Abstract

Surface dark current often limits the performance of infrared photodetectors, especially as detectors become smaller. Bulk dark current mechanisms are well understood, but surface dark current mechanisms are not. Here, surface dark current mechanisms are identified, and examples of detector designs that can block these currents are given.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes

Antoni Rogalski, Małgorzata Kopytko, and Piotr Martyniuk
Appl. Opt. 57(18) D11-D19 (2018)

Performance comparison between the InAs-based and GaSb-based type-II superlattice photodiodes for long wavelength infrared detection

Fangfang Wang, Jianxin Chen, Zhicheng Xu, Yi Zhou, and Li He
Opt. Express 25(3) 1629-1635 (2017)

Photorefractive quantum wells: transverse Franz–Keldysh geometry

Q. Wang, R. M. Brubaker, D. D. Nolte, and M.R. Melloch
J. Opt. Soc. Am. B 9(9) 1626-1641 (1992)

References

  • View by:
  • |
  • |
  • |

  1. A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
    [Crossref] [PubMed]
  2. D. A. Neamen, Semiconductor physics and Devices (McGraw-Hill, 2012), Chap. 4.
  3. S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89(15), 151109 (2006).
    [Crossref]
  4. J. Y. Wong, “Effect of trap tunneling on the performance of long-wavelength Hg 1-x Cd x Te photodiodes,” IEEE Trans. Electron Dev. 27(1), 48–57 (1980).
    [Crossref]
  5. C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in pn junctions and pn junction characteristics,” Proc. IRE45(9), 1228–1243 (1957).
  6. G. R. Savich, D. E. Sidor, X. Du, C. P. Morath, V. M. Cowan, and G. W. Wicks, “Diffusion current characteristics of defect-limited nBn mid-wave infrared detectors,” Appl. Phys. Lett. 106(17), 173505 (2015).
    [Crossref]
  7. W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for Schottky-barrier formation and III-V oxide interface states,” Phys. Rev. Lett. 44(6), 420–423 (1980).
    [Crossref]
  8. S. Tiwari and D. J. Frank, “Empirical fit to band discontinuities and barrier heights in III-V alloy systems,” Appl. Phys. Lett. 60(5), 630–632 (1992).
    [Crossref]
  9. R. Pal, R. K. Bhan, K. C. Chhabra, and O. P. Agnihotri, “Analysis of the effect of surface passivant charges on HgCdTe photoconductive detectors,” Semicond. Sci. Technol. 11(2), 231–237 (1996).
    [Crossref]
  10. D. E. Sidor, G. R. Savich, and G. W. Wicks, “Surface Leakage Mechanisms in III–V Infrared Barrier Detectors,” J. Electron. Mater. 45(9), 4663–4667 (2016).
    [Crossref]
  11. C. H. Grein, H. Cruz, M. E. Flatte, and H. Ehrenreich, “Theoretical performance of very long wavelength InAs/InxGa1-xSb superlattice based infrared detectors,” Appl. Phys. Lett. 65(20), 2530–2532 (1994).
    [Crossref]
  12. X. Du, G. R. Savich, B. T. Marozas, and G. W. Wicks, “Suppression of Lateral Diffusion and Surface Leakage Currents in nBn Photodetectors Using an Inverted Design,” J. Electron. Mater. 47(2), 1038–1044 (2018).
    [Crossref]
  13. A. Soibel, S. B. Rafol, A. Khoshakhlagh, J. Nguyen, L. Hoglund, A. M. Fisher, S. A. Keo, D. Z. Y. Ting, and S. D. Gunapala, “Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector,” Appl. Phys. Lett. 107(26), 261102 (2015).
    [Crossref]
  14. C. Asplund, R. M. von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59, 22–27 (2013).
    [Crossref]

2018 (1)

X. Du, G. R. Savich, B. T. Marozas, and G. W. Wicks, “Suppression of Lateral Diffusion and Surface Leakage Currents in nBn Photodetectors Using an Inverted Design,” J. Electron. Mater. 47(2), 1038–1044 (2018).
[Crossref]

2016 (2)

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

D. E. Sidor, G. R. Savich, and G. W. Wicks, “Surface Leakage Mechanisms in III–V Infrared Barrier Detectors,” J. Electron. Mater. 45(9), 4663–4667 (2016).
[Crossref]

2015 (2)

