Abstract

A novel zigzag metamaterial (ZMM) that is completely different from the planar metamaterial (PMM) with the same unit cell, was designed, simulated and verified in the microwave frequency regime. Due to the properties of the impinging, the TE wave and TM wave are almost totally reflected (TE-metal-like) and totally transmitted (TM-dielectric-like) from the ZMM, and the ZMM is able to adjust the power ratio of the reflection to transmission from 5.24 to 14.52 GHz with the relative bandwidth equivalent to 93.93%. Besides, it also can transform the circularly polarized incident wave into a linearly polarized wave. The characteristics of high efficiency, ultra-broadband and angular stability will facilitate the ZMM in practical applications in communication and polarization control device.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of an ultra-broadband absorber based on plasma metamaterial and lumped resistors

Haifeng Zhang, Jing Yang, Hao Zhang, and Jiaxuan Liu
Opt. Mater. Express 8(8) 2103-2113 (2018)

Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity

Hongyu Shi, Jianxing Li, Anxue Zhang, Jiafu Wang, and Zhuo Xu
Opt. Express 22(17) 20973-20981 (2014)

Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator

Linbo Zhang, Peiheng Zhou, Haipeng Lu, Li Zhang, Jianliang Xie, and Longjiang Deng
Opt. Mater. Express 6(4) 1393-1404 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
    [Crossref] [PubMed]
  2. Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
    [Crossref] [PubMed]
  3. S. W. Ren, H. Meng, F. X. Xin, and T. J. Lu, “Ultrathin multi-slit metamaterial as excellent sound absorber: Influence of micro-structure,” J. Appl. Phys. 119(1), 014901 (2016).
    [Crossref]
  4. B.-X. Wang, X. Zhai, G.-Z. Wang, W.-Q. Huang, and L.-L. Wang, “Frequency tunable metamaterial absorber at deep-subwavelength scale,” Opt. Mater. Express 5(2), 227–235 (2015).
    [Crossref]
  5. S. Viaene, V. Ginis, J. Danckaert, and P. Tassin, “Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides,” Phys. Rev. B 93(8), 085429 (2016).
    [Crossref]
  6. P.-H. Chang, C.-Y. Kuo, and R.-L. Chern, “Wave splitting and double-slit like interference by a pseudochiral metamaterial slab,” J. Phys. D Appl. Phys. 48(29), 295103 (2015).
    [Crossref]
  7. S. Das, N. Hoang-Linh, G. N. Babu, and A. K. Iyer, “Free-Space Focusing at C-Band Using a Flat Fully Printed Multilayer Metamaterial Lens,” IEEE Trans. Antenn. Propag. 63(11), 4702–4714 (2015).
    [Crossref]
  8. S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the Polarization State of Light with a Dispersion-Free Metastructure,” Phys. Rev. X 4(2), 021026 (2014).
    [Crossref]
  9. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
    [Crossref] [PubMed]
  10. Z. Wei, Y. Cao, X. Su, Z. Gong, Y. Long, and H. Li, “Highly efficient beam steering with a transparent metasurface,” Opt. Express 21(9), 10739–10745 (2013).
    [Crossref] [PubMed]
  11. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
    [Crossref]
  12. R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, “Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials,” Opt. Mater. Express 7(3), 977–988 (2017).
    [Crossref]
  13. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref] [PubMed]
  14. Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
    [Crossref] [PubMed]
  15. X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
    [Crossref]
  16. B. Vasić, G. Isić, R. Gajić, and K. Hingerl, “Coordinate transformation based design of confined metamaterial structures,” Phys. Rev. B 79(8), 085103 (2009).
    [Crossref]
  17. Y. Wang, Z. Sun, and P. Xu, “Manipulating the transmission through valve structure composed of zero-index metamaterial,” J. Phys. D Appl. Phys. 50(46), 465104 (2017).
    [Crossref]
  18. R. Alaee, C. Menzel, C. Rockstuhl, and F. Lederer, “Perfect absorbers on curved surfaces and their potential applications.pdf,” Opt. Express 20(16), 18370 (2012).
    [Crossref] [PubMed]
  19. J. S. Hwang, Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, L. Y. Chen, and Y. P. Lee, “Switching and extension of transmission response, based on bending metamaterials,” Sci. Rep. 7(1), 3559 (2017).
    [Crossref] [PubMed]
  20. J. Chen, H. Yang, G. Zhang, Z. Yu, X. Huang, and S. Hu, “Realization of bifunction: dual-band absorption and broad band polarization conversion by zigzag birefringent reflective metamaterial,” J. Phys. D Appl. Phys. 50(20), 205002 (2017).
    [Crossref]
  21. H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
    [Crossref]
  22. Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial,” Appl. Phys. Lett. 105(2), 021110 (2014).
    [Crossref]
  23. Y. Zhao, X. Cao, J. Gao, X. Liu, and S. Li, “Jigsaw puzzle metasurface for multiple functions: polarization conversion, anomalous reflection and diffusion,” Opt. Express 24(10), 11208–11217 (2016).
    [Crossref] [PubMed]
  24. S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
    [Crossref]
  25. M. I. Khan and F. A. Tahir, “Simultaneous quarter-wave plate and half-mirror operation through a highly flexible single layer anisotropic metasurface,” Sci. Rep. 7(1), 16059 (2017).
    [Crossref] [PubMed]
  26. D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface Device with Helicity-Dependent Functionality,” Advanced Optical Materials 4(2), 321–327 (2016).
    [Crossref]
  27. M. Mutlu and E. Ozbay, “A transparent 90 degrees polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
    [Crossref]

