Abstract

We report a large-mode-area neodymium-doped silicate photonic bandgap fiber. The concept of power delocalization rather than confinement loss differentiation was considered to theoretically determine the structure parameters, and the near single mode operation of the fabricated fiber was experimentally demonstrated. An output power of 3.1 W with a slope efficiency of 48% was obtained for a 75-cm-long fiber.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers

Guancheng Gu, Fanting Kong, Thomas Hawkins, Joshua Parsons, Maxwell Jones, Christopher Dunn, Monica T. Kalichevsky-Dong, Kunimasa Saitoh, and Liang Dong
Opt. Express 22(11) 13962-13968 (2014)

Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers

Masahiro Kashiwagi, Kunimasa Saitoh, Katsuhiro Takenaga, Shoji Tanigawa, Shoichiro Matsuo, and Munehisa Fujimaki
Opt. Express 20(14) 15061-15070 (2012)

Extending mode areas of single-mode all-solid photonic bandgap fibers

Guancheng Gu, Fanting Kong, Thomas W. Hawkins, Maxwell Jones, and Liang Dong
Opt. Express 23(7) 9147-9156 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  2. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm,” Opt. Express 18(2), 1249–1254 (2010).
    [Crossref] [PubMed]
  3. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
    [Crossref] [PubMed]
  4. O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, “Millijoule pulse energy Q-switched short-length fiber laser,” Opt. Lett. 32(11), 1551–1553 (2007).
    [Crossref] [PubMed]
  5. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Low bending loss and effectively single-mode all-solid photonic bandgap fiber with an effective area of 650 μm2.,” Opt. Lett. 37(8), 1292–1294 (2012).
    [Crossref] [PubMed]
  6. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012).
    [Crossref] [PubMed]
  7. F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. Gu, and L. Dong, “Mode area scaling with all-solid photonic bandgap fibers,” Opt. Express 20(24), 26363–26372 (2012).
    [Crossref] [PubMed]
  8. A. Baz, L. Bigot, G. Bouwmans, and Y. Quiquempois, “Single-mode, large mode area, solid-core photonic bandgap fiber with hetero-structured cladding,” J. Lightwave Technol. 31(5), 830–835 (2013).
    [Crossref]
  9. G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
    [Crossref] [PubMed]
  10. G. Gu, F. Kong, T. W. Hawkins, M. Jones, and L. Dong, “Extending mode areas of single-mode all-solid photonic bandgap fibers,” Opt. Express 23(7), 9147–9156 (2015).
    [Crossref] [PubMed]
  11. F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ~1150µm2 effective mode area,” Opt. Express 23(4), 4307–4312 (2015).
    [Crossref] [PubMed]
  12. F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, and L. Dong, “~ 1 kilowatt Ytterbium-doped all-solid photonic bandgap fiber laser,” Proc. SPIE 10083, 1008311 (2017).
    [Crossref]
  13. C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
    [Crossref]
  14. S. Dasgupta, J. R. Hayes, and D. J. Richardson, “Leakage channel fibers with microstuctured cladding elements: A unique LMA platform,” Opt. Express 22(7), 8574–8584 (2014).
    [Crossref] [PubMed]
  15. X. Ma, C. Zhu, I. N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
    [Crossref] [PubMed]
  16. D. Jain, C. Baskiotis, T. C. May-Smith, J. Kim, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J. Sel. Top. Quantum Electron. 20(5), 242–250 (2014).
    [Crossref]
  17. M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, and T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Opt. Express 20(7), 7263–7273 (2012).
    [Crossref] [PubMed]
  18. V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
    [Crossref]
  19. L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22(2), 316–322 (2016).
    [Crossref]
  20. T. Taru, J. Hou, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber,” in Proceedings of IEEE Conference on 33rd European Conference and Exhibition of Optical Communication (IEEE, 2007), pp. 1–2.
    [Crossref]
  21. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
    [Crossref] [PubMed]
  22. X. Fan, M. Chen, A. Shirakawa, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High power Yb-doped photonic bandgap fiber oscillator at 1178 nm,” Opt. Express 20(13), 14471–14476 (2012).
    [Crossref] [PubMed]
  23. L. Wang, D. He, S. Feng, C. Yu, L. Hu, and D. Chen, “Ytterbium-doped phosphate glass single mode photonic crystal fiber with all solid structure,” Opt. Mater. Express 5(4), 742–747 (2015).
    [Crossref]
  24. L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very large-mode-area, symmetry-reduced, neodymium-doped silicate glass all-solid large-pitch fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
    [Crossref]
  25. L. Wang, H. Liu, D. He, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
    [Crossref]
  26. L. Wang, D. He, C. Yu, S. Feng, D. Chen, and L. Hu, “Compact single-mode Nd-doped silicate glass multitrench fiber with 40 μm core diameter,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–4 (2018).
    [Crossref]
  27. W. Li, L. Wang, X. Liu, D. Chen, Q. Zhou, and L. Hu, “Silicate glass all-solid photonic bandgap crystal fiber,” IEEE Photonics Technol. Lett. 27(2), 189–192 (2015).
    [Crossref]
  28. W. Li, M. Li, J. Chen, P. Kuan, D. Chen, Q. Zhou, and L. Hu, “Three-level Nd3+ luminescence enhancement in all-solid silicate glass photonic bandgap fiber,” IEEE Photonics Technol. Lett. 28(21), 2295–2298 (2016).
  29. L. Wang, W. Li, Q. Sheng, Q. Zhou, L. Zhang, L. Hu, J. Qiu, and D. Chen, “All-solid silicate photonic crystal fiber laser with 13.1 W output power and 64.5% slope efficiency,” J. Lightwave Technol. 32(6), 1116–1119 (2014).
    [Crossref]
  30. R. Dauliat, D. Gaponov, A. Benoit, F. Salin, K. Schuster, R. Jamier, and P. Roy, “Inner cladding microstructuration based on symmetry reduction for improvement of singlemode robustness in VLMA fiber,” Opt. Express 21(16), 18927–18936 (2013).
    [Crossref] [PubMed]
  31. F. Stutzki, F. Jansen, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233–242 (2014).
    [Crossref]
  32. F. Gan, Laser Materials (World Scientific, 1995).
  33. K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
    [Crossref]

