson, L. Zhang, and T. F. Boggess, “Auger recombination in narrow-gap semiconductor superlattices incorporating antimony,” J. Appl. Phys. 92(12), 7311–7316 (2002).
[Crossref]

Bassani, F.

R. Scholz, J.-M. Jancu, F. Beltram, and F. Bassani, “Calculation of electronic states in semiconductor heterostructures with an empirical spds* tight-binding model,” Phys. Stat. Sol. (b) 217(1), 449–460 (2000).
[Crossref]

J.-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, “Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters,” Phys. Rev. B 57(11), 6493–6507 (1998).
[Crossref]

Baumgratz, B. A.

J. L. Johnson, L. A. Samoska, A. C. Gossard, J. L. Merz, M. D. Jack, G. R. Chapman, B. A. Baumgratz, K. Kosai, and S. M. Johnson, “Electrical and optical properties of infrared photodiodes using the InAs/Ga1−x Inx Sb superlattice in heterojunctions with GaSb,” J. Appl. Phys. 80(2), 1116–1127 (1996).
[Crossref]

Beltram, F.

R. Scholz, J.-M. Jancu, F. Beltram, and F. Bassani, “Calculation of electronic states in semiconductor heterostructures with an empirical spds* tight-binding model,” Phys. Stat. Sol. (b) 217(1), 449–460 (2000).
[Crossref]

J.-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, “Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters,” Phys. Rev. B 57(11), 6493–6507 (1998).
[Crossref]

Bergman, J.

G. J. Sullivan, A. Ikhlassi, J. Bergman, R.E. DeWames, J.R. Waldrop, C. Grein, M. Flatte, K. Mahalingam, H. Yang, M. Zhong, and M. Weimer, “Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors,” J. Vac. Sci. Technol. B 23(3), 1144–1148 (2005).
[Crossref]

Bogdanov, S.

M. Razeghi, A. Haddadi, A. M. Hoang, C. Chen, S. Bogdanov, S. R. Darvish, F. Callawaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Tech. 59, 41–52 (2013).
[Crossref]

Boggess, T. F.

C. H. Grein, M. E. Flatté, J. T. Olesberg, S. A. Anson, L. Zhang, and T. F. Boggess, “Auger recombination in narrow-gap semiconductor superlattices incorporating antimony,” J. Appl. Phys. 92(12), 7311–7316 (2002).
[Crossref]

D.-J. Jang, M. E. Flatté, C. H. Grein, J. T. Olesberg, T. C. Hasenberg, and T. F. Boggess, “Temperature dependence of Auger recombination in a multilayer narrow-band-gap superlattice,” Phys. Rev. B 58(19), 13047–13054 (1998).
[Crossref]

Bowen, R. C.

G. Klimeck, R. C. Bowen, T. B. Boykin, C. Salazar-Lazaro, T. A. Cwik, and A. Stoica, “Si tight-binding parameters from genetic algorithm fitting,” Superlatt. Microst. 27(2/3), 77–88 (2000).
[Crossref]

G. Klimeck, R. C. Bowen, T. B. Boykin, and T. A. Cwik, “sp3s* Tight-binding parameters for transport simulations in compound semiconductors,” Superlatt. Microst. 27(5/6), 519–524 (2000).
[Crossref]

T. B. Boykin, G. Klimeck, R. C. Bowen, and R. Lake, “Effective-mass reproducibility of the nearest-neighbor sp3s* models: Analytic results,” Phys. Rev. B 56(7), 4102–4107 (1997);Erratum in Phys. Rev. B 61(7), 5033–5033 (2000).
[Crossref]

Boykin, T. B.

T. B. Boykin, G. Klimeck, and F. Oyafuso, “Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization,” Phys. Rev. B 69(11), 115201 (2004).
[Crossref]

G. Klimeck, R. C. Bowen, T. B. Boykin, C. Salazar-Lazaro, T. A. Cwik, and A. Stoica, “Si tight-binding parameters from genetic algorithm fitting,” Superlatt. Microst. 27(2/3), 77–88 (2000).
[Crossref]

G. Klimeck, R. C. Bowen, T. B. Boykin, and T. A. Cwik, “sp3s* Tight-binding parameters for transport simulations in compound semiconductors,” Superlatt. Microst. 27(5/6), 519–524 (2000).
[Crossref]

T. B. Boykin, G. Klimeck, R. C. Bowen, and R. Lake, “Effective-mass reproducibility of the nearest-neighbor sp3s* models: Analytic results,” Phys. Rev. B 56(7), 4102–4107 (1997);Erratum in Phys. Rev. B 61(7), 5033–5033 (2000).
[Crossref]

T. B. Boykin, “Improved fits of the effective masses at Γ in the spin-orbit, second-nearest-neighbor sp3s* model: Results from analytic expressions,” Phys. Rev. B 56(15), 9613–9618 (1997).
[Crossref]

Brown, G.J.

H. J. Haugan, G.J. Brown, F. Szmulowicz, L. Grazulis, W.C. Mitchel, S. Elhamri, and W.D. Mitchell, “InAs/GaSb type-II superlattices for high performance mid-infrared detectors,” J. Cryst. Growth 278, 198–202 (2005).
[Crossref]

H.J. Haugan, F. Szmulowicz, G.J. Brown, and K. Mahalingam, “Optimization of mid-infrared InAs/GaSb type-II superlattices,” Appl. Phys. Lett. 84(26), 5410–5412 (2004).
[Crossref]

H. Mohseni, M. Razeghi, G.J. Brown, and Y.S. Park, “High-performance InAs/GaSb superlattice photodiodes for the very long wavelength infrared range,” Appl. Phys. Lett. 78(15), 2107–2109 (2001).
[Crossref]

Callawaert, F.

M. Razeghi, A. Haddadi, A. M. Hoang, C. Chen, S. Bogdanov, S. R. Darvish, F. Callawaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Tech. 59, 41–52 (2013).
[Crossref]

Chadi, J.

J. Chadi, “Spin-orbit splitting in crystalline and compositionally disordered semiconductors,” Phys. Rev. B 16(2), 790–796 (1977).
[Crossref]

Chantis, A. N.

A. N. Chantis, M. van Schilfgaarde, and T. Kotani, “Ab Initio Prediction of Conduction Band Spin Splitting in Zinc Blende Semiconductors,” Phys. Rev. Lett. 96(8), 086405 (2006).
[Crossref] [PubMed]

Chapman, G. R.

J. L. Johnson, L. A. Samoska, A. C. Gossard, J. L. Merz, M. D. Jack, G. R. Chapman, B. A. Baumgratz, K. Kosai, and S. M. Johnson, “Electrical and optical properties of infrared photodiodes using the InAs/Ga1−x Inx Sb superlattice in heterojunctions with GaSb,” J. Appl. Phys. 80(2), 1116–1127 (1996).
[Crossref]

Charbonneau, P.

P. Charbonneau, “Genetic algorithms in astronomy and astrophysics,” Astrophys. J. Suppl. Ser. 101(2), 309–334 (1995).
[Crossref]

P. Charbonneau and B. Knapp, “A user’s guide to PIKAIA 1.0” (NCAR Technical Note 418+IA, 1995).

P. Charbonneau, “An introduction to genetic algorithms for numerical optimization” (NCAR Technical Note 450+IA, 2002).

Chavez, J. R.