2017 (6)

R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, “Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials,” Opt. Mater. Express 7(3), 977–988 (2017).
[Crossref]

Y. Wang, Z. Sun, and P. Xu, “Manipulating the transmission through valve structure composed of zero-index metamaterial,” J. Phys. D Appl. Phys. 50(46), 465104 (2017).
[Crossref]

J. S. Hwang, Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, L. Y. Chen, and Y. P. Lee, “Switching and extension of transmission response, based on bending metamaterials,” Sci. Rep. 7(1), 3559 (2017).
[Crossref] [PubMed]

J. Chen, H. Yang, G. Zhang, Z. Yu, X. Huang, and S. Hu, “Realization of bifunction: dual-band absorption and broad band polarization conversion by zigzag birefringent reflective metamaterial,” J. Phys. D Appl. Phys. 50(20), 205002 (2017).
[Crossref]

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

M. I. Khan and F. A. Tahir, “Simultaneous quarter-wave plate and half-mirror operation through a highly flexible single layer anisotropic metasurface,” Sci. Rep. 7(1), 16059 (2017).
[Crossref] [PubMed]

2016 (6)

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface Device with Helicity-Dependent Functionality,” Advanced Optical Materials 4(2), 321–327 (2016).
[Crossref]

Y. Zhao, X. Cao, J. Gao, X. Liu, and S. Li, “Jigsaw puzzle metasurface for multiple functions: polarization conversion, anomalous reflection and diffusion,” Opt. Express 24(10), 11208–11217 (2016).
[Crossref] [PubMed]

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
[Crossref]

S. W. Ren, H. Meng, F. X. Xin, and T. J. Lu, “Ultrathin multi-slit metamaterial as excellent sound absorber: Influence of micro-structure,” J. Appl. Phys. 119(1), 014901 (2016).
[Crossref]

S. Viaene, V. Ginis, J. Danckaert, and P. Tassin, “Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides,” Phys. Rev. B 93(8), 085429 (2016).
[Crossref]

2015 (7)

P.-H. Chang, C.-Y. Kuo, and R.-L. Chern, “Wave splitting and double-slit like interference by a pseudochiral metamaterial slab,” J. Phys. D Appl. Phys. 48(29), 295103 (2015).
[Crossref]

S. Das, N. Hoang-Linh, G. N. Babu, and A. K. Iyer, “Free-Space Focusing at C-Band Using a Flat Fully Printed Multilayer Metamaterial Lens,” IEEE Trans. Antenn. Propag. 63(11), 4702–4714 (2015).
[Crossref]