2018 (1)

L. Wang, D. He, C. Yu, S. Feng, D. Chen, and L. Hu, “Compact single-mode Nd-doped silicate glass multitrench fiber with 40 μm core diameter,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–4 (2018).
[Crossref]

2017 (1)

F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, and L. Dong, “~ 1 kilowatt Ytterbium-doped all-solid photonic bandgap fiber laser,” Proc. SPIE 10083, 1008311 (2017).
[Crossref]

2016 (3)

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22(2), 316–322 (2016).
[Crossref]

L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very large-mode-area, symmetry-reduced, neodymium-doped silicate glass all-solid large-pitch fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
[Crossref]

W. Li, M. Li, J. Chen, P. Kuan, D. Chen, Q. Zhou, and L. Hu, “Three-level Nd3+ luminescence enhancement in all-solid silicate glass photonic bandgap fiber,” IEEE Photonics Technol. Lett. 28(21), 2295–2298 (2016).

2015 (4)

2014 (7)

L. Wang, W. Li, Q. Sheng, Q. Zhou, L. Zhang, L. Hu, J. Qiu, and D. Chen, “All-solid silicate photonic crystal fiber laser with 13.1 W output power and 64.5% slope efficiency,” J. Lightwave Technol. 32(6), 1116–1119 (2014).
[Crossref]

S. Dasgupta, J. R. Hayes, and D. J. Richardson, “Leakage channel fibers with microstuctured cladding elements: A unique LMA platform,” Opt. Express 22(7), 8574–8584 (2014).
[Crossref] [PubMed]

X. Ma, C. Zhu, I. N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
[Crossref] [PubMed]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233–242 (2014).
[Crossref]

L. Wang, H. Liu, D. He, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

D. Jain, C. Baskiotis, T. C. May-Smith, J. Kim, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J. Sel. Top. Quantum Electron. 20(5), 242–250 (2014).
[Crossref]

2013 (3)

2012 (5)

2011 (1)

2010 (2)

S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm,” Opt. Express 18(2), 1249–1254 (2010).
[Crossref] [PubMed]

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
[Crossref]

2009 (1)

2008 (1)

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

2007 (1)

2006 (1)

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[Crossref]

Alkeskjold, T. T.

