Abstract

Isomorphic materials tend to exhibit differentiated performance due to the small differences between the constituent atoms and the crystal structures. Inspired by the isomorphic strategy, herein we developed a novel trap-controlled mechanoluminescent (TC-ML) material, Pr3+-activated Sr2Nb2O7, that shows mechanoluminescence (ML) under the mechanical actions of compression and friction. Compared to the isomorphic Ca2Nb2O7:Pr3+ which requires a long-time delay to achieve high-contrast ML due to the strong long-lasting afterglow, Sr2Nb2O7:Pr3+ enables the obtaining of high-contrast ML in a short-time delay because of the weak short-lasting afterglow, which greatly simplifies the imaging process to facilitate the further application of ML. The investigations of structural and optical characteristics between Sr2Nb2O7:Pr3+ and Ca2Nb2O7:Pr3+ reveal that the unique ML of Sr2Nb2O7:Pr3+ should result from its lower trap concentration and shallower trap depth relative to Ca2Nb2O7:Pr3+. Our results are expected to deepen our understanding on the behavioral diversity of isomorphic phosphors and thereby broaden the horizon of designing and regulating TC-ML materials.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Piezoluminescence from ferroelectric Ca3Ti2O7:Pr3+ long-persistent phosphor

Xin-Hua Fan, Jun-Cheng Zhang, Min Zhang, Cong Pan, Xu Yan, Wen-Peng Han, Hong-Di Zhang, Yun-Ze Long, and Xusheng Wang
Opt. Express 25(13) 14238-14246 (2017)

Elastico-mechanoluminescent enhancement with Gd3+ codoping in diphase (Ba,Ca)TiO3:Pr3+

Jun-Cheng Zhang, Yong Wan, Xing Xin, Wen-Peng Han, Hong-Di Zhang, Bin Sun, Yun-Ze Long, and Xusheng Wang
Opt. Mater. Express 4(11) 2300-2309 (2014)

Persistent luminescence fading in Sr2MgSi2O7:Eu2+,R3+ materials: a thermoluminescence study

Hermi F. Brito, Jorma Hölsä, Högne Jungner, Taneli Laamanen, Mika Lastusaari, Marja Malkamäki, and Lucas C.V. Rodrigues
Opt. Mater. Express 2(3) 287-293 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y. Sagara and T. Kato, “Mechanically induced luminescence changes in molecular assemblies,” Nat. Chem. 1(8), 605–610 (2009).
    [Crossref] [PubMed]
  2. M. Jin, T. Seki, and H. Ito, “Mechano-responsive luminescence via crystal-to-crystal phase transitions between chiral and non-chiral space groups,” J. Am. Chem. Soc. 139(22), 7452–7455 (2017).
    [Crossref] [PubMed]
  3. Y. Sagara, K. Kubo, T. Nakamura, N. Tamaoki, and C. Weder, “Temperature-dependent mechanochromic behavior of mechanoresponsive luminescent compounds,” Chem. Mater. 29(3), 1273–1278 (2017).
    [Crossref]
  4. X. Li, R. Liang, J. Tao, Z. Peng, Q. Xu, X. Han, X. Wang, C. Wang, J. Zhu, C. Pan, and Z. L. Wang, “Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting,” ACS Nano 11(4), 3883–3889 (2017).
    [Crossref] [PubMed]
  5. Y. Chen, Y. Zhang, D. Karnaushenko, L. Chen, J. Hao, F. Ding, and O. G. Schmidt, “Addressable and color-tunable piezophotonic light-emitting stripes,” Adv. Mater. 29(19), 1605165 (2017).
    [Crossref] [PubMed]
  6. D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
    [Crossref] [PubMed]
  7. J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
    [Crossref]
  8. J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
    [Crossref]
  9. C. Pan, J. C. Zhang, M. Zhang, X. Yan, Y. Z. Long, and X. Wang, “Intrinsic oxygen vacancies mediated multi-mechano-responsive piezoluminescence in undoped zinc calcium oxysulfide,” Appl. Phys. Lett. 110(23), 233904 (2017).
    [Crossref]
  10. X. H. Fan, J. C. Zhang, M. Zhang, C. Pan, X. Yan, W. P. Han, H. D. Zhang, Y. Z. Long, and X. Wang, “Piezoluminescence from ferroelectric Ca3Ti2O7:Pr3+ long-persistent phosphor,” Opt. Express 25(13), 14238–14246 (2017).
    [Crossref] [PubMed]
  11. N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J. 13(10), 3999–4004 (2013).
    [Crossref]
  12. N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
    [Crossref]
  13. Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of highpressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
    [Crossref]
  14. K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
    [Crossref] [PubMed]
  15. S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
    [Crossref]
  16. S. M. Jeong, S. Song, H. J. Seo, W. M. Choi, S. H. Hwang, S. G. Lee, and S. K. Lim, “Battery-free, human-motion-powered light-emitting fabric: Mechanoluminescent textile,” Adv. Sust. Syst. 1(12), 1700126 (2017).
    [Crossref]
  17. M. C. Wong, L. Chen, G. Bai, L. B. Huang, and J. Hao, “Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field,” Adv. Mater. 29(43), 1701945 (2017).
    [Crossref] [PubMed]
  18. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
    [Crossref]
  19. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
    [Crossref]
  20. S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
    [Crossref] [PubMed]
  21. H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett. 91(8), 081905 (2007).
    [Crossref]
  22. Y. Terasawa, C. N. Xu, H. Yamada, and M. Kubo, “Near infra-red mechanoluminescence from strontium aluminate doped with rare-earth ions,” IOP Conf. Series Mater. Sci. Eng. 18(21), 212013 (2011).
    [Crossref]
  23. J. C. Zhang, C. N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express 21(11), 12976–12986 (2013).
    [Crossref] [PubMed]
  24. D. Tu, C. N. Xu, Y. Fujio, and A. Yoshida, “Mechanism of mechanical quenching and mechanoluminescence in phosphorescent CaZnOS:Cu,” Light Sci. Appl. 4(11), e356 (2015).
    [Crossref]
  25. H. Zhang, D. Peng, W. Wang, L. Dong, and C. Pan, “Mechanically induced light emission and infrared-laser-induced upconversion in the Er-doped CaZnOS multifunctional piezoelectric semiconductor for optical pressure and temperature sensing,” J. Phys. Chem. C 119(50), 28136–28142 (2015).
    [Crossref]
  26. W. Wang, D. Peng, H. Zhang, X. Yang, and C. Pan, “Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging,” Opt. Commun. 395, 24–28 (2017).
    [Crossref]
  27. M. Akiyama, C. N. Xu, and K. Nonaka, “Intense visible light emission from stress-activated ZrO2:Ti,” Appl. Phys. Lett. 81(3), 457–459 (2002).
    [Crossref]
  28. J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express 21(11), 13699–13709 (2013).
    [Crossref] [PubMed]
  29. L. Zhang, C. N. Xu, H. Yamada, and N. Bu, “Enhancement of mechanoluminescence in CaAl2Si2O8:Eu2+ by partial Sr2+ substitution for Ca2+,” J. Electrochem. Soc. 157(3), J50–J53 (2010).
    [Crossref]
  30. H. Zhang, N. Terasaki, H. Yamada, and C. N. Xu, “Mechanoluminescence of europium-doped SrAMgSi2O7 (A = Ca, Sr, Ba),” Jpn. J. Appl. Phys. 48, 04C109 (2009).
  31. H. Matsui, C. N. Xu, M. Akiyama, and T. Watanabe, “Strong mechanoluminescence from UV-irradiated spinels of ZnGa2O4:Mn and MgGa2O4:Mn,” Jpn. J. Appl. Phys. 39(1), 6582–6586 (2000).
    [Crossref]
  32. H. Matsui, C. N. Xu, and H. Tateyama, “Stress-stimulated luminescence from ZnAl2O4:Mn,” Appl. Phys. Lett. 78(8), 1068–1070 (2001).
    [Crossref]
  33. K. Scheunemann and H. K. Müller-Buschbaum, “Zur kristallstruktur von Sr2Nb2O7,” J. Inorg. Mater. 37(7–8), 1679–1680 (1975).
  34. K. Scheunemann and H. K. Müller-Buschbaum, “Zur kristallstruktur von Ca2Nb2O7,” J. Inorg. Mater. 36(9), 1965–1970 (1974).
  35. G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
    [Crossref]
  36. J. I. Pankove, “Optical Processes in Semiconductors,” p. 34, (Dover Publications, 1971).
  37. J. Nisar, B. Pathak, and R. Ahuja, “Screened hybrid density functional study on Sr2Nb2O7 for visible light photocatalysis,” Appl. Phys. Lett. 100(18), 181903 (2012).
    [Crossref]
  38. L. Zhang, H. Fu, C. Zhang, and Y. Zhu, “Effects of Ta5+ substitution on the structure and photocatalytic behavior of the Ca2Nb2O7 photocatalyst,” J. Phys. Chem. C 112(8), 3126–3133 (2008).
    [Crossref]
  39. S. W. McKeever, “Thermoluminescence of solids,” (Cambridge University Press, 1988).
  40. R. D. Shannon, “Revised effective ionicradii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [Crossref]
  41. W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep. 13, 515–693 (1958).
  42. P. Boutinaud, E. Cavalli, and M. Bettinelli, “Emission quenching induced by intervalence charge transfer in Pr3+- or Tb3+-doped YNbO4 and CaNb2O6,” J. Phys. Condens. Matter 19(38), 255–263 (2007).
    [Crossref]
  43. Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
    [Crossref]

