Abstract

The step-taper active-region (STA) design concept is implemented for ~5.0 μm-emitting quantum cascade lasers (QCLs) grown by metal-organic chemical vapor deposition (MOCVD). Carrier-leakage suppression yields high characteristic temperatures for the threshold-current density Jth, T0, and for the slope efficiency ηsl, T1: 226 K and 653 K. Resonant-tunneling extraction from the lower level results in miniband-like extraction. In turn, the internal efficiency ηi is found, from a variable mirror-loss study, to be ~77%; thus approaching the ~90% upper limit, when employing only inelastic scattering. Considering interface-roughness and alloy-disorder scattering, the transition efficiency reaches values of ~95%. Then, the injection efficiency is ~81%, and, for λ = 4.6 μm, the wallplug-efficiency ηwp upper limit reaches 41.2%. Results include 4.2 W/A single-facet ηsl and 0.96 kA/cm2 Jth values. Buried-heterostructure (BH) QCLs provide single-facet 2.6 W continuous-wave (CW) power and 12% CW ηwp. Optimized 8 μm-emitting, STA-design QCLs provide 2 W/A ηsl, and 1.1 kA/cm2 Jth; and BH devices yield single-facet 1 W CW power and 6% CW ηwp.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
86% internal differential efficiency from 8 to 9 µm-emitting, step-taper active-region quantum cascade lasers

Jeremy D. Kirch, Chun-Chieh Chang, Colin Boyle, Luke J. Mawst, Don Lindberg, Tom Earles, and Dan Botez
Opt. Express 24(21) 24483-24494 (2016)

Progress in high-power continuous-wave quantum cascade lasers [Invited]

Pedro Figueiredo, Matthew Suttinger, Rowel Go, Eugene Tsvid, C. Kumar N. Patel, and Arkadiy Lyakh
Appl. Opt. 56(31) H15-H23 (2017)

Wavefront engineering for mid-infrared and terahertz quantum cascade lasers [Invited]

Nanfang Yu and Federico Capasso
J. Opt. Soc. Am. B 27(11) B18-B35 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. M. Smowton and P. Blood, “The differential efficiency of quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 491–498 (1997).
    [Crossref]
  2. D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
    [Crossref]
  3. D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3–16 μm)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
    [Crossref]
  4. J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “86% internal differential efficiency from 8 to 9 µm-emitting, step-taper active-region quantum cascade lasers,” Opt. Express 24(21), 24483–24494 (2016).
    [Crossref] [PubMed]
  5. J. Faist, Appl. Phys. Lett. “Wallplug efficiency of quantum cascade lasers: critical parameters and fundamental limits,” 90, 253512 (2007).
  6. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
    [Crossref]
  7. Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Very high wall plug efficiency of quantum cascade lasers,” Proc. SPIE 7608, 76080F (2010).
    [Crossref]
  8. J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D Botez, I Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94, 201103 (2009).
    [Crossref]
  9. J. C. Shin, “Tapered active-region quantum cascade laser” in [Very low temperature sensitive, deep-well quantum cascade lasers (λ = 4.8 μm) grown by MOCVD], PhD Thesis, University of Wisconsin-Madison, 92–103, (2010) http://digital.library.wisc.edu/1793/52493
  10. D. Botez and J. C. Shin, US Patent 8,325,774 B2 (2012) ( www.google.co.in/patents/US8325774A ).
  11. Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
    [Crossref]
  12. J. D. Kirch, J. C. Shin, C.-C. Chang, L. J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett. 48(4), 234 (2012).
    [Crossref]
  13. J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
    [Crossref]
  14. A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
    [Crossref]
  15. D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013) [Correction: IEEE J. Sel. Top. Quantum Electron. 19(4), 9700101 (2013)].
  16. Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
    [Crossref]
  17. A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
    [Crossref]
  18. D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010) [Erratum: Appl. Phys. Lett. 97, 199901 (2010)].
    [Crossref]
  19. D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
    [Crossref]
  20. Y. V. Flores, S. S. Kurlov, M. Elagin, M. P. Semtsiv, and W. T. Masselink, “S. S, Kurlov, M. Elagin, M P. Semtsiv and W.T. Masselink, “Leakage current in quantum-cascade lasers through interface roughness scattering,” Appl. Phys. Lett. 103(16), 161102 (2013).
    [Crossref]
  21. Y. V. Flores, “Mid-infrared quantum cascade lasers: theoretical and experimental studies on temperature driven scattering,” PhD Thesis (Humboldt-Universität zu Berlin, June 2015). https://edoc.hu-berlin.de/handle/18452/17876 .
  22. W. T. Masselink, M. P. Semtsiv, Y. V. Flores, S. Kurlov, M. Elagin, G. Monastyrskyi, J. F. Kischkat, and A. Aleksandrova, “J. F. and A. Aleksandrova, “AlAs/InAlAs-InGaAs QCLs grown by gas-source molecular-beam epitaxy,” Proc. SPIE 9002, 90021A (2014).
    [Crossref]
  23. A. Rajeev, C. Sigler, T. Earles, Y. V. Flores, L. J. Mawst, and D. Botez, “Design considerations for λ ~ 3.0–to 3.5-μm-emitting quantum cascade lasers on metamorphic buffer layers,” Opt. Eng. 57(1), 011017 (2018).
  24. J. Faist, Quantum Cascade Lasers (Oxford University Press, Oxford UK, 2013), p. 114 and p.141 in Chap. 7.
  25. Y. V. Flores, M. Elagin, S. S. Kurlov, G. Monastyrskyi, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
    [Crossref]
  26. D. Botez, “Comment on ‘Highly temperature insensitive quantum cascade lasers’ [Appl. Phys. Lett. 97, 251104, (2010)],” Appl. Phys. Lett. 98(21), 216101 (2011).
    [Crossref]
  27. J. D. Kirch and D. Botez, as per k•p analysis of the device presented in Refs. 11 and 4.
  28. A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett. 101(2), 021103 (2012).
    [Crossref]
  29. C. A. Wang, B. Schwarz, D. F. Siriani, M. K. Connors, L. J. Missaggia, D. R. Calawa, D. McNulty, A. Akey, M. C. Zheng, J. P. Donnelly, T. S. Mansuripur, and F. Capasso, “Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers,” J. Cryst. Growth 464, 215–220 (2017).
    [Crossref]
  30. C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
    [Crossref] [PubMed]
  31. D. Botez, J. Kirch, C.-C. Chang, C. Boyle, H. Kim, K. Oresick, C. Sigler, L. Mawst, M. Jo, J. C. Shin, D. Gun-Kim, D. F. Lindberg, and T. L. Earles, “High internal differential efficiency, mid-infrared quantum cascade lasers,” Proc. SPIE 10123, 101230Q (2017).
    [Crossref]
  32. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
    [Crossref]
  33. A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
    [Crossref]
  34. J. Khurgin, Y. Dikmelik, P. Liu, A. Hoffman, M. Escarra, K. Franz, and C. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94(9), 091101 (2009).
    [Crossref]
  35. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
    [Crossref]
  36. A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Influence of the growth temperature on the performances of strain-balanced quantum cascade lasers,” Appl. Phys. Lett. 98(9), 091105 (2011).
    [Crossref]
  37. Y. T. Chiu, Y. Dikmelik, Q. Zhang, J. B. Khurgin, and C. F. Gmachl, “Engineering the intersubband lifetime with interface roughness in quantum cascade lasers,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest Series (Optical Society of America, 2012), paper CTh3N.1.
    [Crossref]
  38. Giulia Pegolotti, “Quantum engineering of collective states in semiconductor nanostructures,” PhD Thesis, Univ. Paris Diderot - Paris 7, pp. 161–164 (2011).
  39. T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
    [Crossref]
  40. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20(22), 24272–24279 (2012).
    [Crossref] [PubMed]
  41. J. M. Wolf, “Quantum cascade laser: from 3 to 26 μm,” (Doctoral dissertation, ETH NO. 24571, Zurich, 2017).
  42. A. Wittmann, A. Hugi, F. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
    [Crossref]
  43. B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector,” ACS Photonics 4(5), 1225–1231 (2017).
    [Crossref] [PubMed]
  44. A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
    [Crossref]
  45. C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, and F. Capasso, “MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1200413 (2017).
    [Crossref]
  46. C. A. Zmudzinski, D. Botez, and L. J. Mawst, “Simple description of laterally resonant, distributed-feedback-like modes of arrays of antiguides,” Appl. Phys. Lett. 60(2), 1049–1051 (1992).
    [Crossref]
  47. J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
    [Crossref]
  48. H. Yang, L. J. Mawst, and D. Botez, “1.6 W continuous-wave coherent power from large-index-step (Δn ≈ 0.10) near-resonant, antiguided diode laser arrays,” Appl. Phys. Lett. 76(10), 1219–1221 (2000).
    [Crossref]