A. P. Ongstad, R. Kaspi, C. E. Moeller, M. L. Tilton, D. M. Gianardi, J. R. Chavez, and G. C. Dente, “Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs-GaSb type-II superlattices,” J. Appl. Phys. 89(4), 2185–2188 (2001).
[Crossref]

Chen, C.

M. Razeghi, A. Haddadi, A. M. Hoang, C. Chen, S. Bogdanov, S. R. Darvish, F. Callawaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Tech. 59, 41–52 (2013).
[Crossref]

Cruz, H.

C. H. Grein, H. Cruz, M. E. Flatté, and H. Ehrenreich, “Theoretical performance of very long wavelength InAs/Inx Ga1−x Sb superlattice based infrared detectors,” Appl. Phys. Lett. 65(20), 2530–2532 (1994).
[Crossref]

Cwik, T. A.

G. Klimeck, R. C. Bowen, T. B. Boykin, C. Salazar-Lazaro, T. A. Cwik, and A. Stoica, “Si tight-binding parameters from genetic algorithm fitting,” Superlatt. Microst. 27(2/3), 77–88 (2000).
[Crossref]

G. Klimeck, R. C. Bowen, T. B. Boykin, and T. A. Cwik, “sp3s* Tight-binding parameters for transport simulations in compound semiconductors,” Superlatt. Microst. 27(5/6), 519–524 (2000).
[Crossref]

Darvish, S. R.

M. Razeghi, A. Haddadi, A. M. Hoang, C. Chen, S. Bogdanov, S. R. Darvish, F. Callawaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Tech. 59, 41–52 (2013).
[Crossref]

Deguchi, D.

D. Deguchi, K. Sato, H. Kino, and T. Kotani, “Accurate energy bands calculated by the hybrid quasiparticle self-consistent GW method implemented in the ecalj package,” Jpn. J. Appl. Phys. 55(5), 051201 (2016).
[Crossref]

Delaunay, P.

P. Delaunay, B.-M. Nguyen, D. Hoffmann, and M. Razeghi, “High-Performance Focal Plane Array Based on InAs-GaSb Superlattices With a 10-µ m Cutoff Wavelength,” IEEE J. Quantum Electron. 44(5), 462–467 (2008).
[Crossref]

Delaunay, R.-Y.

B.-M. Nguyen, D. Goffman, R.-Y. Delaunay, E. K.-W. Huang, M. Razeghi, and J. Pellegrino, “Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes,” Appl. Phys. Lett. 93(16), 163502 (2008).
[Crossref]

Dente, G. C.

A. P. Ongstad, R. Kaspi, C. E. Moeller, M. L. Tilton, D. M. Gianardi, J. R. Chavez, and G. C. Dente, “Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs-GaSb type-II superlattices,” J. Appl. Phys. 89(4), 2185–2188 (2001).
[Crossref]

DeWames, R.E.

G. J. Sullivan, A. Ikhlassi, J. Bergman, R.E. DeWames, J.R. Waldrop, C. Grein, M. Flatte, K. Mahalingam, H. Yang, M. Zhong, and M. Weimer, “Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors,” J. Vac. Sci. Technol. B 23(3), 1144–1148 (2005).
[Crossref]

Dow, J. D.

P. Vogl, H. P. Hjalmarson, and J. D. Dow, “A semi-empirical tight-binding theory of the electronic structure of semiconductors,” J. Phys. Chem. Sol. 44(6), 365–378 (1983).
[Crossref]

S. Y. Ren, J. D. Dow, and D. J. Wolford, “Pressure dependence of deep levels in GaAs,” Phys. Rev. B 25(12), 7661–7765 (1982).
[Crossref]

Ehrenreich, H.

C. H. Grein, H. Cruz, M. E. Flatté, and H. Ehrenreich, “Theoretical performance of very long wavelength InAs/Inx Ga1−x Sb superlattice based infrared detectors,” Appl. Phys. Lett. 65(20), 2530–2532 (1994).
[Crossref]

Elhamri, S.

H. J. Haugan, G.J. Brown, F. Szmulowicz, L. Grazulis, W.C. Mitchel, S. Elhamri, and W.D. Mitchell, “InAs/GaSb type-II superlattices for high performance mid-infrared detectors,” J. Cryst. Growth 278, 198–202 (2005).
[Crossref]

Faleev, S. V.

T. Kotani, M. van Schilfgaarde, and S. V. Faleev, “Quasiparticle self-consistent GW method: A basis for the independent-particle approximation,” Phys. Rev. B. 76(16), 165106 (2007).
[Crossref]

S. V. Faleev, M. van Schilfgaarde, and T. Kotani, “All-Electron Self-Consistent GW Approximation: Application to Si, MnO, and NiO,” Phys. Rev. Lett. 93(12), 126406 (2004).
[Crossref] [PubMed]

Flatte, M.

G. J. Sullivan, A. Ikhlassi, J. Bergman, R.E. DeWames, J.R. Waldrop, C. Grein, M. Flatte, K. Mahalingam, H. Yang, M. Zhong, and M. Weimer, “Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors,” J. Vac. Sci. Technol. B 23(3), 1144–1148 (2005).
[Crossref]

Flatté, M. E.

C. H. Grein, M. E. Flatté, J. T. Olesberg, S. A. Anson, L. Zhang, and T. F. Boggess, “Auger recombination in narrow-gap semiconductor superlattices incorporating antimony,” J. Appl. Phys. 92(12), 7311–7316 (2002).
[Crossref]

D.-J. Jang, M. E. Flatté, C. H. Grein, J. T. Olesberg, T. C. Hasenberg, and T. F. Boggess, “Temperature dependence of Auger recombination in a multilayer narrow-band-gap superlattice,” Phys. Rev. B 58(19), 13047–13054 (1998).
[Crossref]

C. H. Grein, H. Cruz, M. E. Flatté, and H. Ehrenreich, “Theoretical performance of very long wavelength InAs/Inx Ga1−x Sb superlattice based infrared detectors,” Appl. Phys. Lett. 65(20), 2530–2532 (1994).
[Crossref]

Fuchs, F.

F. Fuchs, U. Weimer, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1−x Inx Sb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

Furthmüller, J.

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

Gianardi, D. M.

A. P. Ongstad, R. Kaspi, C. E. Moeller, M. L. Tilton, D. M. Gianardi, J. R. Chavez, and G. C. Dente, “Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs-GaSb type-II superlattices,” J. Appl. Phys. 89(4), 2185–2188 (2001).
[Crossref]

Goffman, D.

B.-M. Nguyen, D. Goffman, R.-Y. Delaunay, E. K.-W. Huang, M. Razeghi, and J. Pellegrino, “Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes,” Appl. Phys. Lett. 93(16), 163502 (2008).
[Crossref]

Gossard, A. C.

J. L. Johnson, L. A. Samoska, A. C. Gossard, J. L. Merz, M. D. Jack, G. R. Chapman, B. A. Baumgratz, K. Kosai, and S. M. Johnson, “Electrical and optical properties of infrared photodiodes using the InAs/Ga1−x Inx Sb superlattice in heterojunctions with GaSb,” J. Appl. Phys. 80(2), 1116–1127 (1996).
[Crossref]

Grazulis, L.

H. J. Haugan, G.J. Brown, F. Szmulowicz, L. Grazulis, W.C. Mitchel, S. Elhamri, and W.D. Mitchell, “InAs/GaSb type-II superlattices for high performance mid-infrared detectors,” J. Cryst. Growth 278, 198–202 (2005).
[Crossref]

Grein, C.