B.-X. Wang, X. Zhai, G.-Z. Wang, W.-Q. Huang, and L.-L. Wang, “Frequency tunable metamaterial absorber at deep-subwavelength scale,” Opt. Mater. Express 5(2), 227–235 (2015).
[Crossref]

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

2014 (2)

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the Polarization State of Light with a Dispersion-Free Metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial,” Appl. Phys. Lett. 105(2), 021110 (2014).
[Crossref]

2013 (2)

Z. Wei, Y. Cao, X. Su, Z. Gong, Y. Long, and H. Li, “Highly efficient beam steering with a transparent metasurface,” Opt. Express 21(9), 10739–10745 (2013).
[Crossref] [PubMed]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

2012 (3)

R. Alaee, C. Menzel, C. Rockstuhl, and F. Lederer, “Perfect absorbers on curved surfaces and their potential applications.pdf,” Opt. Express 20(16), 18370 (2012).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

M. Mutlu and E. Ozbay, “A transparent 90 degrees polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

2009 (1)

B. Vasić, G. Isić, R. Gajić, and K. Hingerl, “Coordinate transformation based design of confined metamaterial structures,” Phys. Rev. B 79(8), 085103 (2009).
[Crossref]

Aieta, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Alaee, R.

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Ardron, M.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface Device with Helicity-Dependent Functionality,” Advanced Optical Materials 4(2), 321–327 (2016).
[Crossref]

Babu, G. N.

S. Das, N. Hoang-Linh, G. N. Babu, and A. K. Iyer, “Free-Space Focusing at C-Band Using a Flat Fully Printed Multilayer Metamaterial Lens,” IEEE Trans. Antenn. Propag. 63(11), 4702–4714 (2015).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Bao, D.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Cao, W.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Cao, X.

Cao, Y.

Capasso, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Chan, K.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface Device with Helicity-Dependent Functionality,” Advanced Optical Materials 4(2), 321–327 (2016).
[Crossref]

Chang, P.-H.

P.-H. Chang, C.-Y. Kuo, and R.-L. Chern, “Wave splitting and double-slit like interference by a pseudochiral metamaterial slab,” J. Phys. D Appl. Phys. 48(29), 295103 (2015).
[Crossref]

Cheah, K. W.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface Device with Helicity-Dependent Functionality,” Advanced Optical Materials 4(2), 321–327 (2016).
[Crossref]

Chen, J.

J. Chen, H. Yang, G. Zhang, Z. Yu, X. Huang, and S. Hu, “Realization of bifunction: dual-band absorption and broad band polarization conversion by zigzag birefringent reflective metamaterial,” J. Phys. D Appl. Phys. 50(20), 205002 (2017).
[Crossref]

Chen, L. Y.

J. S. Hwang, Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, L. Y. Chen, and Y. P. Lee, “Switching and extension of transmission response, based on bending metamaterials,” Sci. Rep. 7(1), 3559 (2017).
[Crossref] [PubMed]

Chen, M.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface Device with Helicity-Dependent Functionality,” Advanced Optical Materials 4(2), 321–327 (2016).
[Crossref]

Chen, S.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface Device with Helicity-Dependent Functionality,” Advanced Optical Materials 4(2), 321–327 (2016).
[Crossref]

Chen, X.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface Device with Helicity-Dependent Functionality,” Advanced Optical Materials 4(2), 321–327 (2016).
[Crossref]

Cheng, H.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Cheng, Q.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Chern, R.-L.

P.-H. Chang, C.-Y. Kuo, and R.-L. Chern, “Wave splitting and double-slit like interference by a pseudochiral metamaterial slab,” J. Phys. D Appl. Phys. 48(29), 295103 (2015).
[Crossref]

Cong, L.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Cui, T. J.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Danckaert, J.

S. Viaene, V. Ginis, J. Danckaert, and P. Tassin, “Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides,” Phys. Rev. B 93(8), 085429 (2016).
[Crossref]

Das, S.

S. Das, N. Hoang-Linh, G. N. Babu, and A. K. Iyer, “Free-Space Focusing at C-Band Using a Flat Fully Printed Multilayer Metamaterial Lens,” IEEE Trans. Antenn. Propag. 63(11), 4702–4714 (2015).
[Crossref]

Du, L.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Gajic, R.