2018 (1)

A. Rajeev, C. Sigler, T. Earles, Y. V. Flores, L. J. Mawst, and D. Botez, “Design considerations for λ ~ 3.0–to 3.5-μm-emitting quantum cascade lasers on metamorphic buffer layers,” Opt. Eng. 57(1), 011017 (2018).

2017 (4)

C. A. Wang, B. Schwarz, D. F. Siriani, M. K. Connors, L. J. Missaggia, D. R. Calawa, D. McNulty, A. Akey, M. C. Zheng, J. P. Donnelly, T. S. Mansuripur, and F. Capasso, “Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers,” J. Cryst. Growth 464, 215–220 (2017).
[Crossref]

D. Botez, J. Kirch, C.-C. Chang, C. Boyle, H. Kim, K. Oresick, C. Sigler, L. Mawst, M. Jo, J. C. Shin, D. Gun-Kim, D. F. Lindberg, and T. L. Earles, “High internal differential efficiency, mid-infrared quantum cascade lasers,” Proc. SPIE 10123, 101230Q (2017).
[Crossref]

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, and F. Capasso, “MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1200413 (2017).
[Crossref]

2016 (3)

D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3–16 μm)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “86% internal differential efficiency from 8 to 9 µm-emitting, step-taper active-region quantum cascade lasers,” Opt. Express 24(21), 24483–24494 (2016).
[Crossref] [PubMed]

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

2015 (2)

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

2014 (1)

W. T. Masselink, M. P. Semtsiv, Y. V. Flores, S. Kurlov, M. Elagin, G. Monastyrskyi, J. F. Kischkat, and A. Aleksandrova, “J. F. and A. Aleksandrova, “AlAs/InAlAs-InGaAs QCLs grown by gas-source molecular-beam epitaxy,” Proc. SPIE 9002, 90021A (2014).
[Crossref]

2013 (3)

Y. V. Flores, M. Elagin, S. S. Kurlov, G. Monastyrskyi, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

Y. V. Flores, S. S. Kurlov, M. Elagin, M. P. Semtsiv, and W. T. Masselink, “S. S, Kurlov, M. Elagin, M P. Semtsiv and W.T. Masselink, “Leakage current in quantum-cascade lasers through interface roughness scattering,” Appl. Phys. Lett. 103(16), 161102 (2013).
[Crossref]

D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013) [Correction: IEEE J. Sel. Top. Quantum Electron. 19(4), 9700101 (2013)].