Ballato, J.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Baskiotis, C.

D. Jain, C. Baskiotis, T. C. May-Smith, J. Kim, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J. Sel. Top. Quantum Electron. 20(5), 242–250 (2014).
[Crossref]

Bass, M.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Baz, A.

Benoit, A.

Bigot, L.

Bouwmans, G.

Broeng, J.

Brooks, C. D.

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[Crossref]

Chen, D.

L. Wang, D. He, C. Yu, S. Feng, D. Chen, and L. Hu, “Compact single-mode Nd-doped silicate glass multitrench fiber with 40 μm core diameter,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–4 (2018).
[Crossref]

L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very large-mode-area, symmetry-reduced, neodymium-doped silicate glass all-solid large-pitch fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
[Crossref]

W. Li, M. Li, J. Chen, P. Kuan, D. Chen, Q. Zhou, and L. Hu, “Three-level Nd3+ luminescence enhancement in all-solid silicate glass photonic bandgap fiber,” IEEE Photonics Technol. Lett. 28(21), 2295–2298 (2016).

W. Li, L. Wang, X. Liu, D. Chen, Q. Zhou, and L. Hu, “Silicate glass all-solid photonic bandgap crystal fiber,” IEEE Photonics Technol. Lett. 27(2), 189–192 (2015).
[Crossref]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, and D. Chen, “Ytterbium-doped phosphate glass single mode photonic crystal fiber with all solid structure,” Opt. Mater. Express 5(4), 742–747 (2015).
[Crossref]

L. Wang, H. Liu, D. He, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

L. Wang, W. Li, Q. Sheng, Q. Zhou, L. Zhang, L. Hu, J. Qiu, and D. Chen, “All-solid silicate photonic crystal fiber laser with 13.1 W output power and 64.5% slope efficiency,” J. Lightwave Technol. 32(6), 1116–1119 (2014).
[Crossref]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

Chen, J.

W. Li, M. Li, J. Chen, P. Kuan, D. Chen, Q. Zhou, and L. Hu, “Three-level Nd3+ luminescence enhancement in all-solid silicate glass photonic bandgap fiber,” IEEE Photonics Technol. Lett. 28(21), 2295–2298 (2016).

Chen, M.

Chen, Y.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Cheung, E.

Dajani, I.

F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, and L. Dong, “~ 1 kilowatt Ytterbium-doped all-solid photonic bandgap fiber laser,” Proc. SPIE 10083, 1008311 (2017).
[Crossref]

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22(2), 316–322 (2016).
[Crossref]

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ~1150µm2 effective mode area,” Opt. Express 23(4), 4307–4312 (2015).
[Crossref] [PubMed]

Dasgupta, S.

Dauliat, R.

Di Teodoro, F.

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[Crossref]

Dong, L.

Dunn, C.

Ermeneux, S.

Fan, X.

Feng, S.

L. Wang, D. He, C. Yu, S. Feng, D. Chen, and L. Hu, “Compact single-mode Nd-doped silicate glass multitrench fiber with 40 μm core diameter,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–4 (2018).
[Crossref]

L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very large-mode-area, symmetry-reduced, neodymium-doped silicate glass all-solid large-pitch fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
[Crossref]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, and D. Chen, “Ytterbium-doped phosphate glass single mode photonic crystal fiber with all solid structure,” Opt. Mater. Express 5(4), 742–747 (2015).
[Crossref]

Feng, Z. M.

Foy, P.

Fujimaki, M.

Galvanauskas, A.

Gaponov, D.

Gu, G.

Hawkins, T.

Hawkins, T. W.