2017 (10)

M. Jin, T. Seki, and H. Ito, “Mechano-responsive luminescence via crystal-to-crystal phase transitions between chiral and non-chiral space groups,” J. Am. Chem. Soc. 139(22), 7452–7455 (2017).
[Crossref] [PubMed]

Y. Sagara, K. Kubo, T. Nakamura, N. Tamaoki, and C. Weder, “Temperature-dependent mechanochromic behavior of mechanoresponsive luminescent compounds,” Chem. Mater. 29(3), 1273–1278 (2017).
[Crossref]

X. Li, R. Liang, J. Tao, Z. Peng, Q. Xu, X. Han, X. Wang, C. Wang, J. Zhu, C. Pan, and Z. L. Wang, “Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting,” ACS Nano 11(4), 3883–3889 (2017).
[Crossref] [PubMed]

Y. Chen, Y. Zhang, D. Karnaushenko, L. Chen, J. Hao, F. Ding, and O. G. Schmidt, “Addressable and color-tunable piezophotonic light-emitting stripes,” Adv. Mater. 29(19), 1605165 (2017).
[Crossref] [PubMed]

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

C. Pan, J. C. Zhang, M. Zhang, X. Yan, Y. Z. Long, and X. Wang, “Intrinsic oxygen vacancies mediated multi-mechano-responsive piezoluminescence in undoped zinc calcium oxysulfide,” Appl. Phys. Lett. 110(23), 233904 (2017).
[Crossref]

S. M. Jeong, S. Song, H. J. Seo, W. M. Choi, S. H. Hwang, S. G. Lee, and S. K. Lim, “Battery-free, human-motion-powered light-emitting fabric: Mechanoluminescent textile,” Adv. Sust. Syst. 1(12), 1700126 (2017).
[Crossref]

M. C. Wong, L. Chen, G. Bai, L. B. Huang, and J. Hao, “Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field,” Adv. Mater. 29(43), 1701945 (2017).
[Crossref] [PubMed]

W. Wang, D. Peng, H. Zhang, X. Yang, and C. Pan, “Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging,” Opt. Commun. 395, 24–28 (2017).
[Crossref]

X. H. Fan, J. C. Zhang, M. Zhang, C. Pan, X. Yan, W. P. Han, H. D. Zhang, Y. Z. Long, and X. Wang, “Piezoluminescence from ferroelectric Ca3Ti2O7:Pr3+ long-persistent phosphor,” Opt. Express 25(13), 14238–14246 (2017).
[Crossref] [PubMed]

2016 (4)

Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of highpressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref] [PubMed]

J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]

2015 (3)

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

D. Tu, C. N. Xu, Y. Fujio, and A. Yoshida, “Mechanism of mechanical quenching and mechanoluminescence in phosphorescent CaZnOS:Cu,” Light Sci. Appl. 4(11), e356 (2015).
[Crossref]

H. Zhang, D. Peng, W. Wang, L. Dong, and C. Pan, “Mechanically induced light emission and infrared-laser-induced upconversion in the Er-doped CaZnOS multifunctional piezoelectric semiconductor for optical pressure and temperature sensing,” J. Phys. Chem. C 119(50), 28136–28142 (2015).
[Crossref]

2014 (1)

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

2013 (5)

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref] [PubMed]

N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J. 13(10), 3999–4004 (2013).
[Crossref]

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
[Crossref]

J. C. Zhang, C. N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express 21(11), 12976–12986 (2013).
[Crossref] [PubMed]

J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express 21(11), 13699–13709 (2013).
[Crossref] [PubMed]

2012 (1)

J. Nisar, B. Pathak, and R. Ahuja, “Screened hybrid density functional study on Sr2Nb2O7 for visible light photocatalysis,” Appl. Phys. Lett. 100(18), 181903 (2012).
[Crossref]

2011 (1)

Y. Terasawa, C. N. Xu, H. Yamada, and M. Kubo, “Near infra-red mechanoluminescence from strontium aluminate doped with rare-earth ions,” IOP Conf. Series Mater. Sci. Eng. 18(21), 212013 (2011).
[Crossref]

2010 (1)

L. Zhang, C. N. Xu, H. Yamada, and N. Bu, “Enhancement of mechanoluminescence in CaAl2Si2O8:Eu2+ by partial Sr2+ substitution for Ca2+,” J. Electrochem. Soc. 157(3), J50–J53 (2010).
[Crossref]

2009 (2)

H. Zhang, N. Terasaki, H. Yamada, and C. N. Xu, “Mechanoluminescence of europium-doped SrAMgSi2O7 (A = Ca, Sr, Ba),” Jpn. J. Appl. Phys. 48, 04C109 (2009).