2012 (4)

Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

J. D. Kirch, J. C. Shin, C.-C. Chang, L. J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett. 48(4), 234 (2012).
[Crossref]

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett. 101(2), 021103 (2012).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20(22), 24272–24279 (2012).
[Crossref] [PubMed]

2011 (4)

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Influence of the growth temperature on the performances of strain-balanced quantum cascade lasers,” Appl. Phys. Lett. 98(9), 091105 (2011).
[Crossref]

D. Botez, “Comment on ‘Highly temperature insensitive quantum cascade lasers’ [Appl. Phys. Lett. 97, 251104, (2010)],” Appl. Phys. Lett. 98(21), 216101 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

2010 (5)

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010) [Erratum: Appl. Phys. Lett. 97, 199901 (2010)].
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Very high wall plug efficiency of quantum cascade lasers,” Proc. SPIE 7608, 76080F (2010).
[Crossref]

D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
[Crossref]

C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
[Crossref] [PubMed]

2009 (4)

J. Khurgin, Y. Dikmelik, P. Liu, A. Hoffman, M. Escarra, K. Franz, and C. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94(9), 091101 (2009).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D Botez, I Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94, 201103 (2009).
[Crossref]

2008 (2)

A. Wittmann, A. Hugi, F. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[Crossref]

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[Crossref]

2006 (2)

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[Crossref]

2000 (1)

H. Yang, L. J. Mawst, and D. Botez, “1.6 W continuous-wave coherent power from large-index-step (Δn ≈ 0.10) near-resonant, antiguided diode laser arrays,” Appl. Phys. Lett. 76(10), 1219–1221 (2000).
[Crossref]

1998 (1)

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
[Crossref]

1997 (1)

P. M. Smowton and P. Blood, “The differential efficiency of quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 491–498 (1997).
[Crossref]

1992 (1)

C. A. Zmudzinski, D. Botez, and L. J. Mawst, “Simple description of laterally resonant, distributed-feedback-like modes of arrays of antiguides,” Appl. Phys. Lett. 60(2), 1049–1051 (1992).
[Crossref]

Aellen, T.

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Akey, A.

C. A. Wang, B. Schwarz, D. F. Siriani, M. K. Connors, L. J. Missaggia, D. R. Calawa, D. McNulty, A. Akey, M. C. Zheng, J. P. Donnelly, T. S. Mansuripur, and F. Capasso, “Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers,” J. Cryst. Growth 464, 215–220 (2017).
[Crossref]

Aleksandrova, A.

W. T. Masselink, M. P. Semtsiv, Y. V. Flores, S. Kurlov, M. Elagin, G. Monastyrskyi, J. F. Kischkat, and A. Aleksandrova, “J. F. and A. Aleksandrova, “AlAs/InAlAs-InGaAs QCLs grown by gas-source molecular-beam epitaxy,” Proc. SPIE 9002, 90021A (2014).
[Crossref]

Y. V. Flores, M. Elagin, S. S. Kurlov, G. Monastyrskyi, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

Aung, N. L.

Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

Bai, Y.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Very high wall plug efficiency of quantum cascade lasers,” Proc. SPIE 7608, 76080F (2010).
[Crossref]

Bandyopadhyay, N.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Bastard, G.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[Crossref]

Beck, M.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett. 101(2), 021103 (2012).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Influence of the growth temperature on the performances of strain-balanced quantum cascade lasers,” Appl. Phys. Lett. 98(9), 091105 (2011).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Bismuto, A.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett. 101(2), 021103 (2012).
[Crossref]

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Influence of the growth temperature on the performances of strain-balanced quantum cascade lasers,” Appl. Phys. Lett. 98(9), 091105 (2011).
[Crossref]

Blood, P.

P. M. Smowton and P. Blood, “The differential efficiency of quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 491–498 (1997).
[Crossref]

Bonetti, Y.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[Crossref]

Botez, D

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D Botez, I Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94, 201103 (2009).
[Crossref]

Botez, D.

A. Rajeev, C. Sigler, T. Earles, Y. V. Flores, L. J. Mawst, and D. Botez, “Design considerations for λ ~ 3.0–to 3.5-μm-emitting quantum cascade lasers on metamorphic buffer layers,” Opt. Eng. 57(1), 011017 (2018).

D. Botez, J. Kirch, C.-C. Chang, C. Boyle, H. Kim, K. Oresick, C. Sigler, L. Mawst, M. Jo, J. C. Shin, D. Gun-Kim, D. F. Lindberg, and T. L. Earles, “High internal differential efficiency, mid-infrared quantum cascade lasers,” Proc. SPIE 10123, 101230Q (2017).
[Crossref]

D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3–16 μm)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “86% internal differential efficiency from 8 to 9 µm-emitting, step-taper active-region quantum cascade lasers,” Opt. Express 24(21), 24483–24494 (2016).
[Crossref] [PubMed]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013) [Correction: IEEE J. Sel. Top. Quantum Electron. 19(4), 9700101 (2013)].

J. D. Kirch, J. C. Shin, C.-C. Chang, L. J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett. 48(4), 234 (2012).
[Crossref]

D. Botez, “Comment on ‘Highly temperature insensitive quantum cascade lasers’ [Appl. Phys. Lett. 97, 251104, (2010)],” Appl. Phys. Lett. 98(21), 216101 (2011).
[Crossref]

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010) [Erratum: Appl. Phys. Lett. 97, 199901 (2010)].
[Crossref]

D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
[Crossref]

H. Yang, L. J. Mawst, and D. Botez, “1.6 W continuous-wave coherent power from large-index-step (Δn ≈ 0.10) near-resonant, antiguided diode laser arrays,” Appl. Phys. Lett. 76(10), 1219–1221 (2000).
[Crossref]

C. A. Zmudzinski, D. Botez, and L. J. Mawst, “Simple description of laterally resonant, distributed-feedback-like modes of arrays of antiguides,” Appl. Phys. Lett. 60(2), 1049–1051 (1992).
[Crossref]

Boyle, C.

D. Botez, J. Kirch, C.-C. Chang, C. Boyle, H. Kim, K. Oresick, C. Sigler, L. Mawst, M. Jo, J. C. Shin, D. Gun-Kim, D. F. Lindberg, and T. L. Earles, “High internal differential efficiency, mid-infrared quantum cascade lasers,” Proc. SPIE 10123, 101230Q (2017).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “86% internal differential efficiency from 8 to 9 µm-emitting, step-taper active-region quantum cascade lasers,” Opt. Express 24(21), 24483–24494 (2016).
[Crossref] [PubMed]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

Calawa, D. R.