F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, and L. Dong, “~ 1 kilowatt Ytterbium-doped all-solid photonic bandgap fiber laser,” Proc. SPIE 10083, 1008311 (2017).
[Crossref]

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22(2), 316–322 (2016).
[Crossref]

G. Gu, F. Kong, T. W. Hawkins, M. Jones, and L. Dong, “Extending mode areas of single-mode all-solid photonic bandgap fibers,” Opt. Express 23(7), 9147–9156 (2015).
[Crossref] [PubMed]

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ~1150µm2 effective mode area,” Opt. Express 23(4), 4307–4312 (2015).
[Crossref] [PubMed]

Hayes, J. R.

He, D.

L. Wang, D. He, C. Yu, S. Feng, D. Chen, and L. Hu, “Compact single-mode Nd-doped silicate glass multitrench fiber with 40 μm core diameter,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–4 (2018).
[Crossref]

L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very large-mode-area, symmetry-reduced, neodymium-doped silicate glass all-solid large-pitch fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
[Crossref]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, and D. Chen, “Ytterbium-doped phosphate glass single mode photonic crystal fiber with all solid structure,” Opt. Mater. Express 5(4), 742–747 (2015).
[Crossref]

L. Wang, H. Liu, D. He, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

Hou, J.

T. Taru, J. Hou, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber,” in Proceedings of IEEE Conference on 33rd European Conference and Exhibition of Optical Communication (IEEE, 2007), pp. 1–2.
[Crossref]

Hu, I. N.

Hu, L.

L. Wang, D. He, C. Yu, S. Feng, D. Chen, and L. Hu, “Compact single-mode Nd-doped silicate glass multitrench fiber with 40 μm core diameter,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–4 (2018).
[Crossref]

L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very large-mode-area, symmetry-reduced, neodymium-doped silicate glass all-solid large-pitch fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
[Crossref]

W. Li, M. Li, J. Chen, P. Kuan, D. Chen, Q. Zhou, and L. Hu, “Three-level Nd3+ luminescence enhancement in all-solid silicate glass photonic bandgap fiber,” IEEE Photonics Technol. Lett. 28(21), 2295–2298 (2016).

L. Wang, D. He, S. Feng, C. Yu, L. Hu, and D. Chen, “Ytterbium-doped phosphate glass single mode photonic crystal fiber with all solid structure,” Opt. Mater. Express 5(4), 742–747 (2015).
[Crossref]

W. Li, L. Wang, X. Liu, D. Chen, Q. Zhou, and L. Hu, “Silicate glass all-solid photonic bandgap crystal fiber,” IEEE Photonics Technol. Lett. 27(2), 189–192 (2015).
[Crossref]

L. Wang, H. Liu, D. He, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

L. Wang, W. Li, Q. Sheng, Q. Zhou, L. Zhang, L. Hu, J. Qiu, and D. Chen, “All-solid silicate photonic crystal fiber laser with 13.1 W output power and 64.5% slope efficiency,” J. Lightwave Technol. 32(6), 1116–1119 (2014).
[Crossref]

Jain, D.

D. Jain, C. Baskiotis, T. C. May-Smith, J. Kim, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J. Sel. Top. Quantum Electron. 20(5), 242–250 (2014).
[Crossref]

Jamier, R.

Jansen, F.

Jauregui, C.

Jiang, Z. H.

Jones, M.

Jørgensen, M. M.

Kalichevsky-Dong, M. T.

F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, and L. Dong, “~ 1 kilowatt Ytterbium-doped all-solid photonic bandgap fiber laser,” Proc. SPIE 10083, 1008311 (2017).
[Crossref]

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22(2), 316–322 (2016).
[Crossref]

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ~1150µm2 effective mode area,” Opt. Express 23(4), 4307–4312 (2015).
[Crossref] [PubMed]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref] [PubMed]

Kaplan, A.

Kashiwagi, M.

Kim, J.

D. Jain, C. Baskiotis, T. C. May-Smith, J. Kim, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J. Sel. Top. Quantum Electron. 20(5), 242–250 (2014).
[Crossref]

Knight, J. C.

T. Taru, J. Hou, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber,” in Proceedings of IEEE Conference on 33rd European Conference and Exhibition of Optical Communication (IEEE, 2007), pp. 1–2.
[Crossref]

Kong, F.

Koshiba, M.

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
[Crossref]

Kuan, P.