G. J. Sullivan, A. Ikhlassi, J. Bergman, R.E. DeWames, J.R. Waldrop, C. Grein, M. Flatte, K. Mahalingam, H. Yang, M. Zhong, and M. Weimer, “Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors,” J. Vac. Sci. Technol. B 23(3), 1144–1148 (2005).
[Crossref]

Grein, C. H.

C. H. Grein, M. E. Flatté, J. T. Olesberg, S. A. Anson, L. Zhang, and T. F. Boggess, “Auger recombination in narrow-gap semiconductor superlattices incorporating antimony,” J. Appl. Phys. 92(12), 7311–7316 (2002).
[Crossref]

D.-J. Jang, M. E. Flatté, C. H. Grein, J. T. Olesberg, T. C. Hasenberg, and T. F. Boggess, “Temperature dependence of Auger recombination in a multilayer narrow-band-gap superlattice,” Phys. Rev. B 58(19), 13047–13054 (1998).
[Crossref]

C. H. Grein, H. Cruz, M. E. Flatté, and H. Ehrenreich, “Theoretical performance of very long wavelength InAs/Inx Ga1−x Sb superlattice based infrared detectors,” Appl. Phys. Lett. 65(20), 2530–2532 (1994).
[Crossref]

Haddadi, A.

M. Razeghi, A. Haddadi, A. M. Hoang, C. Chen, S. Bogdanov, S. R. Darvish, F. Callawaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Tech. 59, 41–52 (2013).
[Crossref]

Hafer, J.

G. Kresse and J. Hafer, “Ab initio molecular dynamics for open-shell transition metals,” Phys. Rev. B 48(17), 13115–13118 (1993).
[Crossref]

Harrison, W. A.

W. A. Harrison, Electronic Structure and the Properties of Solids (Dover, 1989).

Hasenberg, T. C.

D.-J. Jang, M. E. Flatté, C. H. Grein, J. T. Olesberg, T. C. Hasenberg, and T. F. Boggess, “Temperature dependence of Auger recombination in a multilayer narrow-band-gap superlattice,” Phys. Rev. B 58(19), 13047–13054 (1998).
[Crossref]

Haugan, H. J.

H. J. Haugan, G.J. Brown, F. Szmulowicz, L. Grazulis, W.C. Mitchel, S. Elhamri, and W.D. Mitchell, “InAs/GaSb type-II superlattices for high performance mid-infrared detectors,” J. Cryst. Growth 278, 198–202 (2005).
[Crossref]

Haugan, H.J.

H.J. Haugan, F. Szmulowicz, G.J. Brown, and K. Mahalingam, “Optimization of mid-infrared InAs/GaSb type-II superlattices,” Appl. Phys. Lett. 84(26), 5410–5412 (2004).
[Crossref]

Hedin, L.

L. Hedin, “New Method for Calculating the One-Particle Green’s Function with Application to the Electron-Gas Problem,” Phys. Rev. 139(3A), A796–A822 (1965).
[Crossref]

Hjalmarson, H. P.

P. Vogl, H. P. Hjalmarson, and J. D. Dow, “A semi-empirical tight-binding theory of the electronic structure of semiconductors,” J. Phys. Chem. Sol. 44(6), 365–378 (1983).
[Crossref]

Hoang, A. M.

M. Razeghi, A. Haddadi, A. M. Hoang, C. Chen, S. Bogdanov, S. R. Darvish, F. Callawaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Tech. 59, 41–52 (2013).
[Crossref]

Hoenberg, P.

P. Hoenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136(3B), B864–B870 (1964).
[Crossref]

Hoffmann, D.

P. Delaunay, B.-M. Nguyen, D. Hoffmann, and M. Razeghi, “High-Performance Focal Plane Array Based on InAs-GaSb Superlattices With a 10-µ m Cutoff Wavelength,” IEEE J. Quantum Electron. 44(5), 462–467 (2008).
[Crossref]

Huang, E. K.-W.

B.-M. Nguyen, D. Goffman, R.-Y. Delaunay, E. K.-W. Huang, M. Razeghi, and J. Pellegrino, “Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes,” Appl. Phys. Lett. 93(16), 163502 (2008).
[Crossref]

Ikhlassi, A.

G. J. Sullivan, A. Ikhlassi, J. Bergman, R.E. DeWames, J.R. Waldrop, C. Grein, M. Flatte, K. Mahalingam, H. Yang, M. Zhong, and M. Weimer, “Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors,” J. Vac. Sci. Technol. B 23(3), 1144–1148 (2005).
[Crossref]

Jack, M. D.

J. L. Johnson, L. A. Samoska, A. C. Gossard, J. L. Merz, M. D. Jack, G. R. Chapman, B. A. Baumgratz, K. Kosai, and S. M. Johnson, “Electrical and optical properties of infrared photodiodes using the InAs/Ga1−x Inx Sb superlattice in heterojunctions with GaSb,” J. Appl. Phys. 80(2), 1116–1127 (1996).
[Crossref]

Jancu, J.-M.

R. Scholz, J.-M. Jancu, F. Beltram, and F. Bassani, “Calculation of electronic states in semiconductor heterostructures with an empirical spds* tight-binding model,” Phys. Stat. Sol. (b) 217(1), 449–460 (2000).
[Crossref]

J.-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, “Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters,” Phys. Rev. B 57(11), 6493–6507 (1998).
[Crossref]

Jang, D.-J.

D.-J. Jang, M. E. Flatté, C. H. Grein, J. T. Olesberg, T. C. Hasenberg, and T. F. Boggess, “Temperature dependence of Auger recombination in a multilayer narrow-band-gap superlattice,” Phys. Rev. B 58(19), 13047–13054 (1998).
[Crossref]

Johnson, J. L.

J. L. Johnson, L. A. Samoska, A. C. Gossard, J. L. Merz, M. D. Jack, G. R. Chapman, B. A. Baumgratz, K. Kosai, and S. M. Johnson, “Electrical and optical properties of infrared photodiodes using the InAs/Ga1−x Inx Sb superlattice in heterojunctions with GaSb,” J. Appl. Phys. 80(2), 1116–1127 (1996).
[Crossref]

Johnson, S. M.

J. L. Johnson, L. A. Samoska, A. C. Gossard, J. L. Merz, M. D. Jack, G. R. Chapman, B. A. Baumgratz, K. Kosai, and S. M. Johnson, “Electrical and optical properties of infrared photodiodes using the InAs/Ga1−x Inx Sb superlattice in heterojunctions with GaSb,” J. Appl. Phys. 80(2), 1116–1127 (1996).
[Crossref]

Joubert, D.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

Kaspi, R.

A. P. Ongstad, R. Kaspi, C. E. Moeller, M. L. Tilton, D. M. Gianardi, J. R. Chavez, and G. C. Dente, “Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs-GaSb type-II superlattices,” J. Appl. Phys. 89(4), 2185–2188 (2001).
[Crossref]

Kato, T.

A. Sawamura, J. Otsuka, T. Kato, and T. Kotani, “Nearest-neighbor sp3s* tight-binding parameters based on the hybrid quasi-particle self-consistent GW method verified by modeling of type-II superlattices,” J. Appl. Phys. 121(23), 235704 (2017).
[Crossref]

J. Otsuka, T. Kato, H. Sakakibara, and T. Kotani, “Band structures for short-period (InAs)n(GaSb)n superlattices calculated by the quasiparticle self-consistent GW method,” Jpn. J. Appl. Phys. 56(2), 021201 (2017).
[Crossref]

T. Kato and S. Souma, “sp3s* tight-binding calculations of band edges and effective masses of (InAs)n(GaSb)n superlattices with different interface structures” (submitted, 2018).