B. Vasić, G. Isić, R. Gajić, and K. Hingerl, “Coordinate transformation based design of confined metamaterial structures,” Phys. Rev. B 79(8), 085103 (2009).
[Crossref]

Gao, J.

Genevet, P.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Ginis, V.

S. Viaene, V. Ginis, J. Danckaert, and P. Tassin, “Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides,” Phys. Rev. B 93(8), 085429 (2016).
[Crossref]

Gong, Z.

Gu, J.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Guan, C. Y.

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Gui, X.

Guo, L.

X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
[Crossref]

Han, J.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Hingerl, K.

B. Vasić, G. Isić, R. Gajić, and K. Hingerl, “Coordinate transformation based design of confined metamaterial structures,” Phys. Rev. B 79(8), 085103 (2009).
[Crossref]

Hoang-Linh, N.

S. Das, N. Hoang-Linh, G. N. Babu, and A. K. Iyer, “Free-Space Focusing at C-Band Using a Flat Fully Printed Multilayer Metamaterial Lens,” IEEE Trans. Antenn. Propag. 63(11), 4702–4714 (2015).
[Crossref]

Hong, Z.

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Hu, S.

J. Chen, H. Yang, G. Zhang, Z. Yu, X. Huang, and S. Hu, “Realization of bifunction: dual-band absorption and broad band polarization conversion by zigzag birefringent reflective metamaterial,” J. Phys. D Appl. Phys. 50(20), 205002 (2017).
[Crossref]

Hu, Y. H.

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the Polarization State of Light with a Dispersion-Free Metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Hu, Y. S.

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the Polarization State of Light with a Dispersion-Free Metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Huang, W.-Q.

Huang, X.

J. Chen, H. Yang, G. Zhang, Z. Yu, X. Huang, and S. Hu, “Realization of bifunction: dual-band absorption and broad band polarization conversion by zigzag birefringent reflective metamaterial,” J. Phys. D Appl. Phys. 50(20), 205002 (2017).
[Crossref]

X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
[Crossref]

Hwang, J. S.

J. S. Hwang, Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, L. Y. Chen, and Y. P. Lee, “Switching and extension of transmission response, based on bending metamaterials,” Sci. Rep. 7(1), 3559 (2017).
[Crossref] [PubMed]

Isic, G.

B. Vasić, G. Isić, R. Gajić, and K. Hingerl, “Coordinate transformation based design of confined metamaterial structures,” Phys. Rev. B 79(8), 085103 (2009).
[Crossref]

Iyer, A. K.

S. Das, N. Hoang-Linh, G. N. Babu, and A. K. Iyer, “Free-Space Focusing at C-Band Using a Flat Fully Printed Multilayer Metamaterial Lens,” IEEE Trans. Antenn. Propag. 63(11), 4702–4714 (2015).
[Crossref]

Jiang, S. C.

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the Polarization State of Light with a Dispersion-Free Metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Jiang, W. X.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Jing, X.

Kats, M. A.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Khan, M. I.

M. I. Khan and F. A. Tahir, “Simultaneous quarter-wave plate and half-mirror operation through a highly flexible single layer anisotropic metasurface,” Sci. Rep. 7(1), 16059 (2017).
[Crossref] [PubMed]

Kim, K. W.

J. S. Hwang, Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, L. Y. Chen, and Y. P. Lee, “Switching and extension of transmission response, based on bending metamaterials,” Sci. Rep. 7(1), 3559 (2017).
[Crossref] [PubMed]

Kim, Y. J.

J. S. Hwang, Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, L. Y. Chen, and Y. P. Lee, “Switching and extension of transmission response, based on bending metamaterials,” Sci. Rep. 7(1), 3559 (2017).
[Crossref] [PubMed]

Kitano, M.

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial,” Appl. Phys. Lett. 105(2), 021110 (2014).
[Crossref]

Koschny, T.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Kuo, C.-Y.