W. Li, M. Li, J. Chen, P. Kuan, D. Chen, Q. Zhou, and L. Hu, “Three-level Nd3+ luminescence enhancement in all-solid silicate glass photonic bandgap fiber,” IEEE Photonics Technol. Lett. 28(21), 2295–2298 (2016).

Lægsgaard, J.

Laurila, M.

Li, M.

W. Li, M. Li, J. Chen, P. Kuan, D. Chen, Q. Zhou, and L. Hu, “Three-level Nd3+ luminescence enhancement in all-solid silicate glass photonic bandgap fiber,” IEEE Photonics Technol. Lett. 28(21), 2295–2298 (2016).

Li, W.

W. Li, M. Li, J. Chen, P. Kuan, D. Chen, Q. Zhou, and L. Hu, “Three-level Nd3+ luminescence enhancement in all-solid silicate glass photonic bandgap fiber,” IEEE Photonics Technol. Lett. 28(21), 2295–2298 (2016).

W. Li, L. Wang, X. Liu, D. Chen, Q. Zhou, and L. Hu, “Silicate glass all-solid photonic bandgap crystal fiber,” IEEE Photonics Technol. Lett. 27(2), 189–192 (2015).
[Crossref]

L. Wang, W. Li, Q. Sheng, Q. Zhou, L. Zhang, L. Hu, J. Qiu, and D. Chen, “All-solid silicate photonic crystal fiber laser with 13.1 W output power and 64.5% slope efficiency,” J. Lightwave Technol. 32(6), 1116–1119 (2014).
[Crossref]

Limpert, J.

Linke, S.

Liu, H.

L. Wang, H. Liu, D. He, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

Liu, T.

Liu, X.

W. Li, L. Wang, X. Liu, D. Chen, Q. Zhou, and L. Hu, “Silicate glass all-solid photonic bandgap crystal fiber,” IEEE Photonics Technol. Lett. 27(2), 189–192 (2015).
[Crossref]

Lyngsø, J. K.

Ma, X.

Maruyama, H.

Matsuo, S.

May-Smith, T. C.

D. Jain, C. Baskiotis, T. C. May-Smith, J. Kim, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J. Sel. Top. Quantum Electron. 20(5), 242–250 (2014).
[Crossref]

Mcclane, D.

McComb, T.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Murao, T.

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
[Crossref]

Olausson, C. B.

Otto, H. J.

Palese, S. P.

Parsons, J.

F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, and L. Dong, “~ 1 kilowatt Ytterbium-doped all-solid photonic bandgap fiber laser,” Proc. SPIE 10083, 1008311 (2017).
[Crossref]

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22(2), 316–322 (2016).
[Crossref]

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ~1150µm2 effective mode area,” Opt. Express 23(4), 4307–4312 (2015).
[Crossref] [PubMed]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref] [PubMed]

Peng, M.

Petersen, S. R.

Pulford, B.

F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, and L. Dong, “~ 1 kilowatt Ytterbium-doped all-solid photonic bandgap fiber laser,” Proc. SPIE 10083, 1008311 (2017).
[Crossref]

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22(2), 316–322 (2016).
[Crossref]

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ~1150µm2 effective mode area,” Opt. Express 23(4), 4307–4312 (2015).
[Crossref] [PubMed]

Qian, Q.

Qiu, J.

Quiquempois, Y.

Rademaker, K.

Richardson, D. J.

Richardson, M.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Rosa, L.

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
[Crossref]

Röser, F.

Rothhardt, J.

Roy, P.

Sahu, J. K.

D. Jain, C. Baskiotis, T. C. May-Smith, J. Kim, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J. Sel. Top. Quantum Electron. 20(5), 242–250 (2014).
[Crossref]

Saitoh, K.

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22(2), 316–322 (2016).
[Crossref]

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ~1150µm2 effective mode area,” Opt. Express 23(4), 4307–4312 (2015).
[Crossref] [PubMed]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref] [PubMed]

M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Low bending loss and effectively single-mode all-solid photonic bandgap fiber with an effective area of 650 μm2.,” Opt. Lett. 37(8), 1292–1294 (2012).
[Crossref] [PubMed]

M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012).
[Crossref] [PubMed]

F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. Gu, and L. Dong, “Mode area scaling with all-solid photonic bandgap fibers,” Opt. Express 20(24), 26363–26372 (2012).
[Crossref] [PubMed]

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
[Crossref]

Salin, F.