G. R. Savich, D. E. Sidor, X. Du, C. P. Morath, V. M. Cowan, and G. W. Wicks, “Diffusion current characteristics of defect-limited nBn mid-wave infrared detectors,” Appl. Phys. Lett. 106(17), 173505 (2015).
[Crossref]

A. Soibel, S. B. Rafol, A. Khoshakhlagh, J. Nguyen, L. Hoglund, A. M. Fisher, S. A. Keo, D. Z. Y. Ting, and S. D. Gunapala, “Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector,” Appl. Phys. Lett. 107(26), 261102 (2015).
[Crossref]

2013 (1)

C. Asplund, R. M. von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59, 22–27 (2013).
[Crossref]

2006 (1)

S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89(15), 151109 (2006).
[Crossref]

1996 (1)

R. Pal, R. K. Bhan, K. C. Chhabra, and O. P. Agnihotri, “Analysis of the effect of surface passivant charges on HgCdTe photoconductive detectors,” Semicond. Sci. Technol. 11(2), 231–237 (1996).
[Crossref]

1994 (1)

C. H. Grein, H. Cruz, M. E. Flatte, and H. Ehrenreich, “Theoretical performance of very long wavelength InAs/InxGa1-xSb superlattice based infrared detectors,” Appl. Phys. Lett. 65(20), 2530–2532 (1994).
[Crossref]

1992 (1)

S. Tiwari and D. J. Frank, “Empirical fit to band discontinuities and barrier heights in III-V alloy systems,” Appl. Phys. Lett. 60(5), 630–632 (1992).
[Crossref]

1980 (2)

J. Y. Wong, “Effect of trap tunneling on the performance of long-wavelength Hg 1-x Cd x Te photodiodes,” IEEE Trans. Electron Dev. 27(1), 48–57 (1980).
[Crossref]

W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for Schottky-barrier formation and III-V oxide interface states,” Phys. Rev. Lett. 44(6), 420–423 (1980).
[Crossref]

Agnihotri, O. P.

R. Pal, R. K. Bhan, K. C. Chhabra, and O. P. Agnihotri, “Analysis of the effect of surface passivant charges on HgCdTe photoconductive detectors,” Semicond. Sci. Technol. 11(2), 231–237 (1996).
[Crossref]

Asplund, C.

C. Asplund, R. M. von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59, 22–27 (2013).
[Crossref]

Bhan, R. K.

R. Pal, R. K. Bhan, K. C. Chhabra, and O. P. Agnihotri, “Analysis of the effect of surface passivant charges on HgCdTe photoconductive detectors,” Semicond. Sci. Technol. 11(2), 231–237 (1996).
[Crossref]

Chhabra, K. C.

R. Pal, R. K. Bhan, K. C. Chhabra, and O. P. Agnihotri, “Analysis of the effect of surface passivant charges on HgCdTe photoconductive detectors,” Semicond. Sci. Technol. 11(2), 231–237 (1996).
[Crossref]

Chye, P.

W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for Schottky-barrier formation and III-V oxide interface states,” Phys. Rev. Lett. 44(6), 420–423 (1980).
[Crossref]

Cowan, V. M.

G. R. Savich, D. E. Sidor, X. Du, C. P. Morath, V. M. Cowan, and G. W. Wicks, “Diffusion current characteristics of defect-limited nBn mid-wave infrared detectors,” Appl. Phys. Lett. 106(17), 173505 (2015).
[Crossref]

Cruz, H.

C. H. Grein, H. Cruz, M. E. Flatte, and H. Ehrenreich, “Theoretical performance of very long wavelength InAs/InxGa1-xSb superlattice based infrared detectors,” Appl. Phys. Lett. 65(20), 2530–2532 (1994).
[Crossref]

Du, X.

X. Du, G. R. Savich, B. T. Marozas, and G. W. Wicks, “Suppression of Lateral Diffusion and Surface Leakage Currents in nBn Photodetectors Using an Inverted Design,” J. Electron. Mater. 47(2), 1038–1044 (2018).
[Crossref]

G. R. Savich, D. E. Sidor, X. Du, C. P. Morath, V. M. Cowan, and G. W. Wicks, “Diffusion current characteristics of defect-limited nBn mid-wave infrared detectors,” Appl. Phys. Lett. 106(17), 173505 (2015).
[Crossref]

Ehrenreich, H.

C. H. Grein, H. Cruz, M. E. Flatte, and H. Ehrenreich, “Theoretical performance of very long wavelength InAs/InxGa1-xSb superlattice based infrared detectors,” Appl. Phys. Lett. 65(20), 2530–2532 (1994).
[Crossref]

Fisher, A. M.