P.-H. Chang, C.-Y. Kuo, and R.-L. Chern, “Wave splitting and double-slit like interference by a pseudochiral metamaterial slab,” J. Phys. D Appl. Phys. 48(29), 295103 (2015).
[Crossref]

Lan, C.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Lederer, F.

Lee, Y. P.

J. S. Hwang, Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, L. Y. Chen, and Y. P. Lee, “Switching and extension of transmission response, based on bending metamaterials,” Sci. Rep. 7(1), 3559 (2017).
[Crossref] [PubMed]

Li, B.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Li, G.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface Device with Helicity-Dependent Functionality,” Advanced Optical Materials 4(2), 321–327 (2016).
[Crossref]

Li, H.

Li, J.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Li, K. F.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface Device with Helicity-Dependent Functionality,” Advanced Optical Materials 4(2), 321–327 (2016).
[Crossref]

Li, Q.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Li, S.

Li, Y. X.

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Li, Z.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Liu, S.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Liu, X.

Liu, Z.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Long, Y.

Lou, Y.

X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
[Crossref]

Lu, T. J.

S. W. Ren, H. Meng, F. X. Xin, and T. J. Lu, “Ultrathin multi-slit metamaterial as excellent sound absorber: Influence of micro-structure,” J. Appl. Phys. 119(1), 014901 (2016).
[Crossref]

Ma, G. B.

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the Polarization State of Light with a Dispersion-Free Metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Ma, H. F.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Ma, J.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Meng, H.

S. W. Ren, H. Meng, F. X. Xin, and T. J. Lu, “Ultrathin multi-slit metamaterial as excellent sound absorber: Influence of micro-structure,” J. Appl. Phys. 119(1), 014901 (2016).
[Crossref]

Meng, Y.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Menzel, C.

Mutlu, M.

M. Mutlu and E. Ozbay, “A transparent 90 degrees polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Nakanishi, T.

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial,” Appl. Phys. Lett. 105(2), 021110 (2014).
[Crossref]

Nie, G. Y.

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Ouyang, C.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Ozbay, E.

M. Mutlu and E. Ozbay, “A transparent 90 degrees polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Peng, R. W.

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the Polarization State of Light with a Dispersion-Free Metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Pun, E. Y. B.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface Device with Helicity-Dependent Functionality,” Advanced Optical Materials 4(2), 321–327 (2016).
[Crossref]

Qiao, M.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Ren, S. W.

S. W. Ren, H. Meng, F. X. Xin, and T. J. Lu, “Ultrathin multi-slit metamaterial as excellent sound absorber: Influence of micro-structure,” J. Appl. Phys. 119(1), 014901 (2016).
[Crossref]

Rhee, J. Y.

J. S. Hwang, Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, L. Y. Chen, and Y. P. Lee, “Switching and extension of transmission response, based on bending metamaterials,” Sci. Rep. 7(1), 3559 (2017).
[Crossref] [PubMed]

Rockstuhl, C.

Shen, N. H.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Shi, J. H.

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Shi, Q. C.

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

Singh, R.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Soukoulis, C. M.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Su, X.

Sun, C.

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the Polarization State of Light with a Dispersion-Free Metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Sun, Z.

Y. Wang, Z. Sun, and P. Xu, “Manipulating the transmission through valve structure composed of zero-index metamaterial,” J. Phys. D Appl. Phys. 50(46), 465104 (2017).
[Crossref]

Tahir, F. A.

M. I. Khan and F. A. Tahir, “Simultaneous quarter-wave plate and half-mirror operation through a highly flexible single layer anisotropic metasurface,” Sci. Rep. 7(1), 16059 (2017).
[Crossref] [PubMed]

Tamayama, Y.

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial,” Appl. Phys. Lett. 105(2), 021110 (2014).
[Crossref]

Tang, W. X.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Tassin, P.

S. Viaene, V. Ginis, J. Danckaert, and P. Tassin, “Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides,” Phys. Rev. B 93(8), 085429 (2016).
[Crossref]

Tian, J.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Tian, Y.

Tian, Z.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Vasic, B.