Schmidt, O.

Schreiber, T.

Schuster, K.

Shen, S.

Sheng, Q.

Shirakawa, A.

Siegman, A.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Stutzki, F.

Sudesh, V.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Takenaga, K.

Tanigawa, S.

Taru, T.

T. Taru, J. Hou, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber,” in Proceedings of IEEE Conference on 33rd European Conference and Exhibition of Optical Communication (IEEE, 2007), pp. 1–2.
[Crossref]

Tünnermann, A.

Ueda, K.

Wang, L.

L. Wang, D. He, C. Yu, S. Feng, D. Chen, and L. Hu, “Compact single-mode Nd-doped silicate glass multitrench fiber with 40 μm core diameter,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–4 (2018).
[Crossref]

L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very large-mode-area, symmetry-reduced, neodymium-doped silicate glass all-solid large-pitch fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
[Crossref]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, and D. Chen, “Ytterbium-doped phosphate glass single mode photonic crystal fiber with all solid structure,” Opt. Mater. Express 5(4), 742–747 (2015).
[Crossref]

W. Li, L. Wang, X. Liu, D. Chen, Q. Zhou, and L. Hu, “Silicate glass all-solid photonic bandgap crystal fiber,” IEEE Photonics Technol. Lett. 27(2), 189–192 (2015).
[Crossref]

L. Wang, H. Liu, D. He, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

L. Wang, W. Li, Q. Sheng, Q. Zhou, L. Zhang, L. Hu, J. Qiu, and D. Chen, “All-solid silicate photonic crystal fiber laser with 13.1 W output power and 64.5% slope efficiency,” J. Lightwave Technol. 32(6), 1116–1119 (2014).
[Crossref]

Wei, X.

Xu, S.

Xu, S. H.

Yang, Z.

Yang, Z. M.

Yu, C.

L. Wang, D. He, C. Yu, S. Feng, D. Chen, and L. Hu, “Compact single-mode Nd-doped silicate glass multitrench fiber with 40 μm core diameter,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–4 (2018).
[Crossref]

L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very large-mode-area, symmetry-reduced, neodymium-doped silicate glass all-solid large-pitch fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
[Crossref]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, and D. Chen, “Ytterbium-doped phosphate glass single mode photonic crystal fiber with all solid structure,” Opt. Mater. Express 5(4), 742–747 (2015).
[Crossref]

L. Wang, H. Liu, D. He, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

Yvernault, P.

Zhang, L.

Zhang, Q.

Zhang, Q. Y.

Zhang, W.

Zhang, W. N.

Zhou, Q.

W. Li, M. Li, J. Chen, P. Kuan, D. Chen, Q. Zhou, and L. Hu, “Three-level Nd3+ luminescence enhancement in all-solid silicate glass photonic bandgap fiber,” IEEE Photonics Technol. Lett. 28(21), 2295–2298 (2016).

W. Li, L. Wang, X. Liu, D. Chen, Q. Zhou, and L. Hu, “Silicate glass all-solid photonic bandgap crystal fiber,” IEEE Photonics Technol. Lett. 27(2), 189–192 (2015).
[Crossref]

L. Wang, W. Li, Q. Sheng, Q. Zhou, L. Zhang, L. Hu, J. Qiu, and D. Chen, “All-solid silicate photonic crystal fiber laser with 13.1 W output power and 64.5% slope efficiency,” J. Lightwave Technol. 32(6), 1116–1119 (2014).
[Crossref]

Zhu, C.