Kino, H.

D. Deguchi, K. Sato, H. Kino, and T. Kotani, “Accurate energy bands calculated by the hybrid quasiparticle self-consistent GW method implemented in the ecalj package,” Jpn. J. Appl. Phys. 55(5), 051201 (2016).
[Crossref]

T. Kotani, H. Kino, and H. Akai, “Formulation of the Augmented Plane-Wave and Muffin-Tin Orbital Method,” J. Phys. Soc. Jpn. 84(3), 034702 (2015).
[Crossref]

T. Kotani and H. Kino, “Linearized Augmented Plane-Wave and Muffin-Tin Orbital Method with the PBE Exchange-Correlation: Applied to Molecules from H2 through Kr2,” J. Phys. Soc. Jpn. 82(12), 124714 (2013).
[Crossref]

Klimeck, G.

T. B. Boykin, G. Klimeck, and F. Oyafuso, “Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization,” Phys. Rev. B 69(11), 115201 (2004).
[Crossref]

G. Klimeck, R. C. Bowen, T. B. Boykin, and T. A. Cwik, “sp3s* Tight-binding parameters for transport simulations in compound semiconductors,” Superlatt. Microst. 27(5/6), 519–524 (2000).
[Crossref]

G. Klimeck, R. C. Bowen, T. B. Boykin, C. Salazar-Lazaro, T. A. Cwik, and A. Stoica, “Si tight-binding parameters from genetic algorithm fitting,” Superlatt. Microst. 27(2/3), 77–88 (2000).
[Crossref]

T. B. Boykin, G. Klimeck, R. C. Bowen, and R. Lake, “Effective-mass reproducibility of the nearest-neighbor sp3s* models: Analytic results,” Phys. Rev. B 56(7), 4102–4107 (1997);Erratum in Phys. Rev. B 61(7), 5033–5033 (2000).
[Crossref]

Knapp, B.

P. Charbonneau and B. Knapp, “A user’s guide to PIKAIA 1.0” (NCAR Technical Note 418+IA, 1995).

Kohn, W.

W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

P. Hoenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136(3B), B864–B870 (1964).
[Crossref]

Koidl, P.

F. Fuchs, U. Weimer, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1−x Inx Sb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

Kosai, K.

J. L. Johnson, L. A. Samoska, A. C. Gossard, J. L. Merz, M. D. Jack, G. R. Chapman, B. A. Baumgratz, K. Kosai, and S. M. Johnson, “Electrical and optical properties of infrared photodiodes using the InAs/Ga1−x Inx Sb superlattice in heterojunctions with GaSb,” J. Appl. Phys. 80(2), 1116–1127 (1996).
[Crossref]

Koster, G. F.

J. C. Slater and G. F. Koster, “Simplified LCAO Method for the Periodic Potential Problem,” Phys. Rev. 94(6), 1498–1542 (1954).
[Crossref]

Kotani, T.

A. Sawamura, J. Otsuka, T. Kato, and T. Kotani, “Nearest-neighbor sp3s* tight-binding parameters based on the hybrid quasi-particle self-consistent GW method verified by modeling of type-II superlattices,” J. Appl. Phys. 121(23), 235704 (2017).
[Crossref]

J. Otsuka, T. Kato, H. Sakakibara, and T. Kotani, “Band structures for short-period (InAs)n(GaSb)n superlattices calculated by the quasiparticle self-consistent GW method,” Jpn. J. Appl. Phys. 56(2), 021201 (2017).
[Crossref]

D. Deguchi, K. Sato, H. Kino, and T. Kotani, “Accurate energy bands calculated by the hybrid quasiparticle self-consistent GW method implemented in the ecalj package,” Jpn. J. Appl. Phys. 55(5), 051201 (2016).
[Crossref]

T. Kotani, H. Kino, and H. Akai, “Formulation of the Augmented Plane-Wave and Muffin-Tin Orbital Method,” J. Phys. Soc. Jpn. 84(3), 034702 (2015).
[Crossref]

T. Kotani, “Quasiparticle Self-Consistent GW Method Based on the Augmented Plane-Wave and Muffin-Tin Orbital Method,” J. Phys. Soc. Jpn. 83(9), 094711 (2014).
[Crossref]

T. Kotani and H. Kino, “Linearized Augmented Plane-Wave and Muffin-Tin Orbital Method with the PBE Exchange-Correlation: Applied to Molecules from H2 through Kr2,” J. Phys. Soc. Jpn. 82(12), 124714 (2013).
[Crossref]

T. Kotani, M. van Schilfgaarde, and S. V. Faleev, “Quasiparticle self-consistent GW method: A basis for the independent-particle approximation,” Phys. Rev. B. 76(16), 165106 (2007).
[Crossref]

A. N. Chantis, M. van Schilfgaarde, and T. Kotani, “Ab Initio Prediction of Conduction Band Spin Splitting in Zinc Blende Semiconductors,” Phys. Rev. Lett. 96(8), 086405 (2006).
[Crossref] [PubMed]

S. V. Faleev, M. van Schilfgaarde, and T. Kotani, “All-Electron Self-Consistent GW Approximation: Application to Si, MnO, and NiO,” Phys. Rev. Lett. 93(12), 126406 (2004).
[Crossref] [PubMed]

Kresse, G.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

G. Kresse and J. Hafer, “Ab initio molecular dynamics for open-shell transition metals,” Phys. Rev. B 48(17), 13115–13118 (1993).
[Crossref]

Lake, R.

T. B. Boykin, G. Klimeck, R. C. Bowen, and R. Lake, “Effective-mass reproducibility of the nearest-neighbor sp3s* models: Analytic results,” Phys. Rev. B 56(7), 4102–4107 (1997);Erratum in Phys. Rev. B 61(7), 5033–5033 (2000).
[Crossref]

Litvinov, V. I.

H. Mohseni, V. I. Litvinov, and M. Razeghi, “Interface-induced suppression of the Auger recombination in type-II InAs/GaSb superlattices,” Phys. Rev. B 58(23), 15378–15380 (1998)
[Crossref]

Lu, T.-T.

T.-T. Lu and L. J. Sham, “Valley-mixing effects in short-period superlattices,” Phys. Rev. B 40(8), 5567–5578 (1989).
[Crossref]

Mahalingam, K.

G. J. Sullivan, A. Ikhlassi, J. Bergman, R.E. DeWames, J.R. Waldrop, C. Grein, M. Flatte, K. Mahalingam, H. Yang, M. Zhong, and M. Weimer, “Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors,” J. Vac. Sci. Technol. B 23(3), 1144–1148 (2005).
[Crossref]

H.J. Haugan, F. Szmulowicz, G.J. Brown, and K. Mahalingam, “Optimization of mid-infrared InAs/GaSb type-II superlattices,” Appl. Phys. Lett. 84(26), 5410–5412 (2004).
[Crossref]

Margi, R.

P. Piquini, A. Zunger, and R. Margi, “Pseudopotential calculations of band gaps and band edges of short-period (InAs)n/(GaSb)m superlattices with different substrates, layer orientations, and interfacial bonds,” Phys. Rev. B 77(11), 115314 (2008).
[Crossref]

McClintock, R.