B. Vasić, G. Isić, R. Gajić, and K. Hingerl, “Coordinate transformation based design of confined metamaterial structures,” Phys. Rev. B 79(8), 085103 (2009).
[Crossref]

Viaene, S.

S. Viaene, V. Ginis, J. Danckaert, and P. Tassin, “Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides,” Phys. Rev. B 93(8), 085429 (2016).
[Crossref]

Wan, X.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Wang, B.-X.

Wang, D.

X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
[Crossref]

Wang, G.-Z.

Wang, L.-L.

Wang, M.

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the Polarization State of Light with a Dispersion-Free Metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Wang, Y.

Y. Wang, Z. Sun, and P. Xu, “Manipulating the transmission through valve structure composed of zero-index metamaterial,” J. Phys. D Appl. Phys. 50(46), 465104 (2017).
[Crossref]

Wei, X.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Wei, Z.

Wen, D.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface Device with Helicity-Dependent Functionality,” Advanced Optical Materials 4(2), 321–327 (2016).
[Crossref]

Wong, P. W. H.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface Device with Helicity-Dependent Functionality,” Advanced Optical Materials 4(2), 321–327 (2016).
[Crossref]

Xia, R.

Xiao, Z.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Xin, F. X.

S. W. Ren, H. Meng, F. X. Xin, and T. J. Lu, “Ultrathin multi-slit metamaterial as excellent sound absorber: Influence of micro-structure,” J. Appl. Phys. 119(1), 014901 (2016).
[Crossref]

Xiong, X.

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the Polarization State of Light with a Dispersion-Free Metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Xu, P.

Y. Wang, Z. Sun, and P. Xu, “Manipulating the transmission through valve structure composed of zero-index metamaterial,” J. Phys. D Appl. Phys. 50(46), 465104 (2017).
[Crossref]

Xu, Q.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Yang, H.

J. Chen, H. Yang, G. Zhang, Z. Yu, X. Huang, and S. Hu, “Realization of bifunction: dual-band absorption and broad band polarization conversion by zigzag birefringent reflective metamaterial,” J. Phys. D Appl. Phys. 50(20), 205002 (2017).
[Crossref]

X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
[Crossref]

Yasui, K.

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial,” Appl. Phys. Lett. 105(2), 021110 (2014).
[Crossref]

Yoo, Y. J.

J. S. Hwang, Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, L. Y. Chen, and Y. P. Lee, “Switching and extension of transmission response, based on bending metamaterials,” Sci. Rep. 7(1), 3559 (2017).
[Crossref] [PubMed]

Yu, N.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Yu, P.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Yu, S.

X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
[Crossref]

Yu, Z.

J. Chen, H. Yang, G. Zhang, Z. Yu, X. Huang, and S. Hu, “Realization of bifunction: dual-band absorption and broad band polarization conversion by zigzag birefringent reflective metamaterial,” J. Phys. D Appl. Phys. 50(20), 205002 (2017).
[Crossref]

Yuan, H.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Yue, F.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface Device with Helicity-Dependent Functionality,” Advanced Optical Materials 4(2), 321–327 (2016).
[Crossref]

Zhai, X.

Zhang, F.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Zhang, G.

J. Chen, H. Yang, G. Zhang, Z. Yu, X. Huang, and S. Hu, “Realization of bifunction: dual-band absorption and broad band polarization conversion by zigzag birefringent reflective metamaterial,” J. Phys. D Appl. Phys. 50(20), 205002 (2017).
[Crossref]

Zhang, P.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Zhang, S.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface Device with Helicity-Dependent Functionality,” Advanced Optical Materials 4(2), 321–327 (2016).
[Crossref]

Zhang, W.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Zhang, X.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Zhao, Q.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Zhao, Y.