Y. Sagara and T. Kato, “Mechanically induced luminescence changes in molecular assemblies,” Nat. Chem. 1(8), 605–610 (2009).
[Crossref] [PubMed]

2008 (1)

L. Zhang, H. Fu, C. Zhang, and Y. Zhu, “Effects of Ta5+ substitution on the structure and photocatalytic behavior of the Ca2Nb2O7 photocatalyst,” J. Phys. Chem. C 112(8), 3126–3133 (2008).
[Crossref]

2007 (2)

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett. 91(8), 081905 (2007).
[Crossref]

P. Boutinaud, E. Cavalli, and M. Bettinelli, “Emission quenching induced by intervalence charge transfer in Pr3+- or Tb3+-doped YNbO4 and CaNb2O6,” J. Phys. Condens. Matter 19(38), 255–263 (2007).
[Crossref]

2002 (1)

M. Akiyama, C. N. Xu, and K. Nonaka, “Intense visible light emission from stress-activated ZrO2:Ti,” Appl. Phys. Lett. 81(3), 457–459 (2002).
[Crossref]

2001 (1)

H. Matsui, C. N. Xu, and H. Tateyama, “Stress-stimulated luminescence from ZnAl2O4:Mn,” Appl. Phys. Lett. 78(8), 1068–1070 (2001).
[Crossref]

2000 (1)

H. Matsui, C. N. Xu, M. Akiyama, and T. Watanabe, “Strong mechanoluminescence from UV-irradiated spinels of ZnGa2O4:Mn and MgGa2O4:Mn,” Jpn. J. Appl. Phys. 39(1), 6582–6586 (2000).
[Crossref]

1999 (2)

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

1976 (1)

R. D. Shannon, “Revised effective ionicradii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

1975 (1)

K. Scheunemann and H. K. Müller-Buschbaum, “Zur kristallstruktur von Sr2Nb2O7,” J. Inorg. Mater. 37(7–8), 1679–1680 (1975).

1974 (1)

K. Scheunemann and H. K. Müller-Buschbaum, “Zur kristallstruktur von Ca2Nb2O7,” J. Inorg. Mater. 36(9), 1965–1970 (1974).

1963 (1)

G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
[Crossref]

1958 (1)

W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep. 13, 515–693 (1958).

Ahuja, R.

J. Nisar, B. Pathak, and R. Ahuja, “Screened hybrid density functional study on Sr2Nb2O7 for visible light photocatalysis,” Appl. Phys. Lett. 100(18), 181903 (2012).
[Crossref]

Akiyama, M.

M. Akiyama, C. N. Xu, and K. Nonaka, “Intense visible light emission from stress-activated ZrO2:Ti,” Appl. Phys. Lett. 81(3), 457–459 (2002).
[Crossref]

H. Matsui, C. N. Xu, M. Akiyama, and T. Watanabe, “Strong mechanoluminescence from UV-irradiated spinels of ZnGa2O4:Mn and MgGa2O4:Mn,” Jpn. J. Appl. Phys. 39(1), 6582–6586 (2000).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

Bai, G.

M. C. Wong, L. Chen, G. Bai, L. B. Huang, and J. Hao, “Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field,” Adv. Mater. 29(43), 1701945 (2017).
[Crossref] [PubMed]

Bettinelli, M.

P. Boutinaud, E. Cavalli, and M. Bettinelli, “Emission quenching induced by intervalence charge transfer in Pr3+- or Tb3+-doped YNbO4 and CaNb2O6,” J. Phys. Condens. Matter 19(38), 255–263 (2007).
[Crossref]

Boutinaud, P.

P. Boutinaud, E. Cavalli, and M. Bettinelli, “Emission quenching induced by intervalence charge transfer in Pr3+- or Tb3+-doped YNbO4 and CaNb2O6,” J. Phys. Condens. Matter 19(38), 255–263 (2007).
[Crossref]

Braun, W.

G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
[Crossref]

Bu, N.

L. Zhang, C. N. Xu, H. Yamada, and N. Bu, “Enhancement of mechanoluminescence in CaAl2Si2O8:Eu2+ by partial Sr2+ substitution for Ca2+,” J. Electrochem. Soc. 157(3), J50–J53 (2010).
[Crossref]

Cavalli, E.

P. Boutinaud, E. Cavalli, and M. Bettinelli, “Emission quenching induced by intervalence charge transfer in Pr3+- or Tb3+-doped YNbO4 and CaNb2O6,” J. Phys. Condens. Matter 19(38), 255–263 (2007).
[Crossref]

Chen, L.

Y. Chen, Y. Zhang, D. Karnaushenko, L. Chen, J. Hao, F. Ding, and O. G. Schmidt, “Addressable and color-tunable piezophotonic light-emitting stripes,” Adv. Mater. 29(19), 1605165 (2017).
[Crossref] [PubMed]

M. C. Wong, L. Chen, G. Bai, L. B. Huang, and J. Hao, “Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field,” Adv. Mater. 29(43), 1701945 (2017).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, Y. Zhang, D. Karnaushenko, L. Chen, J. Hao, F. Ding, and O. G. Schmidt, “Addressable and color-tunable piezophotonic light-emitting stripes,” Adv. Mater. 29(19), 1605165 (2017).
[Crossref] [PubMed]

Choi, W. M.

S. M. Jeong, S. Song, H. J. Seo, W. M. Choi, S. H. Hwang, S. G. Lee, and S. K. Lim, “Battery-free, human-motion-powered light-emitting fabric: Mechanoluminescent textile,” Adv. Sust. Syst. 1(12), 1700126 (2017).
[Crossref]

Ding, F.

Y. Chen, Y. Zhang, D. Karnaushenko, L. Chen, J. Hao, F. Ding, and O. G. Schmidt, “Addressable and color-tunable piezophotonic light-emitting stripes,” Adv. Mater. 29(19), 1605165 (2017).
[Crossref] [PubMed]

Dong, L.

H. Zhang, D. Peng, W. Wang, L. Dong, and C. Pan, “Mechanically induced light emission and infrared-laser-induced upconversion in the Er-doped CaZnOS multifunctional piezoelectric semiconductor for optical pressure and temperature sensing,” J. Phys. Chem. C 119(50), 28136–28142 (2015).
[Crossref]

Fan, X. H.

Fu, H.

L. Zhang, H. Fu, C. Zhang, and Y. Zhu, “Effects of Ta5+ substitution on the structure and photocatalytic behavior of the Ca2Nb2O7 photocatalyst,” J. Phys. Chem. C 112(8), 3126–3133 (2008).
[Crossref]

Fujihala, M.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

Fujio, Y.

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of highpressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

D. Tu, C. N. Xu, Y. Fujio, and A. Yoshida, “Mechanism of mechanical quenching and mechanoluminescence in phosphorescent CaZnOS:Cu,” Light Sci. Appl. 4(11), e356 (2015).
[Crossref]

Gao, Y.

Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Ha, N. Y.

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref] [PubMed]

Han, W. P.

X. H. Fan, J. C. Zhang, M. Zhang, C. Pan, X. Yan, W. P. Han, H. D. Zhang, Y. Z. Long, and X. Wang, “Piezoluminescence from ferroelectric Ca3Ti2O7:Pr3+ long-persistent phosphor,” Opt. Express 25(13), 14238–14246 (2017).
[Crossref] [PubMed]

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Han, X.

X. Li, R. Liang, J. Tao, Z. Peng, Q. Xu, X. Han, X. Wang, C. Wang, J. Zhu, C. Pan, and Z. L. Wang, “Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting,” ACS Nano 11(4), 3883–3889 (2017).
[Crossref] [PubMed]

Hao, J.