M. Razeghi, A. Haddadi, A. M. Hoang, C. Chen, S. Bogdanov, S. R. Darvish, F. Callawaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Tech. 59, 41–52 (2013).
[Crossref]

Merz, J. L.

J. L. Johnson, L. A. Samoska, A. C. Gossard, J. L. Merz, M. D. Jack, G. R. Chapman, B. A. Baumgratz, K. Kosai, and S. M. Johnson, “Electrical and optical properties of infrared photodiodes using the InAs/Ga1−x Inx Sb superlattice in heterojunctions with GaSb,” J. Appl. Phys. 80(2), 1116–1127 (1996).
[Crossref]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Mitchel, W.C.

H. J. Haugan, G.J. Brown, F. Szmulowicz, L. Grazulis, W.C. Mitchel, S. Elhamri, and W.D. Mitchell, “InAs/GaSb type-II superlattices for high performance mid-infrared detectors,” J. Cryst. Growth 278, 198–202 (2005).
[Crossref]

Mitchell, W.D.

H. J. Haugan, G.J. Brown, F. Szmulowicz, L. Grazulis, W.C. Mitchel, S. Elhamri, and W.D. Mitchell, “InAs/GaSb type-II superlattices for high performance mid-infrared detectors,” J. Cryst. Growth 278, 198–202 (2005).
[Crossref]

Miura, K.

K. Miura, Transmission Device Laboratory, Sumitomo Electric Industries, Ltd., Yokohama244–8588, Japan (unpublished, 2016).

Moeller, C. E.

A. P. Ongstad, R. Kaspi, C. E. Moeller, M. L. Tilton, D. M. Gianardi, J. R. Chavez, and G. C. Dente, “Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs-GaSb type-II superlattices,” J. Appl. Phys. 89(4), 2185–2188 (2001).
[Crossref]

Mohseni, H.

H. Mohseni, M. Razeghi, G.J. Brown, and Y.S. Park, “High-performance InAs/GaSb superlattice photodiodes for the very long wavelength infrared range,” Appl. Phys. Lett. 78(15), 2107–2109 (2001).
[Crossref]

H. Mohseni, V. I. Litvinov, and M. Razeghi, “Interface-induced suppression of the Auger recombination in type-II InAs/GaSb superlattices,” Phys. Rev. B 58(23), 15378–15380 (1998)
[Crossref]

Nguyen, B.-M.

P. Delaunay, B.-M. Nguyen, D. Hoffmann, and M. Razeghi, “High-Performance Focal Plane Array Based on InAs-GaSb Superlattices With a 10-µ m Cutoff Wavelength,” IEEE J. Quantum Electron. 44(5), 462–467 (2008).
[Crossref]

B.-M. Nguyen, D. Goffman, R.-Y. Delaunay, E. K.-W. Huang, M. Razeghi, and J. Pellegrino, “Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes,” Appl. Phys. Lett. 93(16), 163502 (2008).
[Crossref]

Olesberg, J. T.

C. H. Grein, M. E. Flatté, J. T. Olesberg, S. A. Anson, L. Zhang, and T. F. Boggess, “Auger recombination in narrow-gap semiconductor superlattices incorporating antimony,” J. Appl. Phys. 92(12), 7311–7316 (2002).
[Crossref]

D.-J. Jang, M. E. Flatté, C. H. Grein, J. T. Olesberg, T. C. Hasenberg, and T. F. Boggess, “Temperature dependence of Auger recombination in a multilayer narrow-band-gap superlattice,” Phys. Rev. B 58(19), 13047–13054 (1998).
[Crossref]

Ongstad, A. P.

A. P. Ongstad, R. Kaspi, C. E. Moeller, M. L. Tilton, D. M. Gianardi, J. R. Chavez, and G. C. Dente, “Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs-GaSb type-II superlattices,” J. Appl. Phys. 89(4), 2185–2188 (2001).
[Crossref]

Otsuka, J.

J. Otsuka, T. Kato, H. Sakakibara, and T. Kotani, “Band structures for short-period (InAs)n(GaSb)n superlattices calculated by the quasiparticle self-consistent GW method,” Jpn. J. Appl. Phys. 56(2), 021201 (2017).
[Crossref]

A. Sawamura, J. Otsuka, T. Kato, and T. Kotani, “Nearest-neighbor sp3s* tight-binding parameters based on the hybrid quasi-particle self-consistent GW method verified by modeling of type-II superlattices,” J. Appl. Phys. 121(23), 235704 (2017).
[Crossref]

Oyafuso, F.

T. B. Boykin, G. Klimeck, and F. Oyafuso, “Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization,” Phys. Rev. B 69(11), 115201 (2004).
[Crossref]

Park, Y.S.

H. Mohseni, M. Razeghi, G.J. Brown, and Y.S. Park, “High-performance InAs/GaSb superlattice photodiodes for the very long wavelength infrared range,” Appl. Phys. Lett. 78(15), 2107–2109 (2001).
[Crossref]

Pellegrino, J.

B.-M. Nguyen, D. Goffman, R.-Y. Delaunay, E. K.-W. Huang, M. Razeghi, and J. Pellegrino, “Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes,” Appl. Phys. Lett. 93(16), 163502 (2008).
[Crossref]

Piquini, P.

P. Piquini, A. Zunger, and R. Margi, “Pseudopotential calculations of band gaps and band edges of short-period (InAs)n/(GaSb)m superlattices with different substrates, layer orientations, and interfacial bonds,” Phys. Rev. B 77(11), 115314 (2008).
[Crossref]

Pletschen, W.

F. Fuchs, U. Weimer, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1−x Inx Sb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Razeghi, M.

M. Razeghi, A. Haddadi, A. M. Hoang, C. Chen, S. Bogdanov, S. R. Darvish, F. Callawaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Tech. 59, 41–52 (2013).
[Crossref]

P. Delaunay, B.-M. Nguyen, D. Hoffmann, and M. Razeghi, “High-Performance Focal Plane Array Based on InAs-GaSb Superlattices With a 10-µ m Cutoff Wavelength,” IEEE J. Quantum Electron. 44(5), 462–467 (2008).
[Crossref]

B.-M. Nguyen, D. Goffman, R.-Y. Delaunay, E. K.-W. Huang, M. Razeghi, and J. Pellegrino, “Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes,” Appl. Phys. Lett. 93(16), 163502 (2008).
[Crossref]

Y. Wei and M. Razeghi, “Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface enginieering,” Phys. Rev. B 69(08), 085316 (2004).
[Crossref]

H. Mohseni, M. Razeghi, G.J. Brown, and Y.S. Park, “High-performance InAs/GaSb superlattice photodiodes for the very long wavelength infrared range,” Appl. Phys. Lett. 78(15), 2107–2109 (2001).
[Crossref]

H. Mohseni, V. I. Litvinov, and M. Razeghi, “Interface-induced suppression of the Auger recombination in type-II InAs/GaSb superlattices,” Phys. Rev. B 58(23), 15378–15380 (1998)
[Crossref]

Ren, S. Y.

S. Y. Ren, J. D. Dow, and D. J. Wolford, “Pressure dependence of deep levels in GaAs,” Phys. Rev. B 25(12), 7661–7765 (1982).
[Crossref]

Sakakibara, H.