C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, and F. Capasso, “MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1200413 (2017).
[Crossref]

C. A. Wang, B. Schwarz, D. F. Siriani, M. K. Connors, L. J. Missaggia, D. R. Calawa, D. McNulty, A. Akey, M. C. Zheng, J. P. Donnelly, T. S. Mansuripur, and F. Capasso, “Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers,” J. Cryst. Growth 464, 215–220 (2017).
[Crossref]

Capasso, F.

C. A. Wang, B. Schwarz, D. F. Siriani, M. K. Connors, L. J. Missaggia, D. R. Calawa, D. McNulty, A. Akey, M. C. Zheng, J. P. Donnelly, T. S. Mansuripur, and F. Capasso, “Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers,” J. Cryst. Growth 464, 215–220 (2017).
[Crossref]

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, and F. Capasso, “MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1200413 (2017).
[Crossref]

C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
[Crossref] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
[Crossref]

Cederberg, J.

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

Chang, C.-C.

D. Botez, J. Kirch, C.-C. Chang, C. Boyle, H. Kim, K. Oresick, C. Sigler, L. Mawst, M. Jo, J. C. Shin, D. Gun-Kim, D. F. Lindberg, and T. L. Earles, “High internal differential efficiency, mid-infrared quantum cascade lasers,” Proc. SPIE 10123, 101230Q (2017).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “86% internal differential efficiency from 8 to 9 µm-emitting, step-taper active-region quantum cascade lasers,” Opt. Express 24(21), 24483–24494 (2016).
[Crossref] [PubMed]

D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3–16 μm)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013) [Correction: IEEE J. Sel. Top. Quantum Electron. 19(4), 9700101 (2013)].

J. D. Kirch, J. C. Shin, C.-C. Chang, L. J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett. 48(4), 234 (2012).
[Crossref]

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

Chevalier, P.

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

Chiu, Y. T.

Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

Cho, A. Y.

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
[Crossref]

Connors, M. K.

C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, and F. Capasso, “MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1200413 (2017).
[Crossref]

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

C. A. Wang, B. Schwarz, D. F. Siriani, M. K. Connors, L. J. Missaggia, D. R. Calawa, D. McNulty, A. Akey, M. C. Zheng, J. P. Donnelly, T. S. Mansuripur, and F. Capasso, “Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers,” J. Cryst. Growth 464, 215–220 (2017).
[Crossref]

Creedon, K.

C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, and F. Capasso, “MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1200413 (2017).
[Crossref]

D’Souza, M.

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D Botez, I Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94, 201103 (2009).
[Crossref]

Darvish, S. R.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Very high wall plug efficiency of quantum cascade lasers,” Proc. SPIE 7608, 76080F (2010).
[Crossref]

Diehl, L.

C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
[Crossref] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

Dikmelik, Y.

Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

J. Khurgin, Y. Dikmelik, P. Liu, A. Hoffman, M. Escarra, K. Franz, and C. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94(9), 091101 (2009).
[Crossref]

Donnelly, J. P.

C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, and F. Capasso, “MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1200413 (2017).
[Crossref]

C. A. Wang, B. Schwarz, D. F. Siriani, M. K. Connors, L. J. Missaggia, D. R. Calawa, D. McNulty, A. Akey, M. C. Zheng, J. P. Donnelly, T. S. Mansuripur, and F. Capasso, “Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers,” J. Cryst. Growth 464, 215–220 (2017).
[Crossref]

Earles, T.

A. Rajeev, C. Sigler, T. Earles, Y. V. Flores, L. J. Mawst, and D. Botez, “Design considerations for λ ~ 3.0–to 3.5-μm-emitting quantum cascade lasers on metamorphic buffer layers,” Opt. Eng. 57(1), 011017 (2018).

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “86% internal differential efficiency from 8 to 9 µm-emitting, step-taper active-region quantum cascade lasers,” Opt. Express 24(21), 24483–24494 (2016).
[Crossref] [PubMed]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013) [Correction: IEEE J. Sel. Top. Quantum Electron. 19(4), 9700101 (2013)].

J. D. Kirch, J. C. Shin, C.-C. Chang, L. J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett. 48(4), 234 (2012).
[Crossref]

Earles, T. L.

D. Botez, J. Kirch, C.-C. Chang, C. Boyle, H. Kim, K. Oresick, C. Sigler, L. Mawst, M. Jo, J. C. Shin, D. Gun-Kim, D. F. Lindberg, and T. L. Earles, “High internal differential efficiency, mid-infrared quantum cascade lasers,” Proc. SPIE 10123, 101230Q (2017).
[Crossref]

Elagin, M.

W. T. Masselink, M. P. Semtsiv, Y. V. Flores, S. Kurlov, M. Elagin, G. Monastyrskyi, J. F. Kischkat, and A. Aleksandrova, “J. F. and A. Aleksandrova, “AlAs/InAlAs-InGaAs QCLs grown by gas-source molecular-beam epitaxy,” Proc. SPIE 9002, 90021A (2014).
[Crossref]

Y. V. Flores, M. Elagin, S. S. Kurlov, G. Monastyrskyi, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

Y. V. Flores, S. S. Kurlov, M. Elagin, M. P. Semtsiv, and W. T. Masselink, “S. S, Kurlov, M. Elagin, M P. Semtsiv and W.T. Masselink, “Leakage current in quantum-cascade lasers through interface roughness scattering,” Appl. Phys. Lett. 103(16), 161102 (2013).
[Crossref]

Escarra, M.

J. Khurgin, Y. Dikmelik, P. Liu, A. Hoffman, M. Escarra, K. Franz, and C. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94(9), 091101 (2009).
[Crossref]

Faist, J.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett. 101(2), 021103 (2012).
[Crossref]

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Influence of the growth temperature on the performances of strain-balanced quantum cascade lasers,” Appl. Phys. Lett. 98(9), 091105 (2011).
[Crossref]

A. Wittmann, A. Hugi, F. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[Crossref]

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[Crossref]

Fedorov, G.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[Crossref]

Figueiredo, P.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

Flores, Y. V.