Y. Chen, Y. Zhang, D. Karnaushenko, L. Chen, J. Hao, F. Ding, and O. G. Schmidt, “Addressable and color-tunable piezophotonic light-emitting stripes,” Adv. Mater. 29(19), 1605165 (2017).
[Crossref] [PubMed]

M. C. Wong, L. Chen, G. Bai, L. B. Huang, and J. Hao, “Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field,” Adv. Mater. 29(43), 1701945 (2017).
[Crossref] [PubMed]

Herzog, D. C. G.

G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
[Crossref]

Hirotsu, J.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

Hoogenstraaten, W.

W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep. 13, 515–693 (1958).

Huang, F.

Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Huang, L. B.

M. C. Wong, L. Chen, G. Bai, L. B. Huang, and J. Hao, “Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field,” Adv. Mater. 29(43), 1701945 (2017).
[Crossref] [PubMed]

Hwang, S. H.

S. M. Jeong, S. Song, H. J. Seo, W. M. Choi, S. H. Hwang, S. G. Lee, and S. K. Lim, “Battery-free, human-motion-powered light-emitting fabric: Mechanoluminescent textile,” Adv. Sust. Syst. 1(12), 1700126 (2017).
[Crossref]

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

Ito, H.

M. Jin, T. Seki, and H. Ito, “Mechano-responsive luminescence via crystal-to-crystal phase transitions between chiral and non-chiral space groups,” J. Am. Chem. Soc. 139(22), 7452–7455 (2017).
[Crossref] [PubMed]

Jeong, J.

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

Jeong, S. M.

S. M. Jeong, S. Song, H. J. Seo, W. M. Choi, S. H. Hwang, S. G. Lee, and S. K. Lim, “Battery-free, human-motion-powered light-emitting fabric: Mechanoluminescent textile,” Adv. Sust. Syst. 1(12), 1700126 (2017).
[Crossref]

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref] [PubMed]

Jin, M.

M. Jin, T. Seki, and H. Ito, “Mechano-responsive luminescence via crystal-to-crystal phase transitions between chiral and non-chiral space groups,” J. Am. Chem. Soc. 139(22), 7452–7455 (2017).
[Crossref] [PubMed]

Joo, K. I.

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

Kamimura, S.

Karnaushenko, D.

Y. Chen, Y. Zhang, D. Karnaushenko, L. Chen, J. Hao, F. Ding, and O. G. Schmidt, “Addressable and color-tunable piezophotonic light-emitting stripes,” Adv. Mater. 29(19), 1605165 (2017).
[Crossref] [PubMed]

Kato, T.

Y. Sagara and T. Kato, “Mechanically induced luminescence changes in molecular assemblies,” Nat. Chem. 1(8), 605–610 (2009).
[Crossref] [PubMed]

Kim, H.

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

Kim, J.

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

Kim, J. S.

K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref] [PubMed]

Kortüm, G.

G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
[Crossref]

Kubo, K.

Y. Sagara, K. Kubo, T. Nakamura, N. Tamaoki, and C. Weder, “Temperature-dependent mechanochromic behavior of mechanoresponsive luminescent compounds,” Chem. Mater. 29(3), 1273–1278 (2017).
[Crossref]

Kubo, M.

Y. Terasawa, C. N. Xu, H. Yamada, and M. Kubo, “Near infra-red mechanoluminescence from strontium aluminate doped with rare-earth ions,” IOP Conf. Series Mater. Sci. Eng. 18(21), 212013 (2011).
[Crossref]

Lee, J. W.

K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref] [PubMed]

Lee, S. G.

S. M. Jeong, S. Song, H. J. Seo, W. M. Choi, S. H. Hwang, S. G. Lee, and S. K. Lim, “Battery-free, human-motion-powered light-emitting fabric: Mechanoluminescent textile,” Adv. Sust. Syst. 1(12), 1700126 (2017).
[Crossref]

Lee, S. K.

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref] [PubMed]

Li, X.

X. Li, R. Liang, J. Tao, Z. Peng, Q. Xu, X. Han, X. Wang, C. Wang, J. Zhu, C. Pan, and Z. L. Wang, “Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting,” ACS Nano 11(4), 3883–3889 (2017).
[Crossref] [PubMed]

Liang, R.

X. Li, R. Liang, J. Tao, Z. Peng, Q. Xu, X. Han, X. Wang, C. Wang, J. Zhu, C. Pan, and Z. L. Wang, “Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting,” ACS Nano 11(4), 3883–3889 (2017).
[Crossref] [PubMed]

Lim, S. K.

S. M. Jeong, S. Song, H. J. Seo, W. M. Choi, S. H. Hwang, S. G. Lee, and S. K. Lim, “Battery-free, human-motion-powered light-emitting fabric: Mechanoluminescent textile,” Adv. Sust. Syst. 1(12), 1700126 (2017).
[Crossref]

Lin, H.

Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Long, Y. Z.

X. H. Fan, J. C. Zhang, M. Zhang, C. Pan, X. Yan, W. P. Han, H. D. Zhang, Y. Z. Long, and X. Wang, “Piezoluminescence from ferroelectric Ca3Ti2O7:Pr3+ long-persistent phosphor,” Opt. Express 25(13), 14238–14246 (2017).
[Crossref] [PubMed]

C. Pan, J. C. Zhang, M. Zhang, X. Yan, Y. Z. Long, and X. Wang, “Intrinsic oxygen vacancies mediated multi-mechano-responsive piezoluminescence in undoped zinc calcium oxysulfide,” Appl. Phys. Lett. 110(23), 233904 (2017).
[Crossref]

J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express 21(11), 13699–13709 (2013).
[Crossref] [PubMed]

Matsui, H.

H. Matsui, C. N. Xu, and H. Tateyama, “Stress-stimulated luminescence from ZnAl2O4:Mn,” Appl. Phys. Lett. 78(8), 1068–1070 (2001).
[Crossref]

H. Matsui, C. N. Xu, M. Akiyama, and T. Watanabe, “Strong mechanoluminescence from UV-irradiated spinels of ZnGa2O4:Mn and MgGa2O4:Mn,” Jpn. J. Appl. Phys. 39(1), 6582–6586 (2000).
[Crossref]

Müller-Buschbaum, H. K.

K. Scheunemann and H. K. Müller-Buschbaum, “Zur kristallstruktur von Sr2Nb2O7,” J. Inorg. Mater. 37(7–8), 1679–1680 (1975).

K. Scheunemann and H. K. Müller-Buschbaum, “Zur kristallstruktur von Ca2Nb2O7,” J. Inorg. Mater. 36(9), 1965–1970 (1974).

Murakami, Y.

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of highpressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

Nakamura, T.

Y. Sagara, K. Kubo, T. Nakamura, N. Tamaoki, and C. Weder, “Temperature-dependent mechanochromic behavior of mechanoresponsive luminescent compounds,” Chem. Mater. 29(3), 1273–1278 (2017).
[Crossref]

Nisar, J.

J. Nisar, B. Pathak, and R. Ahuja, “Screened hybrid density functional study on Sr2Nb2O7 for visible light photocatalysis,” Appl. Phys. Lett. 100(18), 181903 (2012).
[Crossref]

Nonaka, K.

M. Akiyama, C. N. Xu, and K. Nonaka, “Intense visible light emission from stress-activated ZrO2:Ti,” Appl. Phys. Lett. 81(3), 457–459 (2002).
[Crossref]

Pan, C.