J. Otsuka, T. Kato, H. Sakakibara, and T. Kotani, “Band structures for short-period (InAs)n(GaSb)n superlattices calculated by the quasiparticle self-consistent GW method,” Jpn. J. Appl. Phys. 56(2), 021201 (2017).
[Crossref]

Salazar-Lazaro, C.

G. Klimeck, R. C. Bowen, T. B. Boykin, C. Salazar-Lazaro, T. A. Cwik, and A. Stoica, “Si tight-binding parameters from genetic algorithm fitting,” Superlatt. Microst. 27(2/3), 77–88 (2000).
[Crossref]

Samoska, L. A.

J. L. Johnson, L. A. Samoska, A. C. Gossard, J. L. Merz, M. D. Jack, G. R. Chapman, B. A. Baumgratz, K. Kosai, and S. M. Johnson, “Electrical and optical properties of infrared photodiodes using the InAs/Ga1−x Inx Sb superlattice in heterojunctions with GaSb,” J. Appl. Phys. 80(2), 1116–1127 (1996).
[Crossref]

Sato, K.

D. Deguchi, K. Sato, H. Kino, and T. Kotani, “Accurate energy bands calculated by the hybrid quasiparticle self-consistent GW method implemented in the ecalj package,” Jpn. J. Appl. Phys. 55(5), 051201 (2016).
[Crossref]

Sawamura, A.

A. Sawamura, J. Otsuka, T. Kato, and T. Kotani, “Nearest-neighbor sp3s* tight-binding parameters based on the hybrid quasi-particle self-consistent GW method verified by modeling of type-II superlattices,” J. Appl. Phys. 121(23), 235704 (2017).
[Crossref]

Schmitz, J.

F. Fuchs, U. Weimer, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1−x Inx Sb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

Scholz, R.

R. Scholz, J.-M. Jancu, F. Beltram, and F. Bassani, “Calculation of electronic states in semiconductor heterostructures with an empirical spds* tight-binding model,” Phys. Stat. Sol. (b) 217(1), 449–460 (2000).
[Crossref]

J.-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, “Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters,” Phys. Rev. B 57(11), 6493–6507 (1998).
[Crossref]

Sham, L. J.

T.-T. Lu and L. J. Sham, “Valley-mixing effects in short-period superlattices,” Phys. Rev. B 40(8), 5567–5578 (1989).
[Crossref]

W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

Slater, J. C.

J. C. Slater and G. F. Koster, “Simplified LCAO Method for the Periodic Potential Problem,” Phys. Rev. 94(6), 1498–1542 (1954).
[Crossref]

Souma, S.

T. Kato and S. Souma, “sp3s* tight-binding calculations of band edges and effective masses of (InAs)n(GaSb)n superlattices with different interface structures” (submitted, 2018).

Stoica, A.

G. Klimeck, R. C. Bowen, T. B. Boykin, C. Salazar-Lazaro, T. A. Cwik, and A. Stoica, “Si tight-binding parameters from genetic algorithm fitting,” Superlatt. Microst. 27(2/3), 77–88 (2000).
[Crossref]

Sullivan, G. J.

G. J. Sullivan, A. Ikhlassi, J. Bergman, R.E. DeWames, J.R. Waldrop, C. Grein, M. Flatte, K. Mahalingam, H. Yang, M. Zhong, and M. Weimer, “Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors,” J. Vac. Sci. Technol. B 23(3), 1144–1148 (2005).
[Crossref]

Szmulowicz, F.

H. J. Haugan, G.J. Brown, F. Szmulowicz, L. Grazulis, W.C. Mitchel, S. Elhamri, and W.D. Mitchell, “InAs/GaSb type-II superlattices for high performance mid-infrared detectors,” J. Cryst. Growth 278, 198–202 (2005).
[Crossref]

H.J. Haugan, F. Szmulowicz, G.J. Brown, and K. Mahalingam, “Optimization of mid-infrared InAs/GaSb type-II superlattices,” Appl. Phys. Lett. 84(26), 5410–5412 (2004).
[Crossref]

Tilton, M. L.

A. P. Ongstad, R. Kaspi, C. E. Moeller, M. L. Tilton, D. M. Gianardi, J. R. Chavez, and G. C. Dente, “Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs-GaSb type-II superlattices,” J. Appl. Phys. 89(4), 2185–2188 (2001).
[Crossref]

van Schilfgaarde, M.

T. Kotani, M. van Schilfgaarde, and S. V. Faleev, “Quasiparticle self-consistent GW method: A basis for the independent-particle approximation,” Phys. Rev. B. 76(16), 165106 (2007).
[Crossref]

A. N. Chantis, M. van Schilfgaarde, and T. Kotani, “Ab Initio Prediction of Conduction Band Spin Splitting in Zinc Blende Semiconductors,” Phys. Rev. Lett. 96(8), 086405 (2006).
[Crossref] [PubMed]

S. V. Faleev, M. van Schilfgaarde, and T. Kotani, “All-Electron Self-Consistent GW Approximation: Application to Si, MnO, and NiO,” Phys. Rev. Lett. 93(12), 126406 (2004).
[Crossref] [PubMed]

Vogl, P.

P. Vogl, H. P. Hjalmarson, and J. D. Dow, “A semi-empirical tight-binding theory of the electronic structure of semiconductors,” J. Phys. Chem. Sol. 44(6), 365–378 (1983).
[Crossref]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Wagner, J.

F. Fuchs, U. Weimer, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1−x Inx Sb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

Waldrop, J.R.

G. J. Sullivan, A. Ikhlassi, J. Bergman, R.E. DeWames, J.R. Waldrop, C. Grein, M. Flatte, K. Mahalingam, H. Yang, M. Zhong, and M. Weimer, “Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors,” J. Vac. Sci. Technol. B 23(3), 1144–1148 (2005).
[Crossref]

Walther, M.

F. Fuchs, U. Weimer, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1−x Inx Sb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

Wei, Y.

Y. Wei and M. Razeghi, “Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface enginieering,” Phys. Rev. B 69(08), 085316 (2004).
[Crossref]

Weimer, M.

G. J. Sullivan, A. Ikhlassi, J. Bergman, R.E. DeWames, J.R. Waldrop, C. Grein, M. Flatte, K. Mahalingam, H. Yang, M. Zhong, and M. Weimer, “Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors,” J. Vac. Sci. Technol. B 23(3), 1144–1148 (2005).
[Crossref]

Weimer, U.

F. Fuchs, U. Weimer, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1−x Inx Sb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

Wolford, D. J.

S. Y. Ren, J. D. Dow, and D. J. Wolford, “Pressure dependence of deep levels in GaAs,” Phys. Rev. B 25(12), 7661–7765 (1982).
[Crossref]

Yang, H.

G. J. Sullivan, A. Ikhlassi, J. Bergman, R.E. DeWames, J.R. Waldrop, C. Grein, M. Flatte, K. Mahalingam, H. Yang, M. Zhong, and M. Weimer, “Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors,” J. Vac. Sci. Technol. B 23(3), 1144–1148 (2005).
[Crossref]

Zhang, L.

C. H. Grein, M. E. Flatté, J. T. Olesberg, S. A. Anson, L. Zhang, and T. F. Boggess, “Auger recombination in narrow-gap semiconductor superlattices incorporating antimony,” J. Appl. Phys. 92(12), 7311–7316 (2002).
[Crossref]

Zhong, M.

G. J. Sullivan, A. Ikhlassi, J. Bergman, R.E. DeWames, J.R. Waldrop, C. Grein, M. Flatte, K. Mahalingam, H. Yang, M. Zhong, and M. Weimer, “Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors,” J. Vac. Sci. Technol. B 23(3), 1144–1148 (2005).
[Crossref]

Zunger, A.