A. Rajeev, C. Sigler, T. Earles, Y. V. Flores, L. J. Mawst, and D. Botez, “Design considerations for λ ~ 3.0–to 3.5-μm-emitting quantum cascade lasers on metamorphic buffer layers,” Opt. Eng. 57(1), 011017 (2018).

W. T. Masselink, M. P. Semtsiv, Y. V. Flores, S. Kurlov, M. Elagin, G. Monastyrskyi, J. F. Kischkat, and A. Aleksandrova, “J. F. and A. Aleksandrova, “AlAs/InAlAs-InGaAs QCLs grown by gas-source molecular-beam epitaxy,” Proc. SPIE 9002, 90021A (2014).
[Crossref]

Y. V. Flores, M. Elagin, S. S. Kurlov, G. Monastyrskyi, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

Y. V. Flores, S. S. Kurlov, M. Elagin, M. P. Semtsiv, and W. T. Masselink, “S. S, Kurlov, M. Elagin, M P. Semtsiv and W.T. Masselink, “Leakage current in quantum-cascade lasers through interface roughness scattering,” Appl. Phys. Lett. 103(16), 161102 (2013).
[Crossref]

Franz, K.

J. Khurgin, Y. Dikmelik, P. Liu, A. Hoffman, M. Escarra, K. Franz, and C. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94(9), 091101 (2009).
[Crossref]

Gini, E.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Gini, F.

A. Wittmann, A. Hugi, F. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[Crossref]

Giovannini, M.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[Crossref]

Gmachl, C.

J. Khurgin, Y. Dikmelik, P. Liu, A. Hoffman, M. Escarra, K. Franz, and C. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94(9), 091101 (2009).
[Crossref]

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
[Crossref]

Gmachl, C. F.

Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

Go, R.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20(22), 24272–24279 (2012).
[Crossref] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

Gun-Kim, D.

D. Botez, J. Kirch, C.-C. Chang, C. Boyle, H. Kim, K. Oresick, C. Sigler, L. Mawst, M. Jo, J. C. Shin, D. Gun-Kim, D. F. Lindberg, and T. L. Earles, “High internal differential efficiency, mid-infrared quantum cascade lasers,” Proc. SPIE 10123, 101230Q (2017).
[Crossref]

Hinkov, B.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett. 101(2), 021103 (2012).
[Crossref]

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

Hoffman, A.

J. Khurgin, Y. Dikmelik, P. Liu, A. Hoffman, M. Escarra, K. Franz, and C. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94(9), 091101 (2009).
[Crossref]

Hoyler, N.

A. Wittmann, A. Hugi, F. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Hugi, A.

A. Wittmann, A. Hugi, F. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[Crossref]

Hutchinson, A. L.

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
[Crossref]

Jo, M.

D. Botez, J. Kirch, C.-C. Chang, C. Boyle, H. Kim, K. Oresick, C. Sigler, L. Mawst, M. Jo, J. C. Shin, D. Gun-Kim, D. F. Lindberg, and T. L. Earles, “High internal differential efficiency, mid-infrared quantum cascade lasers,” Proc. SPIE 10123, 101230Q (2017).
[Crossref]

Khurgin, J.

J. Khurgin, Y. Dikmelik, P. Liu, A. Hoffman, M. Escarra, K. Franz, and C. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94(9), 091101 (2009).
[Crossref]

Khurgin, J. B.

Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

Kim, H.

D. Botez, J. Kirch, C.-C. Chang, C. Boyle, H. Kim, K. Oresick, C. Sigler, L. Mawst, M. Jo, J. C. Shin, D. Gun-Kim, D. F. Lindberg, and T. L. Earles, “High internal differential efficiency, mid-infrared quantum cascade lasers,” Proc. SPIE 10123, 101230Q (2017).
[Crossref]

Kirch, J.

D. Botez, J. Kirch, C.-C. Chang, C. Boyle, H. Kim, K. Oresick, C. Sigler, L. Mawst, M. Jo, J. C. Shin, D. Gun-Kim, D. F. Lindberg, and T. L. Earles, “High internal differential efficiency, mid-infrared quantum cascade lasers,” Proc. SPIE 10123, 101230Q (2017).
[Crossref]

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D Botez, I Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94, 201103 (2009).
[Crossref]

Kirch, J. D.

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “86% internal differential efficiency from 8 to 9 µm-emitting, step-taper active-region quantum cascade lasers,” Opt. Express 24(21), 24483–24494 (2016).
[Crossref] [PubMed]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013) [Correction: IEEE J. Sel. Top. Quantum Electron. 19(4), 9700101 (2013)].

J. D. Kirch, J. C. Shin, C.-C. Chang, L. J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett. 48(4), 234 (2012).
[Crossref]

Kischkat, J.

Y. V. Flores, M. Elagin, S. S. Kurlov, G. Monastyrskyi, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

Kischkat, J. F.

W. T. Masselink, M. P. Semtsiv, Y. V. Flores, S. Kurlov, M. Elagin, G. Monastyrskyi, J. F. Kischkat, and A. Aleksandrova, “J. F. and A. Aleksandrova, “AlAs/InAlAs-InGaAs QCLs grown by gas-source molecular-beam epitaxy,” Proc. SPIE 9002, 90021A (2014).
[Crossref]

Kumar, S.

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010) [Erratum: Appl. Phys. Lett. 97, 199901 (2010)].
[Crossref]

D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
[Crossref]

Kurlov, S.

W. T. Masselink, M. P. Semtsiv, Y. V. Flores, S. Kurlov, M. Elagin, G. Monastyrskyi, J. F. Kischkat, and A. Aleksandrova, “J. F. and A. Aleksandrova, “AlAs/InAlAs-InGaAs QCLs grown by gas-source molecular-beam epitaxy,” Proc. SPIE 9002, 90021A (2014).
[Crossref]

Kurlov, S. S.