Zhou, J.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Zhou, X. Y.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Adv. Mater. (1)

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Advanced Optical Materials (1)

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface Device with Helicity-Dependent Functionality,” Advanced Optical Materials 4(2), 321–327 (2016).
[Crossref]

Appl. Phys. Lett. (4)

M. Mutlu and E. Ozbay, “A transparent 90 degrees polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Y. Tamayama, K. Yasui, T. Nakanishi, and M. Kitano, “A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial,” Appl. Phys. Lett. 105(2), 021110 (2014).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

S. Das, N. Hoang-Linh, G. N. Babu, and A. K. Iyer, “Free-Space Focusing at C-Band Using a Flat Fully Printed Multilayer Metamaterial Lens,” IEEE Trans. Antenn. Propag. 63(11), 4702–4714 (2015).
[Crossref]

J. Appl. Phys. (1)

S. W. Ren, H. Meng, F. X. Xin, and T. J. Lu, “Ultrathin multi-slit metamaterial as excellent sound absorber: Influence of micro-structure,” J. Appl. Phys. 119(1), 014901 (2016).
[Crossref]

J. Phys. D Appl. Phys. (4)

P.-H. Chang, C.-Y. Kuo, and R.-L. Chern, “Wave splitting and double-slit like interference by a pseudochiral metamaterial slab,” J. Phys. D Appl. Phys. 48(29), 295103 (2015).
[Crossref]

X. Huang, H. Yang, D. Wang, S. Yu, Y. Lou, and L. Guo, “Calculations of a wideband metamaterial absorber using equivalent medium theory,” J. Phys. D Appl. Phys. 49(32), 325101 (2016).
[Crossref]

Y. Wang, Z. Sun, and P. Xu, “Manipulating the transmission through valve structure composed of zero-index metamaterial,” J. Phys. D Appl. Phys. 50(46), 465104 (2017).
[Crossref]

J. Chen, H. Yang, G. Zhang, Z. Yu, X. Huang, and S. Hu, “Realization of bifunction: dual-band absorption and broad band polarization conversion by zigzag birefringent reflective metamaterial,” J. Phys. D Appl. Phys. 50(20), 205002 (2017).
[Crossref]

Light Sci. Appl. (1)

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Nano Lett. (1)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Mater. Express (2)

Phys. Rev. B (2)

B. Vasić, G. Isić, R. Gajić, and K. Hingerl, “Coordinate transformation based design of confined metamaterial structures,” Phys. Rev. B 79(8), 085103 (2009).
[Crossref]

S. Viaene, V. Ginis, J. Danckaert, and P. Tassin, “Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides,” Phys. Rev. B 93(8), 085429 (2016).
[Crossref]

Phys. Rev. X (1)

S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, “Controlling the Polarization State of Light with a Dispersion-Free Metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Sci. Rep. (3)

J. H. Shi, Q. C. Shi, Y. X. Li, G. Y. Nie, C. Y. Guan, and T. J. Cui, “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep. 5(1), 16666 (2015).
[Crossref] [PubMed]

J. S. Hwang, Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, L. Y. Chen, and Y. P. Lee, “Switching and extension of transmission response, based on bending metamaterials,” Sci. Rep. 7(1), 3559 (2017).
[Crossref] [PubMed]

M. I. Khan and F. A. Tahir, “Simultaneous quarter-wave plate and half-mirror operation through a highly flexible single layer anisotropic metasurface,” Sci. Rep. 7(1), 16059 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) and (b) Schematics of the PMM and ZMM. (c) Perspective of the unit cell of the ZMM, which consists of two unit cells of the PMM.
Fig. 2
Fig. 2 The simulated reflection and transmission coefficients of the PMM for normal incidence.
Fig. 3
Fig. 3 The simulated reflection and transmission coefficients of the ZMM when θ= 0 .
Fig. 4
Fig. 4 (a) and (b) The energy spectra of reflection and transmission. (c) The energy ratio of reflection to the transmission.
Fig. 5
Fig. 5 The azimuth angle, ellipticity and polarization states of the reflected and transmitted wave under circularly polarized incidence.
Fig. 6
Fig. 6 The reflected and transmitted coefficients of the ZMM under oblique incidence.
Fig. 7
Fig. 7 (a) Part of the scan image of the PMM. (b) and (c) The photographs of the ZMM and its local enlarged drawing.
Fig. 8
Fig. 8 The measured reflection and transmission coefficients of the PMM.
Fig. 9
Fig. 9 The measured reflection and transmission coefficients of the ZMM when θ= 0 .

Metrics