A. Soibel, S. B. Rafol, A. Khoshakhlagh, J. Nguyen, L. Hoglund, A. M. Fisher, S. A. Keo, D. Z. Y. Ting, and S. D. Gunapala, “Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector,” Appl. Phys. Lett. 107(26), 261102 (2015).
[Crossref]

Flatte, M. E.

C. H. Grein, H. Cruz, M. E. Flatte, and H. Ehrenreich, “Theoretical performance of very long wavelength InAs/InxGa1-xSb superlattice based infrared detectors,” Appl. Phys. Lett. 65(20), 2530–2532 (1994).
[Crossref]

Frank, D. J.

S. Tiwari and D. J. Frank, “Empirical fit to band discontinuities and barrier heights in III-V alloy systems,” Appl. Phys. Lett. 60(5), 630–632 (1992).
[Crossref]

Gautam, N.

C. Asplund, R. M. von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59, 22–27 (2013).
[Crossref]

Grein, C. H.

C. H. Grein, H. Cruz, M. E. Flatte, and H. Ehrenreich, “Theoretical performance of very long wavelength InAs/InxGa1-xSb superlattice based infrared detectors,” Appl. Phys. Lett. 65(20), 2530–2532 (1994).
[Crossref]

Gunapala, S. D.

A. Soibel, S. B. Rafol, A. Khoshakhlagh, J. Nguyen, L. Hoglund, A. M. Fisher, S. A. Keo, D. Z. Y. Ting, and S. D. Gunapala, “Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector,” Appl. Phys. Lett. 107(26), 261102 (2015).
[Crossref]

Hoglund, L.

A. Soibel, S. B. Rafol, A. Khoshakhlagh, J. Nguyen, L. Hoglund, A. M. Fisher, S. A. Keo, D. Z. Y. Ting, and S. D. Gunapala, “Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector,” Appl. Phys. Lett. 107(26), 261102 (2015).
[Crossref]

Keo, S. A.

A. Soibel, S. B. Rafol, A. Khoshakhlagh, J. Nguyen, L. Hoglund, A. M. Fisher, S. A. Keo, D. Z. Y. Ting, and S. D. Gunapala, “Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector,” Appl. Phys. Lett. 107(26), 261102 (2015).
[Crossref]

Khoshakhlagh, A.

A. Soibel, S. B. Rafol, A. Khoshakhlagh, J. Nguyen, L. Hoglund, A. M. Fisher, S. A. Keo, D. Z. Y. Ting, and S. D. Gunapala, “Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector,” Appl. Phys. Lett. 107(26), 261102 (2015).
[Crossref]

Kopytko, M.

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Krishna, S.

C. Asplund, R. M. von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59, 22–27 (2013).
[Crossref]

Lantz, D.

C. Asplund, R. M. von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59, 22–27 (2013).
[Crossref]

Lindau, I.

W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for Schottky-barrier formation and III-V oxide interface states,” Phys. Rev. Lett. 44(6), 420–423 (1980).
[Crossref]

Maimon, S.

S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89(15), 151109 (2006).
[Crossref]

Malm, H.

C. Asplund, R. M. von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59, 22–27 (2013).
[Crossref]

Marozas, B. T.

X. Du, G. R. Savich, B. T. Marozas, and G. W. Wicks, “Suppression of Lateral Diffusion and Surface Leakage Currents in nBn Photodetectors Using an Inverted Design,” J. Electron. Mater. 47(2), 1038–1044 (2018).
[Crossref]

Martijn, H.

C. Asplund, R. M. von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59, 22–27 (2013).
[Crossref]

Martyniuk, P.

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Morath, C. P.

G. R. Savich, D. E. Sidor, X. Du, C. P. Morath, V. M. Cowan, and G. W. Wicks, “Diffusion current characteristics of defect-limited nBn mid-wave infrared detectors,” Appl. Phys. Lett. 106(17), 173505 (2015).
[Crossref]

Nguyen, J.

A. Soibel, S. B. Rafol, A. Khoshakhlagh, J. Nguyen, L. Hoglund, A. M. Fisher, S. A. Keo, D. Z. Y. Ting, and S. D. Gunapala, “Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector,” Appl. Phys. Lett. 107(26), 261102 (2015).
[Crossref]

Noyce, R. N.

C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in pn junctions and pn junction characteristics,” Proc. IRE45(9), 1228–1243 (1957).