Y. V. Flores, M. Elagin, S. S. Kurlov, G. Monastyrskyi, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

Y. V. Flores, S. S. Kurlov, M. Elagin, M. P. Semtsiv, and W. T. Masselink, “S. S, Kurlov, M. Elagin, M P. Semtsiv and W.T. Masselink, “Leakage current in quantum-cascade lasers through interface roughness scattering,” Appl. Phys. Lett. 103(16), 161102 (2013).
[Crossref]

Leuliet, A.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[Crossref]

Lindberg, D.

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “86% internal differential efficiency from 8 to 9 µm-emitting, step-taper active-region quantum cascade lasers,” Opt. Express 24(21), 24483–24494 (2016).
[Crossref] [PubMed]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

Lindberg, D. F.

D. Botez, J. Kirch, C.-C. Chang, C. Boyle, H. Kim, K. Oresick, C. Sigler, L. Mawst, M. Jo, J. C. Shin, D. Gun-Kim, D. F. Lindberg, and T. L. Earles, “High internal differential efficiency, mid-infrared quantum cascade lasers,” Proc. SPIE 10123, 101230Q (2017).
[Crossref]

Liu, P.

J. Khurgin, Y. Dikmelik, P. Liu, A. Hoffman, M. Escarra, K. Franz, and C. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94(9), 091101 (2009).
[Crossref]

Liu, P. Q.

Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

Liu, Z.

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D Botez, I Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94, 201103 (2009).
[Crossref]

Lyakh, A.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20(22), 24272–24279 (2012).
[Crossref] [PubMed]

C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
[Crossref] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

Mansuripur, T. S.

C. A. Wang, B. Schwarz, D. F. Siriani, M. K. Connors, L. J. Missaggia, D. R. Calawa, D. McNulty, A. Akey, M. C. Zheng, J. P. Donnelly, T. S. Mansuripur, and F. Capasso, “Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers,” J. Cryst. Growth 464, 215–220 (2017).
[Crossref]

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, and F. Capasso, “MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1200413 (2017).
[Crossref]

Masselink, W. T.

W. T. Masselink, M. P. Semtsiv, Y. V. Flores, S. Kurlov, M. Elagin, G. Monastyrskyi, J. F. Kischkat, and A. Aleksandrova, “J. F. and A. Aleksandrova, “AlAs/InAlAs-InGaAs QCLs grown by gas-source molecular-beam epitaxy,” Proc. SPIE 9002, 90021A (2014).
[Crossref]

Y. V. Flores, S. S. Kurlov, M. Elagin, M. P. Semtsiv, and W. T. Masselink, “S. S, Kurlov, M. Elagin, M P. Semtsiv and W.T. Masselink, “Leakage current in quantum-cascade lasers through interface roughness scattering,” Appl. Phys. Lett. 103(16), 161102 (2013).
[Crossref]

Y. V. Flores, M. Elagin, S. S. Kurlov, G. Monastyrskyi, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

Maulini, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20(22), 24272–24279 (2012).
[Crossref] [PubMed]

C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
[Crossref] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

Mawst, L.

D. Botez, J. Kirch, C.-C. Chang, C. Boyle, H. Kim, K. Oresick, C. Sigler, L. Mawst, M. Jo, J. C. Shin, D. Gun-Kim, D. F. Lindberg, and T. L. Earles, “High internal differential efficiency, mid-infrared quantum cascade lasers,” Proc. SPIE 10123, 101230Q (2017).
[Crossref]

Mawst, L. J.

A. Rajeev, C. Sigler, T. Earles, Y. V. Flores, L. J. Mawst, and D. Botez, “Design considerations for λ ~ 3.0–to 3.5-μm-emitting quantum cascade lasers on metamorphic buffer layers,” Opt. Eng. 57(1), 011017 (2018).

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “86% internal differential efficiency from 8 to 9 µm-emitting, step-taper active-region quantum cascade lasers,” Opt. Express 24(21), 24483–24494 (2016).
[Crossref] [PubMed]

D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3–16 μm)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013) [Correction: IEEE J. Sel. Top. Quantum Electron. 19(4), 9700101 (2013)].

J. D. Kirch, J. C. Shin, C.-C. Chang, L. J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett. 48(4), 234 (2012).
[Crossref]

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010) [Erratum: Appl. Phys. Lett. 97, 199901 (2010)].
[Crossref]

D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
[Crossref]

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D Botez, I Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94, 201103 (2009).
[Crossref]

H. Yang, L. J. Mawst, and D. Botez, “1.6 W continuous-wave coherent power from large-index-step (Δn ≈ 0.10) near-resonant, antiguided diode laser arrays,” Appl. Phys. Lett. 76(10), 1219–1221 (2000).
[Crossref]

C. A. Zmudzinski, D. Botez, and L. J. Mawst, “Simple description of laterally resonant, distributed-feedback-like modes of arrays of antiguides,” Appl. Phys. Lett. 60(2), 1049–1051 (1992).
[Crossref]

McNulty, D.

C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, and F. Capasso, “MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1200413 (2017).
[Crossref]

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

C. A. Wang, B. Schwarz, D. F. Siriani, M. K. Connors, L. J. Missaggia, D. R. Calawa, D. McNulty, A. Akey, M. C. Zheng, J. P. Donnelly, T. S. Mansuripur, and F. Capasso, “Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers,” J. Cryst. Growth 464, 215–220 (2017).
[Crossref]

Meyer, J. R.

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010) [Erratum: Appl. Phys. Lett. 97, 199901 (2010)].
[Crossref]

D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
[Crossref]

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D Botez, I Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94, 201103 (2009).
[Crossref]

Missaggia, L.

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

Missaggia, L. J.

C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, and F. Capasso, “MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1200413 (2017).
[Crossref]

C. A. Wang, B. Schwarz, D. F. Siriani, M. K. Connors, L. J. Missaggia, D. R. Calawa, D. McNulty, A. Akey, M. C. Zheng, J. P. Donnelly, T. S. Mansuripur, and F. Capasso, “Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers,” J. Cryst. Growth 464, 215–220 (2017).
[Crossref]

Monastyrskyi, G.