W. Wang, D. Peng, H. Zhang, X. Yang, and C. Pan, “Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging,” Opt. Commun. 395, 24–28 (2017).
[Crossref]

X. H. Fan, J. C. Zhang, M. Zhang, C. Pan, X. Yan, W. P. Han, H. D. Zhang, Y. Z. Long, and X. Wang, “Piezoluminescence from ferroelectric Ca3Ti2O7:Pr3+ long-persistent phosphor,” Opt. Express 25(13), 14238–14246 (2017).
[Crossref] [PubMed]

C. Pan, J. C. Zhang, M. Zhang, X. Yan, Y. Z. Long, and X. Wang, “Intrinsic oxygen vacancies mediated multi-mechano-responsive piezoluminescence in undoped zinc calcium oxysulfide,” Appl. Phys. Lett. 110(23), 233904 (2017).
[Crossref]

X. Li, R. Liang, J. Tao, Z. Peng, Q. Xu, X. Han, X. Wang, C. Wang, J. Zhu, C. Pan, and Z. L. Wang, “Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting,” ACS Nano 11(4), 3883–3889 (2017).
[Crossref] [PubMed]

H. Zhang, D. Peng, W. Wang, L. Dong, and C. Pan, “Mechanically induced light emission and infrared-laser-induced upconversion in the Er-doped CaZnOS multifunctional piezoelectric semiconductor for optical pressure and temperature sensing,” J. Phys. Chem. C 119(50), 28136–28142 (2015).
[Crossref]

Pathak, B.

J. Nisar, B. Pathak, and R. Ahuja, “Screened hybrid density functional study on Sr2Nb2O7 for visible light photocatalysis,” Appl. Phys. Lett. 100(18), 181903 (2012).
[Crossref]

Peng, D.

W. Wang, D. Peng, H. Zhang, X. Yang, and C. Pan, “Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging,” Opt. Commun. 395, 24–28 (2017).
[Crossref]

H. Zhang, D. Peng, W. Wang, L. Dong, and C. Pan, “Mechanically induced light emission and infrared-laser-induced upconversion in the Er-doped CaZnOS multifunctional piezoelectric semiconductor for optical pressure and temperature sensing,” J. Phys. Chem. C 119(50), 28136–28142 (2015).
[Crossref]

Peng, Z.

X. Li, R. Liang, J. Tao, Z. Peng, Q. Xu, X. Han, X. Wang, C. Wang, J. Zhu, C. Pan, and Z. L. Wang, “Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting,” ACS Nano 11(4), 3883–3889 (2017).
[Crossref] [PubMed]

Sagara, Y.

Y. Sagara, K. Kubo, T. Nakamura, N. Tamaoki, and C. Weder, “Temperature-dependent mechanochromic behavior of mechanoresponsive luminescent compounds,” Chem. Mater. 29(3), 1273–1278 (2017).
[Crossref]

Y. Sagara and T. Kato, “Mechanically induced luminescence changes in molecular assemblies,” Nat. Chem. 1(8), 605–610 (2009).
[Crossref] [PubMed]

Sakata, Y.

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of highpressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

Scheunemann, K.

K. Scheunemann and H. K. Müller-Buschbaum, “Zur kristallstruktur von Sr2Nb2O7,” J. Inorg. Mater. 37(7–8), 1679–1680 (1975).

K. Scheunemann and H. K. Müller-Buschbaum, “Zur kristallstruktur von Ca2Nb2O7,” J. Inorg. Mater. 36(9), 1965–1970 (1974).

Schmidt, O. G.

Y. Chen, Y. Zhang, D. Karnaushenko, L. Chen, J. Hao, F. Ding, and O. G. Schmidt, “Addressable and color-tunable piezophotonic light-emitting stripes,” Adv. Mater. 29(19), 1605165 (2017).
[Crossref] [PubMed]

Seki, T.

M. Jin, T. Seki, and H. Ito, “Mechano-responsive luminescence via crystal-to-crystal phase transitions between chiral and non-chiral space groups,” J. Am. Chem. Soc. 139(22), 7452–7455 (2017).
[Crossref] [PubMed]

Seo, H. J.

S. M. Jeong, S. Song, H. J. Seo, W. M. Choi, S. H. Hwang, S. G. Lee, and S. K. Lim, “Battery-free, human-motion-powered light-emitting fabric: Mechanoluminescent textile,” Adv. Sust. Syst. 1(12), 1700126 (2017).
[Crossref]

Shannon, R. D.

R. D. Shannon, “Revised effective ionicradii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Singh, S. P.

K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref] [PubMed]

Sohn, K. S.

K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref] [PubMed]

Song, S.

S. M. Jeong, S. Song, H. J. Seo, W. M. Choi, S. H. Hwang, S. G. Lee, and S. K. Lim, “Battery-free, human-motion-powered light-emitting fabric: Mechanoluminescent textile,” Adv. Sust. Syst. 1(12), 1700126 (2017).
[Crossref]

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref] [PubMed]

Sun, B.

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Tamaoki, N.

Y. Sagara, K. Kubo, T. Nakamura, N. Tamaoki, and C. Weder, “Temperature-dependent mechanochromic behavior of mechanoresponsive luminescent compounds,” Chem. Mater. 29(3), 1273–1278 (2017).
[Crossref]

Tao, J.

X. Li, R. Liang, J. Tao, Z. Peng, Q. Xu, X. Han, X. Wang, C. Wang, J. Zhu, C. Pan, and Z. L. Wang, “Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting,” ACS Nano 11(4), 3883–3889 (2017).
[Crossref] [PubMed]

Tateyama, H.

H. Matsui, C. N. Xu, and H. Tateyama, “Stress-stimulated luminescence from ZnAl2O4:Mn,” Appl. Phys. Lett. 78(8), 1068–1070 (2001).
[Crossref]

Terasaki, N.

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of highpressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J. 13(10), 3999–4004 (2013).
[Crossref]

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
[Crossref]

H. Zhang, N. Terasaki, H. Yamada, and C. N. Xu, “Mechanoluminescence of europium-doped SrAMgSi2O7 (A = Ca, Sr, Ba),” Jpn. J. Appl. Phys. 48, 04C109 (2009).

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett. 91(8), 081905 (2007).
[Crossref]

Terasawa, Y.

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of highpressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

J. C. Zhang, C. N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express 21(11), 12976–12986 (2013).
[Crossref] [PubMed]

Y. Terasawa, C. N. Xu, H. Yamada, and M. Kubo, “Near infra-red mechanoluminescence from strontium aluminate doped with rare-earth ions,” IOP Conf. Series Mater. Sci. Eng. 18(21), 212013 (2011).
[Crossref]

Timilsina, S.

K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref] [PubMed]

Tu, D.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

D. Tu, C. N. Xu, Y. Fujio, and A. Yoshida, “Mechanism of mechanical quenching and mechanoluminescence in phosphorescent CaZnOS:Cu,” Light Sci. Appl. 4(11), e356 (2015).
[Crossref]

Ueno, N.

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of highpressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

Wang, C.

X. Li, R. Liang, J. Tao, Z. Peng, Q. Xu, X. Han, X. Wang, C. Wang, J. Zhu, C. Pan, and Z. L. Wang, “Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting,” ACS Nano 11(4), 3883–3889 (2017).
[Crossref] [PubMed]

Wang, F.