P. Piquini, A. Zunger, and R. Margi, “Pseudopotential calculations of band gaps and band edges of short-period (InAs)n/(GaSb)m superlattices with different substrates, layer orientations, and interfacial bonds,” Phys. Rev. B 77(11), 115314 (2008).
[Crossref]

Appl. Phys. Lett. (5)

H. Mohseni, M. Razeghi, G.J. Brown, and Y.S. Park, “High-performance InAs/GaSb superlattice photodiodes for the very long wavelength infrared range,” Appl. Phys. Lett. 78(15), 2107–2109 (2001).
[Crossref]

H.J. Haugan, F. Szmulowicz, G.J. Brown, and K. Mahalingam, “Optimization of mid-infrared InAs/GaSb type-II superlattices,” Appl. Phys. Lett. 84(26), 5410–5412 (2004).
[Crossref]

F. Fuchs, U. Weimer, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1−x Inx Sb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

C. H. Grein, H. Cruz, M. E. Flatté, and H. Ehrenreich, “Theoretical performance of very long wavelength InAs/Inx Ga1−x Sb superlattice based infrared detectors,” Appl. Phys. Lett. 65(20), 2530–2532 (1994).
[Crossref]

B.-M. Nguyen, D. Goffman, R.-Y. Delaunay, E. K.-W. Huang, M. Razeghi, and J. Pellegrino, “Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes,” Appl. Phys. Lett. 93(16), 163502 (2008).
[Crossref]

Astrophys. J. Suppl. Ser. (1)

P. Charbonneau, “Genetic algorithms in astronomy and astrophysics,” Astrophys. J. Suppl. Ser. 101(2), 309–334 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Delaunay, B.-M. Nguyen, D. Hoffmann, and M. Razeghi, “High-Performance Focal Plane Array Based on InAs-GaSb Superlattices With a 10-µ m Cutoff Wavelength,” IEEE J. Quantum Electron. 44(5), 462–467 (2008).
[Crossref]

Infrared Phys. Tech. (1)

M. Razeghi, A. Haddadi, A. M. Hoang, C. Chen, S. Bogdanov, S. R. Darvish, F. Callawaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Tech. 59, 41–52 (2013).
[Crossref]

J. Appl. Phys. (5)

C. H. Grein, M. E. Flatté, J. T. Olesberg, S. A. Anson, L. Zhang, and T. F. Boggess, “Auger recombination in narrow-gap semiconductor superlattices incorporating antimony,” J. Appl. Phys. 92(12), 7311–7316 (2002).
[Crossref]

J. L. Johnson, L. A. Samoska, A. C. Gossard, J. L. Merz, M. D. Jack, G. R. Chapman, B. A. Baumgratz, K. Kosai, and S. M. Johnson, “Electrical and optical properties of infrared photodiodes using the InAs/Ga1−x Inx Sb superlattice in heterojunctions with GaSb,” J. Appl. Phys. 80(2), 1116–1127 (1996).
[Crossref]

A. Sawamura, J. Otsuka, T. Kato, and T. Kotani, “Nearest-neighbor sp3s* tight-binding parameters based on the hybrid quasi-particle self-consistent GW method verified by modeling of type-II superlattices,” J. Appl. Phys. 121(23), 235704 (2017).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

A. P. Ongstad, R. Kaspi, C. E. Moeller, M. L. Tilton, D. M. Gianardi, J. R. Chavez, and G. C. Dente, “Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs-GaSb type-II superlattices,” J. Appl. Phys. 89(4), 2185–2188 (2001).
[Crossref]

J. Cryst. Growth (1)

H. J. Haugan, G.J. Brown, F. Szmulowicz, L. Grazulis, W.C. Mitchel, S. Elhamri, and W.D. Mitchell, “InAs/GaSb type-II superlattices for high performance mid-infrared detectors,” J. Cryst. Growth 278, 198–202 (2005).
[Crossref]

J. Phys. Chem. Sol. (1)

P. Vogl, H. P. Hjalmarson, and J. D. Dow, “A semi-empirical tight-binding theory of the electronic structure of semiconductors,” J. Phys. Chem. Sol. 44(6), 365–378 (1983).
[Crossref]

J. Phys. Soc. Jpn. (3)

T. Kotani and H. Kino, “Linearized Augmented Plane-Wave and Muffin-Tin Orbital Method with the PBE Exchange-Correlation: Applied to Molecules from H2 through Kr2,” J. Phys. Soc. Jpn. 82(12), 124714 (2013).
[Crossref]

T. Kotani, “Quasiparticle Self-Consistent GW Method Based on the Augmented Plane-Wave and Muffin-Tin Orbital Method,” J. Phys. Soc. Jpn. 83(9), 094711 (2014).
[Crossref]

T. Kotani, H. Kino, and H. Akai, “Formulation of the Augmented Plane-Wave and Muffin-Tin Orbital Method,” J. Phys. Soc. Jpn. 84(3), 034702 (2015).
[Crossref]

J. Vac. Sci. Technol. B (1)

G. J. Sullivan, A. Ikhlassi, J. Bergman, R.E. DeWames, J.R. Waldrop, C. Grein, M. Flatte, K. Mahalingam, H. Yang, M. Zhong, and M. Weimer, “Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors,” J. Vac. Sci. Technol. B 23(3), 1144–1148 (2005).
[Crossref]

Jpn. J. Appl. Phys. (2)

J. Otsuka, T. Kato, H. Sakakibara, and T. Kotani, “Band structures for short-period (InAs)n(GaSb)n superlattices calculated by the quasiparticle self-consistent GW method,” Jpn. J. Appl. Phys. 56(2), 021201 (2017).
[Crossref]

D. Deguchi, K. Sato, H. Kino, and T. Kotani, “Accurate energy bands calculated by the hybrid quasiparticle self-consistent GW method implemented in the ecalj package,” Jpn. J. Appl. Phys. 55(5), 051201 (2016).
[Crossref]

Phys. Rev. (4)

P. Hoenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136(3B), B864–B870 (1964).
[Crossref]

W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

L. Hedin, “New Method for Calculating the One-Particle Green’s Function with Application to the Electron-Gas Problem,” Phys. Rev. 139(3A), A796–A822 (1965).
[Crossref]

J. C. Slater and G. F. Koster, “Simplified LCAO Method for the Periodic Potential Problem,” Phys. Rev. 94(6), 1498–1542 (1954).
[Crossref]

Phys. Rev. B (14)

T. B. Boykin, “Improved fits of the effective masses at Γ in the spin-orbit, second-nearest-neighbor sp3s* model: Results from analytic expressions,” Phys. Rev. B 56(15), 9613–9618 (1997).
[Crossref]

J.-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, “Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters,” Phys. Rev. B 57(11), 6493–6507 (1998).
[Crossref]

T.-T. Lu and L. J. Sham, “Valley-mixing effects in short-period superlattices,” Phys. Rev. B 40(8), 5567–5578 (1989).
[Crossref]

H. Mohseni, V. I. Litvinov, and M. Razeghi, “Interface-induced suppression of the Auger recombination in type-II InAs/GaSb superlattices,” Phys. Rev. B 58(23), 15378–15380 (1998)
[Crossref]