W. T. Masselink, M. P. Semtsiv, Y. V. Flores, S. Kurlov, M. Elagin, G. Monastyrskyi, J. F. Kischkat, and A. Aleksandrova, “J. F. and A. Aleksandrova, “AlAs/InAlAs-InGaAs QCLs grown by gas-source molecular-beam epitaxy,” Proc. SPIE 9002, 90021A (2014).
[Crossref]

Y. V. Flores, M. Elagin, S. S. Kurlov, G. Monastyrskyi, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

Nickerson, M.

C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, and F. Capasso, “MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1200413 (2017).
[Crossref]

Oresick, K.

D. Botez, J. Kirch, C.-C. Chang, C. Boyle, H. Kim, K. Oresick, C. Sigler, L. Mawst, M. Jo, J. C. Shin, D. Gun-Kim, D. F. Lindberg, and T. L. Earles, “High internal differential efficiency, mid-infrared quantum cascade lasers,” Proc. SPIE 10123, 101230Q (2017).
[Crossref]

Patel, C. K.

Patel, C. K. N.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

Pflugl, C.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Pflügl, C.

C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
[Crossref] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

Rajeev, A.

A. Rajeev, C. Sigler, T. Earles, Y. V. Flores, L. J. Mawst, and D. Botez, “Design considerations for λ ~ 3.0–to 3.5-μm-emitting quantum cascade lasers on metamorphic buffer layers,” Opt. Eng. 57(1), 011017 (2018).

Razeghi, M.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Very high wall plug efficiency of quantum cascade lasers,” Proc. SPIE 7608, 76080F (2010).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Schwarz, B.

C. A. Wang, B. Schwarz, D. F. Siriani, M. K. Connors, L. J. Missaggia, D. R. Calawa, D. McNulty, A. Akey, M. C. Zheng, J. P. Donnelly, T. S. Mansuripur, and F. Capasso, “Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers,” J. Cryst. Growth 464, 215–220 (2017).
[Crossref]

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, and F. Capasso, “MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1200413 (2017).
[Crossref]

Selcuk, E.

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Semtsiv, M. P.

W. T. Masselink, M. P. Semtsiv, Y. V. Flores, S. Kurlov, M. Elagin, G. Monastyrskyi, J. F. Kischkat, and A. Aleksandrova, “J. F. and A. Aleksandrova, “AlAs/InAlAs-InGaAs QCLs grown by gas-source molecular-beam epitaxy,” Proc. SPIE 9002, 90021A (2014).
[Crossref]

Y. V. Flores, S. S. Kurlov, M. Elagin, M. P. Semtsiv, and W. T. Masselink, “S. S, Kurlov, M. Elagin, M P. Semtsiv and W.T. Masselink, “Leakage current in quantum-cascade lasers through interface roughness scattering,” Appl. Phys. Lett. 103(16), 161102 (2013).
[Crossref]

Shin, J.

D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
[Crossref]

Shin, J. C.

D. Botez, J. Kirch, C.-C. Chang, C. Boyle, H. Kim, K. Oresick, C. Sigler, L. Mawst, M. Jo, J. C. Shin, D. Gun-Kim, D. F. Lindberg, and T. L. Earles, “High internal differential efficiency, mid-infrared quantum cascade lasers,” Proc. SPIE 10123, 101230Q (2017).
[Crossref]

D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013) [Correction: IEEE J. Sel. Top. Quantum Electron. 19(4), 9700101 (2013)].

J. D. Kirch, J. C. Shin, C.-C. Chang, L. J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett. 48(4), 234 (2012).
[Crossref]

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010) [Erratum: Appl. Phys. Lett. 97, 199901 (2010)].
[Crossref]

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D Botez, I Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94, 201103 (2009).
[Crossref]

Sigler, C.

A. Rajeev, C. Sigler, T. Earles, Y. V. Flores, L. J. Mawst, and D. Botez, “Design considerations for λ ~ 3.0–to 3.5-μm-emitting quantum cascade lasers on metamorphic buffer layers,” Opt. Eng. 57(1), 011017 (2018).

D. Botez, J. Kirch, C.-C. Chang, C. Boyle, H. Kim, K. Oresick, C. Sigler, L. Mawst, M. Jo, J. C. Shin, D. Gun-Kim, D. F. Lindberg, and T. L. Earles, “High internal differential efficiency, mid-infrared quantum cascade lasers,” Proc. SPIE 10123, 101230Q (2017).
[Crossref]

Siriani, D. F.

C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, and F. Capasso, “MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1200413 (2017).
[Crossref]

C. A. Wang, B. Schwarz, D. F. Siriani, M. K. Connors, L. J. Missaggia, D. R. Calawa, D. McNulty, A. Akey, M. C. Zheng, J. P. Donnelly, T. S. Mansuripur, and F. Capasso, “Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers,” J. Cryst. Growth 464, 215–220 (2017).
[Crossref]

Sirtori, C.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[Crossref]

Sivco, D. L.

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
[Crossref]

Slivken, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Very high wall plug efficiency of quantum cascade lasers,” Proc. SPIE 7608, 76080F (2010).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Smirnov, D.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[Crossref]

Smowton, P. M.

P. M. Smowton and P. Blood, “The differential efficiency of quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 491–498 (1997).
[Crossref]

Strasser, G.

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

Suttinger, M.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

Terazzi, R.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett. 101(2), 021103 (2012).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Influence of the growth temperature on the performances of strain-balanced quantum cascade lasers,” Appl. Phys. Lett. 98(9), 091105 (2011).
[Crossref]

Todi, A.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

Tredicucci, A.

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
[Crossref]

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Tsekoun, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20(22), 24272–24279 (2012).
[Crossref] [PubMed]

C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
[Crossref] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

Vasanelli, A.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[Crossref]

Vinter, B.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[Crossref]

Vurgaftman, I

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D Botez, I Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94, 201103 (2009).
[Crossref]

Vurgaftman, I.