Appl. Phys. B (1)

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Appl. Phys. Lett. (2)

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[Crossref]

L. Wang, H. Liu, D. He, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

L. Wang, D. He, C. Yu, S. Feng, D. Chen, and L. Hu, “Compact single-mode Nd-doped silicate glass multitrench fiber with 40 μm core diameter,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–4 (2018).
[Crossref]

D. Jain, C. Baskiotis, T. C. May-Smith, J. Kim, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J. Sel. Top. Quantum Electron. 20(5), 242–250 (2014).
[Crossref]

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22(2), 316–322 (2016).
[Crossref]

L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very large-mode-area, symmetry-reduced, neodymium-doped silicate glass all-solid large-pitch fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

W. Li, L. Wang, X. Liu, D. Chen, Q. Zhou, and L. Hu, “Silicate glass all-solid photonic bandgap crystal fiber,” IEEE Photonics Technol. Lett. 27(2), 189–192 (2015).
[Crossref]

W. Li, M. Li, J. Chen, P. Kuan, D. Chen, Q. Zhou, and L. Hu, “Three-level Nd3+ luminescence enhancement in all-solid silicate glass photonic bandgap fiber,” IEEE Photonics Technol. Lett. 28(21), 2295–2298 (2016).

J. Lightwave Technol. (2)

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (12)

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
[Crossref] [PubMed]

S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm,” Opt. Express 18(2), 1249–1254 (2010).
[Crossref] [PubMed]

M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, and T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Opt. Express 20(7), 7263–7273 (2012).
[Crossref] [PubMed]

S. Dasgupta, J. R. Hayes, and D. J. Richardson, “Leakage channel fibers with microstuctured cladding elements: A unique LMA platform,” Opt. Express 22(7), 8574–8584 (2014).
[Crossref] [PubMed]

X. Ma, C. Zhu, I. N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
[Crossref] [PubMed]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref] [PubMed]

R. Dauliat, D. Gaponov, A. Benoit, F. Salin, K. Schuster, R. Jamier, and P. Roy, “Inner cladding microstructuration based on symmetry reduction for improvement of singlemode robustness in VLMA fiber,” Opt. Express 21(16), 18927–18936 (2013).
[Crossref] [PubMed]

X. Fan, M. Chen, A. Shirakawa, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High power Yb-doped photonic bandgap fiber oscillator at 1178 nm,” Opt. Express 20(13), 14471–14476 (2012).
[Crossref] [PubMed]

M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012).
[Crossref] [PubMed]

F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. Gu, and L. Dong, “Mode area scaling with all-solid photonic bandgap fibers,” Opt. Express 20(24), 26363–26372 (2012).
[Crossref] [PubMed]

G. Gu, F. Kong, T. W. Hawkins, M. Jones, and L. Dong, “Extending mode areas of single-mode all-solid photonic bandgap fibers,” Opt. Express 23(7), 9147–9156 (2015).
[Crossref] [PubMed]

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ~1150µm2 effective mode area,” Opt. Express 23(4), 4307–4312 (2015).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Optica (1)

Proc. SPIE (1)

F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, and L. Dong, “~ 1 kilowatt Ytterbium-doped all-solid photonic bandgap fiber laser,” Proc. SPIE 10083, 1008311 (2017).
[Crossref]

Other (2)

F. Gan, Laser Materials (World Scientific, 1995).

T. Taru, J. Hou, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber,” in Proceedings of IEEE Conference on 33rd European Conference and Exhibition of Optical Communication (IEEE, 2007), pp. 1–2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Cross-section of the designed fiber, and (b) OF and ΔOF evolutions versus d/Λ.
Fig. 2
Fig. 2 The cross-section of the fabricated fiber.
Fig. 3
Fig. 3 Laser setup used to characterize the laser performance. PM: power meter. OSA: optical spectrum analyzer.
Fig. 4
Fig. 4 (a) Measured output power as a function of the pumping power, and (b) fiber laser spectrum.
Fig. 5
Fig. 5 Near-field pattern of fiber end-face obtained by CCD. Inset: near field pattern of output laser beam.
Fig. 6
Fig. 6 Measured M2 factor of the bandgap fiber. Inset: beam pattern in the far field.

Tables (2)

Tables Icon

Table 1 Thermal Properties of the Glasses

Tables Icon

Table 2 Some Parameters of the N0312 Glass

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V= πd λ n high 2 n low 2
OF= A c Ids A p Ids