J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]

Wang, W.

W. Wang, D. Peng, H. Zhang, X. Yang, and C. Pan, “Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging,” Opt. Commun. 395, 24–28 (2017).
[Crossref]

H. Zhang, D. Peng, W. Wang, L. Dong, and C. Pan, “Mechanically induced light emission and infrared-laser-induced upconversion in the Er-doped CaZnOS multifunctional piezoelectric semiconductor for optical pressure and temperature sensing,” J. Phys. Chem. C 119(50), 28136–28142 (2015).
[Crossref]

Wang, X.

X. H. Fan, J. C. Zhang, M. Zhang, C. Pan, X. Yan, W. P. Han, H. D. Zhang, Y. Z. Long, and X. Wang, “Piezoluminescence from ferroelectric Ca3Ti2O7:Pr3+ long-persistent phosphor,” Opt. Express 25(13), 14238–14246 (2017).
[Crossref] [PubMed]

C. Pan, J. C. Zhang, M. Zhang, X. Yan, Y. Z. Long, and X. Wang, “Intrinsic oxygen vacancies mediated multi-mechano-responsive piezoluminescence in undoped zinc calcium oxysulfide,” Appl. Phys. Lett. 110(23), 233904 (2017).
[Crossref]

X. Li, R. Liang, J. Tao, Z. Peng, Q. Xu, X. Han, X. Wang, C. Wang, J. Zhu, C. Pan, and Z. L. Wang, “Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting,” ACS Nano 11(4), 3883–3889 (2017).
[Crossref] [PubMed]

J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

J. C. Zhang, C. N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express 21(11), 12976–12986 (2013).
[Crossref] [PubMed]

Wang, Y.

Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Wang, Z. L.

X. Li, R. Liang, J. Tao, Z. Peng, Q. Xu, X. Han, X. Wang, C. Wang, J. Zhu, C. Pan, and Z. L. Wang, “Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting,” ACS Nano 11(4), 3883–3889 (2017).
[Crossref] [PubMed]

Watanabe, S.

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of highpressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

Watanabe, T.

H. Matsui, C. N. Xu, M. Akiyama, and T. Watanabe, “Strong mechanoluminescence from UV-irradiated spinels of ZnGa2O4:Mn and MgGa2O4:Mn,” Jpn. J. Appl. Phys. 39(1), 6582–6586 (2000).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]

Weder, C.

Y. Sagara, K. Kubo, T. Nakamura, N. Tamaoki, and C. Weder, “Temperature-dependent mechanochromic behavior of mechanoresponsive luminescent compounds,” Chem. Mater. 29(3), 1273–1278 (2017).
[Crossref]

Wong, M. C.

M. C. Wong, L. Chen, G. Bai, L. B. Huang, and J. Hao, “Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field,” Adv. Mater. 29(43), 1701945 (2017).
[Crossref] [PubMed]

Xu, C. N.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of highpressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

D. Tu, C. N. Xu, Y. Fujio, and A. Yoshida, “Mechanism of mechanical quenching and mechanoluminescence in phosphorescent CaZnOS:Cu,” Light Sci. Appl. 4(11), e356 (2015).
[Crossref]

J. C. Zhang, C. N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express 21(11), 12976–12986 (2013).
[Crossref] [PubMed]

J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express 21(11), 13699–13709 (2013).
[Crossref] [PubMed]

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
[Crossref]

N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J. 13(10), 3999–4004 (2013).
[Crossref]

Y. Terasawa, C. N. Xu, H. Yamada, and M. Kubo, “Near infra-red mechanoluminescence from strontium aluminate doped with rare-earth ions,” IOP Conf. Series Mater. Sci. Eng. 18(21), 212013 (2011).
[Crossref]

L. Zhang, C. N. Xu, H. Yamada, and N. Bu, “Enhancement of mechanoluminescence in CaAl2Si2O8:Eu2+ by partial Sr2+ substitution for Ca2+,” J. Electrochem. Soc. 157(3), J50–J53 (2010).
[Crossref]

H. Zhang, N. Terasaki, H. Yamada, and C. N. Xu, “Mechanoluminescence of europium-doped SrAMgSi2O7 (A = Ca, Sr, Ba),” Jpn. J. Appl. Phys. 48, 04C109 (2009).

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett. 91(8), 081905 (2007).
[Crossref]

M. Akiyama, C. N. Xu, and K. Nonaka, “Intense visible light emission from stress-activated ZrO2:Ti,” Appl. Phys. Lett. 81(3), 457–459 (2002).
[Crossref]

H. Matsui, C. N. Xu, and H. Tateyama, “Stress-stimulated luminescence from ZnAl2O4:Mn,” Appl. Phys. Lett. 78(8), 1068–1070 (2001).
[Crossref]

H. Matsui, C. N. Xu, M. Akiyama, and T. Watanabe, “Strong mechanoluminescence from UV-irradiated spinels of ZnGa2O4:Mn and MgGa2O4:Mn,” Jpn. J. Appl. Phys. 39(1), 6582–6586 (2000).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

Xu, J.

Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Xu, Q.

X. Li, R. Liang, J. Tao, Z. Peng, Q. Xu, X. Han, X. Wang, C. Wang, J. Zhu, C. Pan, and Z. L. Wang, “Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting,” ACS Nano 11(4), 3883–3889 (2017).
[Crossref] [PubMed]

Yamabe, J.

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of highpressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

Yamada, H.

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
[Crossref]

J. C. Zhang, C. N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express 21(11), 12976–12986 (2013).
[Crossref] [PubMed]

Y. Terasawa, C. N. Xu, H. Yamada, and M. Kubo, “Near infra-red mechanoluminescence from strontium aluminate doped with rare-earth ions,” IOP Conf. Series Mater. Sci. Eng. 18(21), 212013 (2011).
[Crossref]

L. Zhang, C. N. Xu, H. Yamada, and N. Bu, “Enhancement of mechanoluminescence in CaAl2Si2O8:Eu2+ by partial Sr2+ substitution for Ca2+,” J. Electrochem. Soc. 157(3), J50–J53 (2010).
[Crossref]

H. Zhang, N. Terasaki, H. Yamada, and C. N. Xu, “Mechanoluminescence of europium-doped SrAMgSi2O7 (A = Ca, Sr, Ba),” Jpn. J. Appl. Phys. 48, 04C109 (2009).

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett. 91(8), 081905 (2007).
[Crossref]

Yan, X.

C. Pan, J. C. Zhang, M. Zhang, X. Yan, Y. Z. Long, and X. Wang, “Intrinsic oxygen vacancies mediated multi-mechano-responsive piezoluminescence in undoped zinc calcium oxysulfide,” Appl. Phys. Lett. 110(23), 233904 (2017).
[Crossref]

X. H. Fan, J. C. Zhang, M. Zhang, C. Pan, X. Yan, W. P. Han, H. D. Zhang, Y. Z. Long, and X. Wang, “Piezoluminescence from ferroelectric Ca3Ti2O7:Pr3+ long-persistent phosphor,” Opt. Express 25(13), 14238–14246 (2017).
[Crossref] [PubMed]

J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Yang, X.