Pal, R.

R. Pal, R. K. Bhan, K. C. Chhabra, and O. P. Agnihotri, “Analysis of the effect of surface passivant charges on HgCdTe photoconductive detectors,” Semicond. Sci. Technol. 11(2), 231–237 (1996).
[Crossref]

Plis, E.

C. Asplund, R. M. von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59, 22–27 (2013).
[Crossref]

Rafol, S. B.

A. Soibel, S. B. Rafol, A. Khoshakhlagh, J. Nguyen, L. Hoglund, A. M. Fisher, S. A. Keo, D. Z. Y. Ting, and S. D. Gunapala, “Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector,” Appl. Phys. Lett. 107(26), 261102 (2015).
[Crossref]

Rogalski, A.

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Sah, C. T.

C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in pn junctions and pn junction characteristics,” Proc. IRE45(9), 1228–1243 (1957).

Savich, G. R.

X. Du, G. R. Savich, B. T. Marozas, and G. W. Wicks, “Suppression of Lateral Diffusion and Surface Leakage Currents in nBn Photodetectors Using an Inverted Design,” J. Electron. Mater. 47(2), 1038–1044 (2018).
[Crossref]

D. E. Sidor, G. R. Savich, and G. W. Wicks, “Surface Leakage Mechanisms in III–V Infrared Barrier Detectors,” J. Electron. Mater. 45(9), 4663–4667 (2016).
[Crossref]

G. R. Savich, D. E. Sidor, X. Du, C. P. Morath, V. M. Cowan, and G. W. Wicks, “Diffusion current characteristics of defect-limited nBn mid-wave infrared detectors,” Appl. Phys. Lett. 106(17), 173505 (2015).
[Crossref]

Shockley, W.

C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in pn junctions and pn junction characteristics,” Proc. IRE45(9), 1228–1243 (1957).

Sidor, D. E.

D. E. Sidor, G. R. Savich, and G. W. Wicks, “Surface Leakage Mechanisms in III–V Infrared Barrier Detectors,” J. Electron. Mater. 45(9), 4663–4667 (2016).
[Crossref]

G. R. Savich, D. E. Sidor, X. Du, C. P. Morath, V. M. Cowan, and G. W. Wicks, “Diffusion current characteristics of defect-limited nBn mid-wave infrared detectors,” Appl. Phys. Lett. 106(17), 173505 (2015).
[Crossref]

Skeath, P.

W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for Schottky-barrier formation and III-V oxide interface states,” Phys. Rev. Lett. 44(6), 420–423 (1980).
[Crossref]

Soibel, A.

A. Soibel, S. B. Rafol, A. Khoshakhlagh, J. Nguyen, L. Hoglund, A. M. Fisher, S. A. Keo, D. Z. Y. Ting, and S. D. Gunapala, “Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector,” Appl. Phys. Lett. 107(26), 261102 (2015).
[Crossref]

Spicer, W. E.

W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for Schottky-barrier formation and III-V oxide interface states,” Phys. Rev. Lett. 44(6), 420–423 (1980).
[Crossref]

Su, C. Y.

W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for Schottky-barrier formation and III-V oxide interface states,” Phys. Rev. Lett. 44(6), 420–423 (1980).
[Crossref]

Ting, D. Z. Y.

A. Soibel, S. B. Rafol, A. Khoshakhlagh, J. Nguyen, L. Hoglund, A. M. Fisher, S. A. Keo, D. Z. Y. Ting, and S. D. Gunapala, “Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector,” Appl. Phys. Lett. 107(26), 261102 (2015).
[Crossref]

Tiwari, S.

S. Tiwari and D. J. Frank, “Empirical fit to band discontinuities and barrier heights in III-V alloy systems,” Appl. Phys. Lett. 60(5), 630–632 (1992).
[Crossref]

von Würtemberg, R. M.

C. Asplund, R. M. von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59, 22–27 (2013).
[Crossref]

Wicks, G. W.

X. Du, G. R. Savich, B. T. Marozas, and G. W. Wicks, “Suppression of Lateral Diffusion and Surface Leakage Currents in nBn Photodetectors Using an Inverted Design,” J. Electron. Mater. 47(2), 1038–1044 (2018).
[Crossref]

D. E. Sidor, G. R. Savich, and G. W. Wicks, “Surface Leakage Mechanisms in III–V Infrared Barrier Detectors,” J. Electron. Mater. 45(9), 4663–4667 (2016).
[Crossref]

G. R. Savich, D. E. Sidor, X. Du, C. P. Morath, V. M. Cowan, and G. W. Wicks, “Diffusion current characteristics of defect-limited nBn mid-wave infrared detectors,” Appl. Phys. Lett. 106(17), 173505 (2015).
[Crossref]

S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89(15), 151109 (2006).
[Crossref]

Wong, J. Y.