D.-J. Jang, M. E. Flatté, C. H. Grein, J. T. Olesberg, T. C. Hasenberg, and T. F. Boggess, “Temperature dependence of Auger recombination in a multilayer narrow-band-gap superlattice,” Phys. Rev. B 58(19), 13047–13054 (1998).
[Crossref]

P. Piquini, A. Zunger, and R. Margi, “Pseudopotential calculations of band gaps and band edges of short-period (InAs)n/(GaSb)m superlattices with different substrates, layer orientations, and interfacial bonds,” Phys. Rev. B 77(11), 115314 (2008).
[Crossref]

G. Kresse and J. Hafer, “Ab initio molecular dynamics for open-shell transition metals,” Phys. Rev. B 48(17), 13115–13118 (1993).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

S. Y. Ren, J. D. Dow, and D. J. Wolford, “Pressure dependence of deep levels in GaAs,” Phys. Rev. B 25(12), 7661–7765 (1982).
[Crossref]

Y. Wei and M. Razeghi, “Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface enginieering,” Phys. Rev. B 69(08), 085316 (2004).
[Crossref]

T. B. Boykin, G. Klimeck, R. C. Bowen, and R. Lake, “Effective-mass reproducibility of the nearest-neighbor sp3s* models: Analytic results,” Phys. Rev. B 56(7), 4102–4107 (1997);Erratum in Phys. Rev. B 61(7), 5033–5033 (2000).
[Crossref]

J. Chadi, “Spin-orbit splitting in crystalline and compositionally disordered semiconductors,” Phys. Rev. B 16(2), 790–796 (1977).
[Crossref]

T. B. Boykin, G. Klimeck, and F. Oyafuso, “Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization,” Phys. Rev. B 69(11), 115201 (2004).
[Crossref]

Phys. Rev. B. (1)

T. Kotani, M. van Schilfgaarde, and S. V. Faleev, “Quasiparticle self-consistent GW method: A basis for the independent-particle approximation,” Phys. Rev. B. 76(16), 165106 (2007).
[Crossref]

Phys. Rev. Lett. (2)

S. V. Faleev, M. van Schilfgaarde, and T. Kotani, “All-Electron Self-Consistent GW Approximation: Application to Si, MnO, and NiO,” Phys. Rev. Lett. 93(12), 126406 (2004).
[Crossref] [PubMed]

A. N. Chantis, M. van Schilfgaarde, and T. Kotani, “Ab Initio Prediction of Conduction Band Spin Splitting in Zinc Blende Semiconductors,” Phys. Rev. Lett. 96(8), 086405 (2006).
[Crossref] [PubMed]

Phys. Stat. Sol. (b) (1)

R. Scholz, J.-M. Jancu, F. Beltram, and F. Bassani, “Calculation of electronic states in semiconductor heterostructures with an empirical spds* tight-binding model,” Phys. Stat. Sol. (b) 217(1), 449–460 (2000).
[Crossref]

Superlatt. Microst. (2)

G. Klimeck, R. C. Bowen, T. B. Boykin, and T. A. Cwik, “sp3s* Tight-binding parameters for transport simulations in compound semiconductors,” Superlatt. Microst. 27(5/6), 519–524 (2000).
[Crossref]

G. Klimeck, R. C. Bowen, T. B. Boykin, C. Salazar-Lazaro, T. A. Cwik, and A. Stoica, “Si tight-binding parameters from genetic algorithm fitting,” Superlatt. Microst. 27(2/3), 77–88 (2000).
[Crossref]

Other (8)

S. Adachi, Handbook on Physical Properties of Semiconductors, vol.2 III-V Compound Semiconductors (Kluwer, 2004).

T. Kato and S. Souma, “sp3s* tight-binding calculations of band edges and effective masses of (InAs)n(GaSb)n superlattices with different interface structures” (submitted, 2018).

K. Miura, Transmission Device Laboratory, Sumitomo Electric Industries, Ltd., Yokohama244–8588, Japan (unpublished, 2016).

W. A. Harrison, Electronic Structure and the Properties of Solids (Dover, 1989).

P. Charbonneau and B. Knapp, “A user’s guide to PIKAIA 1.0” (NCAR Technical Note 418+IA, 1995).

P. Charbonneau, “An introduction to genetic algorithms for numerical optimization” (NCAR Technical Note 450+IA, 2002).

P. Charbonneau, “Release notes for PIKAIA 1.2” (NCAR Technical Note 451+STR, 2002). http://www.hao.ucar.edu/modeling/pikaia/pikaia.php

Council of the European Union, “Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment,” Off. J. Eur. UnionL37, 19–23 (2003). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32002L0095

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Band structures of AlSb obtained by the hybrid QSGW (black) and TB calculations (blue for the sp3s* model and red for the sp3d5s* one). Energies are in units of eV.
Fig. 2
Fig. 2 Same as Fig. 1 except for GaAs.
Fig. 3
Fig. 3 Same as Fig. 1 except for GaSb.
Fig. 4
Fig. 4 Same as Fig. 1 except for InAs.
Fig. 5
Fig. 5 Same as Fig. 1 except for InSb.
Fig. 6
Fig. 6 Band gaps of (InAs)/(GaSb) (closed circle) and (InAs)/(InSb)1/(GaSb) (open circle) with various superlattice periods calculated by the TB method compared with photoluminescence (PL) data extrapolated into T = 0K after Ref. [48] for (InAs)/(GaSb) and Ref. [51] for (InAs)/(InSb)1/(GaSb). A diagonal line is drawn to guide the eye.
Fig. 7
Fig. 7 Band gaps of superlattice (InAs)n/(GaSb)n calculated by the TB method (solid line) compared with those calculated by the TB method in Ref. [40] (dashed line), with those calculated by the empirical pseudopotential (EP) method in Ref. [52] (dash-dotted line), and with photoluminescence (PL) data extrapolated into T = 0K after Ref. [51] (open circle), and with those calculated by the hybrid QSGW method [17] (closed circle).
Fig. 8
Fig. 8 The band structure of (InAs)4/(GaSb)4 superlattice obtained by the hybrid QSGW (black) and TB methods (blue for the sp3s* model and red for the sp3d5s* one). See Ref [17] for the complete results of the hybrid QSGW method.

Tables (8)

Tables Icon

Table 1 Input parameters employed in the hybrid QSGW calculations. The lattice constant a in Å(1Å= 1 × 10−10m); the adjustable factor α in arbitrary unit. The parameters for gallium and indium compounds in our previous study are given again for reader’s convenience.

Tables Icon

Table 2 Tight-binding parameters for aluminum compounds in units of eV (1eV= 1:60218 × 10−19J).

Tables Icon

Table 3 Same as Table 2 except that only the sp3d5s* model is dealt with for the gallium and indium compounds.

Tables Icon

Table 4 Bulk material properties of AlSb obtained by the hybrid QSGW and TB calculations. Energies are in units of eV; masses in terms of the free electron mass.

Tables Icon

Table 5 Same as Table 4 except for GaAs.

Tables Icon

Table 6 Same as Table 4 except for GaSb.

Tables Icon

Table 7 Same as Table 4 except for InAs.

Tables Icon

Table 8 Same as Table 4 except for InSb.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V XC = α V QSGW XC + ( 1 α ) V LDA XC ,
( VBM 2 eV , CBM + 5 eV ) ,
ϵ x x i = ϵ y y i = a sub a i 1 , ϵ z z i = 2 C 12 i C 11 i ϵ x x i ,

Metrics