W. Wang, D. Peng, H. Zhang, X. Yang, and C. Pan, “Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging,” Opt. Commun. 395, 24–28 (2017).
[Crossref]

Yoshida, A.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of highpressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

D. Tu, C. N. Xu, Y. Fujio, and A. Yoshida, “Mechanism of mechanical quenching and mechanoluminescence in phosphorescent CaZnOS:Cu,” Light Sci. Appl. 4(11), e356 (2015).
[Crossref]

Zhang, C.

L. Zhang, H. Fu, C. Zhang, and Y. Zhu, “Effects of Ta5+ substitution on the structure and photocatalytic behavior of the Ca2Nb2O7 photocatalyst,” J. Phys. Chem. C 112(8), 3126–3133 (2008).
[Crossref]

Zhang, H.

W. Wang, D. Peng, H. Zhang, X. Yang, and C. Pan, “Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging,” Opt. Commun. 395, 24–28 (2017).
[Crossref]

H. Zhang, D. Peng, W. Wang, L. Dong, and C. Pan, “Mechanically induced light emission and infrared-laser-induced upconversion in the Er-doped CaZnOS multifunctional piezoelectric semiconductor for optical pressure and temperature sensing,” J. Phys. Chem. C 119(50), 28136–28142 (2015).
[Crossref]

H. Zhang, N. Terasaki, H. Yamada, and C. N. Xu, “Mechanoluminescence of europium-doped SrAMgSi2O7 (A = Ca, Sr, Ba),” Jpn. J. Appl. Phys. 48, 04C109 (2009).

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett. 91(8), 081905 (2007).
[Crossref]

Zhang, H. D.

X. H. Fan, J. C. Zhang, M. Zhang, C. Pan, X. Yan, W. P. Han, H. D. Zhang, Y. Z. Long, and X. Wang, “Piezoluminescence from ferroelectric Ca3Ti2O7:Pr3+ long-persistent phosphor,” Opt. Express 25(13), 14238–14246 (2017).
[Crossref] [PubMed]

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Zhang, J. C.

C. Pan, J. C. Zhang, M. Zhang, X. Yan, Y. Z. Long, and X. Wang, “Intrinsic oxygen vacancies mediated multi-mechano-responsive piezoluminescence in undoped zinc calcium oxysulfide,” Appl. Phys. Lett. 110(23), 233904 (2017).
[Crossref]

X. H. Fan, J. C. Zhang, M. Zhang, C. Pan, X. Yan, W. P. Han, H. D. Zhang, Y. Z. Long, and X. Wang, “Piezoluminescence from ferroelectric Ca3Ti2O7:Pr3+ long-persistent phosphor,” Opt. Express 25(13), 14238–14246 (2017).
[Crossref] [PubMed]

J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express 21(11), 13699–13709 (2013).
[Crossref] [PubMed]

J. C. Zhang, C. N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express 21(11), 12976–12986 (2013).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, C. N. Xu, H. Yamada, and N. Bu, “Enhancement of mechanoluminescence in CaAl2Si2O8:Eu2+ by partial Sr2+ substitution for Ca2+,” J. Electrochem. Soc. 157(3), J50–J53 (2010).
[Crossref]

L. Zhang, H. Fu, C. Zhang, and Y. Zhu, “Effects of Ta5+ substitution on the structure and photocatalytic behavior of the Ca2Nb2O7 photocatalyst,” J. Phys. Chem. C 112(8), 3126–3133 (2008).
[Crossref]

Zhang, M.

C. Pan, J. C. Zhang, M. Zhang, X. Yan, Y. Z. Long, and X. Wang, “Intrinsic oxygen vacancies mediated multi-mechano-responsive piezoluminescence in undoped zinc calcium oxysulfide,” Appl. Phys. Lett. 110(23), 233904 (2017).
[Crossref]

X. H. Fan, J. C. Zhang, M. Zhang, C. Pan, X. Yan, W. P. Han, H. D. Zhang, Y. Z. Long, and X. Wang, “Piezoluminescence from ferroelectric Ca3Ti2O7:Pr3+ long-persistent phosphor,” Opt. Express 25(13), 14238–14246 (2017).
[Crossref] [PubMed]

Zhang, Y.

Y. Chen, Y. Zhang, D. Karnaushenko, L. Chen, J. Hao, F. Ding, and O. G. Schmidt, “Addressable and color-tunable piezophotonic light-emitting stripes,” Adv. Mater. 29(19), 1605165 (2017).
[Crossref] [PubMed]

Zhao, L. Z.

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Zheng, X. G.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]

Zhou, J.

Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Zhu, J.

X. Li, R. Liang, J. Tao, Z. Peng, Q. Xu, X. Han, X. Wang, C. Wang, J. Zhu, C. Pan, and Z. L. Wang, “Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting,” ACS Nano 11(4), 3883–3889 (2017).
[Crossref] [PubMed]

Zhu, Y.

L. Zhang, H. Fu, C. Zhang, and Y. Zhu, “Effects of Ta5+ substitution on the structure and photocatalytic behavior of the Ca2Nb2O7 photocatalyst,” J. Phys. Chem. C 112(8), 3126–3133 (2008).
[Crossref]

ACS Appl. Mater. Interfaces (1)

K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref] [PubMed]

ACS Nano (1)

X. Li, R. Liang, J. Tao, Z. Peng, Q. Xu, X. Han, X. Wang, C. Wang, J. Zhu, C. Pan, and Z. L. Wang, “Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting,” ACS Nano 11(4), 3883–3889 (2017).
[Crossref] [PubMed]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionicradii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Adv. Funct. Mater. (1)

Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, and Y. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Adv. Mater. (4)

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref] [PubMed]

Y. Chen, Y. Zhang, D. Karnaushenko, L. Chen, J. Hao, F. Ding, and O. G. Schmidt, “Addressable and color-tunable piezophotonic light-emitting stripes,” Adv. Mater. 29(19), 1605165 (2017).
[Crossref] [PubMed]

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

M. C. Wong, L. Chen, G. Bai, L. B. Huang, and J. Hao, “Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field,” Adv. Mater. 29(43), 1701945 (2017).
[Crossref] [PubMed]

Adv. Sust. Syst. (1)

S. M. Jeong, S. Song, H. J. Seo, W. M. Choi, S. H. Hwang, S. G. Lee, and S. K. Lim, “Battery-free, human-motion-powered light-emitting fabric: Mechanoluminescent textile,” Adv. Sust. Syst. 1(12), 1700126 (2017).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
[Crossref]

Appl. Phys. Lett. (7)

H. Matsui, C. N. Xu, and H. Tateyama, “Stress-stimulated luminescence from ZnAl2O4:Mn,” Appl. Phys. Lett. 78(8), 1068–1070 (2001).
[Crossref]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett. 91(8), 081905 (2007).
[Crossref]

J. Nisar, B. Pathak, and R. Ahuja, “Screened hybrid density functional study on Sr2Nb2O7 for visible light photocatalysis,” Appl. Phys. Lett. 100(18), 181903 (2012).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

C. Pan, J. C. Zhang, M. Zhang, X. Yan, Y. Z. Long, and X. Wang, “Intrinsic oxygen vacancies mediated multi-mechano-responsive piezoluminescence in undoped zinc calcium oxysulfide,” Appl. Phys. Lett. 110(23), 233904 (2017).
[Crossref]

M. Akiyama, C. N. Xu, and K. Nonaka, “Intense visible light emission from stress-activated ZrO2:Ti,” Appl. Phys. Lett. 81(3), 457–459 (2002).
[Crossref]