J. Y. Wong, “Effect of trap tunneling on the performance of long-wavelength Hg 1-x Cd x Te photodiodes,” IEEE Trans. Electron Dev. 27(1), 48–57 (1980).
[Crossref]

Appl. Phys. Lett. (5)

S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89(15), 151109 (2006).
[Crossref]

G. R. Savich, D. E. Sidor, X. Du, C. P. Morath, V. M. Cowan, and G. W. Wicks, “Diffusion current characteristics of defect-limited nBn mid-wave infrared detectors,” Appl. Phys. Lett. 106(17), 173505 (2015).
[Crossref]

S. Tiwari and D. J. Frank, “Empirical fit to band discontinuities and barrier heights in III-V alloy systems,” Appl. Phys. Lett. 60(5), 630–632 (1992).
[Crossref]

C. H. Grein, H. Cruz, M. E. Flatte, and H. Ehrenreich, “Theoretical performance of very long wavelength InAs/InxGa1-xSb superlattice based infrared detectors,” Appl. Phys. Lett. 65(20), 2530–2532 (1994).
[Crossref]

A. Soibel, S. B. Rafol, A. Khoshakhlagh, J. Nguyen, L. Hoglund, A. M. Fisher, S. A. Keo, D. Z. Y. Ting, and S. D. Gunapala, “Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector,” Appl. Phys. Lett. 107(26), 261102 (2015).
[Crossref]

IEEE Trans. Electron Dev. (1)

J. Y. Wong, “Effect of trap tunneling on the performance of long-wavelength Hg 1-x Cd x Te photodiodes,” IEEE Trans. Electron Dev. 27(1), 48–57 (1980).
[Crossref]

Infrared Phys. Technol. (1)

C. Asplund, R. M. von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59, 22–27 (2013).
[Crossref]

J. Electron. Mater. (2)

X. Du, G. R. Savich, B. T. Marozas, and G. W. Wicks, “Suppression of Lateral Diffusion and Surface Leakage Currents in nBn Photodetectors Using an Inverted Design,” J. Electron. Mater. 47(2), 1038–1044 (2018).
[Crossref]

D. E. Sidor, G. R. Savich, and G. W. Wicks, “Surface Leakage Mechanisms in III–V Infrared Barrier Detectors,” J. Electron. Mater. 45(9), 4663–4667 (2016).
[Crossref]

Phys. Rev. Lett. (1)

W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for Schottky-barrier formation and III-V oxide interface states,” Phys. Rev. Lett. 44(6), 420–423 (1980).
[Crossref]

Rep. Prog. Phys. (1)

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

R. Pal, R. K. Bhan, K. C. Chhabra, and O. P. Agnihotri, “Analysis of the effect of surface passivant charges on HgCdTe photoconductive detectors,” Semicond. Sci. Technol. 11(2), 231–237 (1996).
[Crossref]

Other (2)

D. A. Neamen, Semiconductor physics and Devices (McGraw-Hill, 2012), Chap. 4.

C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in pn junctions and pn junction characteristics,” Proc. IRE45(9), 1228–1243 (1957).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Arrhenius plot of zero-bias conductance of InAs and GaSb pn-junction devices. Both are limited by bulk currents at higher temperatures, and by surface majority carrier drift currents at low temperatures [14].
Fig. 2
Fig. 2 Arrhenius plot of InAs-based deep-etched, shallow-etched, and inverted unipolar barrier detectors (left), and Arrhenius plot of surface dark current for InAs-based deep-etched and inverted unipolar barrier detectors, created through variable-area diode analysis, explained in section 3.3 (right).
Fig. 3
Fig. 3 Schematic of a complementary barrier detector. Carriers are generated in the sub-surface depletion region near the absorber surface, and are not blocked by the barriers.

Tables (2)

Tables Icon

Table 1 Thermal Activation Energy

Tables Icon

Table 2 Limiting Surface Dark Current Sources for Infrared Photodetector Designs

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I t o t a l [ A m p ] = A × J b u l k [ A m p / c m 2 ] + P × J s u r f a c e [ A m p / c m ]

Metrics