Catal. Today (1)

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
[Crossref]

Chem. Mater. (3)

Y. Sagara, K. Kubo, T. Nakamura, N. Tamaoki, and C. Weder, “Temperature-dependent mechanochromic behavior of mechanoresponsive luminescent compounds,” Chem. Mater. 29(3), 1273–1278 (2017).
[Crossref]

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]

Energy Environ. Sci. (1)

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

IEEE Sens. J. (1)

N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J. 13(10), 3999–4004 (2013).
[Crossref]

Int. J. Hydrogen Energy (1)

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of highpressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

IOP Conf. Series Mater. Sci. Eng. (1)

Y. Terasawa, C. N. Xu, H. Yamada, and M. Kubo, “Near infra-red mechanoluminescence from strontium aluminate doped with rare-earth ions,” IOP Conf. Series Mater. Sci. Eng. 18(21), 212013 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

M. Jin, T. Seki, and H. Ito, “Mechano-responsive luminescence via crystal-to-crystal phase transitions between chiral and non-chiral space groups,” J. Am. Chem. Soc. 139(22), 7452–7455 (2017).
[Crossref] [PubMed]

J. Electrochem. Soc. (1)

L. Zhang, C. N. Xu, H. Yamada, and N. Bu, “Enhancement of mechanoluminescence in CaAl2Si2O8:Eu2+ by partial Sr2+ substitution for Ca2+,” J. Electrochem. Soc. 157(3), J50–J53 (2010).
[Crossref]

J. Inorg. Mater. (2)

K. Scheunemann and H. K. Müller-Buschbaum, “Zur kristallstruktur von Sr2Nb2O7,” J. Inorg. Mater. 37(7–8), 1679–1680 (1975).

K. Scheunemann and H. K. Müller-Buschbaum, “Zur kristallstruktur von Ca2Nb2O7,” J. Inorg. Mater. 36(9), 1965–1970 (1974).

J. Phys. Chem. C (2)

L. Zhang, H. Fu, C. Zhang, and Y. Zhu, “Effects of Ta5+ substitution on the structure and photocatalytic behavior of the Ca2Nb2O7 photocatalyst,” J. Phys. Chem. C 112(8), 3126–3133 (2008).
[Crossref]

H. Zhang, D. Peng, W. Wang, L. Dong, and C. Pan, “Mechanically induced light emission and infrared-laser-induced upconversion in the Er-doped CaZnOS multifunctional piezoelectric semiconductor for optical pressure and temperature sensing,” J. Phys. Chem. C 119(50), 28136–28142 (2015).
[Crossref]

J. Phys. Condens. Matter (1)

P. Boutinaud, E. Cavalli, and M. Bettinelli, “Emission quenching induced by intervalence charge transfer in Pr3+- or Tb3+-doped YNbO4 and CaNb2O6,” J. Phys. Condens. Matter 19(38), 255–263 (2007).
[Crossref]

Jpn. J. Appl. Phys. (2)

H. Zhang, N. Terasaki, H. Yamada, and C. N. Xu, “Mechanoluminescence of europium-doped SrAMgSi2O7 (A = Ca, Sr, Ba),” Jpn. J. Appl. Phys. 48, 04C109 (2009).

H. Matsui, C. N. Xu, M. Akiyama, and T. Watanabe, “Strong mechanoluminescence from UV-irradiated spinels of ZnGa2O4:Mn and MgGa2O4:Mn,” Jpn. J. Appl. Phys. 39(1), 6582–6586 (2000).
[Crossref]

Light Sci. Appl. (1)

D. Tu, C. N. Xu, Y. Fujio, and A. Yoshida, “Mechanism of mechanical quenching and mechanoluminescence in phosphorescent CaZnOS:Cu,” Light Sci. Appl. 4(11), e356 (2015).
[Crossref]

Nat. Chem. (1)

Y. Sagara and T. Kato, “Mechanically induced luminescence changes in molecular assemblies,” Nat. Chem. 1(8), 605–610 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

W. Wang, D. Peng, H. Zhang, X. Yang, and C. Pan, “Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging,” Opt. Commun. 395, 24–28 (2017).
[Crossref]

Opt. Express (3)

Philips Res. Rep. (1)

W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep. 13, 515–693 (1958).

Other (2)

S. W. McKeever, “Thermoluminescence of solids,” (Cambridge University Press, 1988).

J. I. Pankove, “Optical Processes in Semiconductors,” p. 34, (Dover Publications, 1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Rietveld refinement of XRD profiles, crystal structures and Sr/Ca-O coordination environment (including bond distances): (a) and (c) for Sr2Nb2O7; (b) and (d) for Ca2Nb2O7.
Fig. 2
Fig. 2 Diffuse reflectance spectra of (a) Sr2Nb2O7:Pr3+ (0 and 0.4 mol%) and (b) Ca2Nb2O7:Pr3+ (0 and 0.2 mol%).
Fig. 3
Fig. 3 Dependence of afterglow decay curves on Pr3+ concentration: (a) Sr2Nb2O7:Pr3+ (0.2-3 mol%) (315 nm irradiation, 1 min) and (b) Ca2Nb2O7:Pr3+ (0.1-2 mol%) (295 nm irradiation, 1 min). The upper insets show the spectra of afterglow. The lower inset show the photographs of afterglow captured at different delay times.
Fig. 4
Fig. 4 Afterglow decay and compression-triggered ML response during applying dynamic triangle loading on phosphor/resin composition disks: (a) Sr2Nb2O7:Pr3+ (0.4 mol%) and (b) Ca2Nb2O7:Pr3+ (0.2 mol%). Insets show photographs of afterglow (i, iii) and ML (ii, iv) captured at typical delay times.
Fig. 5
Fig. 5 (a) Photographs of compression-triggered ML (captured at the peak compression of 1000 N) after different delay times: Sr2Nb2O7:Pr3+ (0.4 mol%) (upper) and Ca2Nb2O7:Pr3+ (0.2 mol%) (lower). (b) Friction exertion device (left), and photographs of afterglow and friction-triggered ML recorded at different delay times: Sr2Nb2O7:Pr3+ (0.4 mol%) (top right) and Ca2Nb2O7:Pr3+ (0.2 mol%) (bottom right).
Fig. 6
Fig. 6 ThL curves and estimated trap depths of Sr2Nb2O7:Pr3+ and Ca2Nb2O7:Pr3+. (a) and (c) Dependence of ThL on Pr3+ concentration in Sr2Nb2O7:Pr3+ and Ca2Nb2O7:Pr3+, respectively. Insets show the relative integral intensity of ThL as a function of Pr3+ concentration. (b) and (d) Gaussian deconvolution of ThL curves and trap depths estimated by Hoogenstraaten plots in Sr2Nb2O7:Pr3+ (0.4 mol%) and Ca2Nb2O7:Pr3+ (0.2 mol%), respectively.
Fig. 7
Fig. 7 Schematic illustration of bandgap and trap-distribution co-tailored ML of Sr2Nb2O7:Pr3+ and Ca2Nb2O7:Pr3+ (CB: conduction band, VB: valence band).

Tables (1)

Tables Icon

Table 1 Refinement, crystallographic, and structural parameters of Sr2Nb2O7 and Ca2Nb2O7