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010) [Erratum: Appl. Phys. Lett. 97, 199901 (2010)].
[Crossref]

D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
[Crossref]

Wade, A.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[Crossref]

Wang, C. A.

C. A. Wang, B. Schwarz, D. F. Siriani, M. K. Connors, L. J. Missaggia, D. R. Calawa, D. McNulty, A. Akey, M. C. Zheng, J. P. Donnelly, T. S. Mansuripur, and F. Capasso, “Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers,” J. Cryst. Growth 464, 215–220 (2017).
[Crossref]

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, and F. Capasso, “MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1200413 (2017).
[Crossref]

Wang, Q. J.

C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
[Crossref] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Wang, X.

Wittmann, A.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[Crossref]

A. Wittmann, A. Hugi, F. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[Crossref]

Yang, H.

H. Yang, L. J. Mawst, and D. Botez, “1.6 W continuous-wave coherent power from large-index-step (Δn ≈ 0.10) near-resonant, antiguided diode laser arrays,” Appl. Phys. Lett. 76(10), 1219–1221 (2000).
[Crossref]

Zheng, M. C.

C. A. Wang, B. Schwarz, D. F. Siriani, M. K. Connors, L. J. Missaggia, D. R. Calawa, D. McNulty, A. Akey, M. C. Zheng, J. P. Donnelly, T. S. Mansuripur, and F. Capasso, “Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers,” J. Cryst. Growth 464, 215–220 (2017).
[Crossref]

Zmudzinski, C. A.

C. A. Zmudzinski, D. Botez, and L. J. Mawst, “Simple description of laterally resonant, distributed-feedback-like modes of arrays of antiguides,” Appl. Phys. Lett. 60(2), 1049–1051 (1992).
[Crossref]

ACS Photonics (1)

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

Appl. Phys. Lett. (20)

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
[Crossref]

C. A. Zmudzinski, D. Botez, and L. J. Mawst, “Simple description of laterally resonant, distributed-feedback-like modes of arrays of antiguides,” Appl. Phys. Lett. 60(2), 1049–1051 (1992).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

H. Yang, L. J. Mawst, and D. Botez, “1.6 W continuous-wave coherent power from large-index-step (Δn ≈ 0.10) near-resonant, antiguided diode laser arrays,” Appl. Phys. Lett. 76(10), 1219–1221 (2000).
[Crossref]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D Botez, I Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94, 201103 (2009).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[Crossref]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010) [Erratum: Appl. Phys. Lett. 97, 199901 (2010)].
[Crossref]

Y. V. Flores, S. S. Kurlov, M. Elagin, M. P. Semtsiv, and W. T. Masselink, “S. S, Kurlov, M. Elagin, M P. Semtsiv and W.T. Masselink, “Leakage current in quantum-cascade lasers through interface roughness scattering,” Appl. Phys. Lett. 103(16), 161102 (2013).
[Crossref]

D. Botez, “Comment on ‘Highly temperature insensitive quantum cascade lasers’ [Appl. Phys. Lett. 97, 251104, (2010)],” Appl. Phys. Lett. 98(21), 216101 (2011).
[Crossref]

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett. 101(2), 021103 (2012).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[Crossref]

J. Khurgin, Y. Dikmelik, P. Liu, A. Hoffman, M. Escarra, K. Franz, and C. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94(9), 091101 (2009).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Influence of the growth temperature on the performances of strain-balanced quantum cascade lasers,” Appl. Phys. Lett. 98(9), 091105 (2011).
[Crossref]

Electron. Lett. (1)

J. D. Kirch, J. C. Shin, C.-C. Chang, L. J. Mawst, D. Botez, and T. Earles, “Tapered active-region quantum cascade lasers (λ = 4.8 μm) for virtual suppression of carrier-leakage currents,” Electron. Lett. 48(4), 234 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Wittmann, A. Hugi, F. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, and F. Capasso, “MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1200413 (2017).
[Crossref]

D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013) [Correction: IEEE J. Sel. Top. Quantum Electron. 19(4), 9700101 (2013)].

P. M. Smowton and P. Blood, “The differential efficiency of quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 491–498 (1997).
[Crossref]

J. Appl. Phys. (2)

Y. V. Flores, M. Elagin, S. S. Kurlov, G. Monastyrskyi, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

J. Cryst. Growth (1)

C. A. Wang, B. Schwarz, D. F. Siriani, M. K. Connors, L. J. Missaggia, D. R. Calawa, D. McNulty, A. Akey, M. C. Zheng, J. P. Donnelly, T. S. Mansuripur, and F. Capasso, “Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers,” J. Cryst. Growth 464, 215–220 (2017).
[Crossref]

J. Phys. D Appl. Phys. (1)

D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3–16 μm)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
[Crossref]

Opt. Eng. (2)

D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
[Crossref]

A. Rajeev, C. Sigler, T. Earles, Y. V. Flores, L. J. Mawst, and D. Botez, “Design considerations for λ ~ 3.0–to 3.5-μm-emitting quantum cascade lasers on metamorphic buffer layers,” Opt. Eng. 57(1), 011017 (2018).

Opt. Express (3)

Proc. SPIE (4)

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Very high wall plug efficiency of quantum cascade lasers,” Proc. SPIE 7608, 76080F (2010).
[Crossref]

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

D. Botez, J. Kirch, C.-C. Chang, C. Boyle, H. Kim, K. Oresick, C. Sigler, L. Mawst, M. Jo, J. C. Shin, D. Gun-Kim, D. F. Lindberg, and T. L. Earles, “High internal differential efficiency, mid-infrared quantum cascade lasers,” Proc. SPIE 10123, 101230Q (2017).
[Crossref]

W. T. Masselink, M. P. Semtsiv, Y. V. Flores, S. Kurlov, M. Elagin, G. Monastyrskyi, J. F. Kischkat, and A. Aleksandrova, “J. F. and A. Aleksandrova, “AlAs/InAlAs-InGaAs QCLs grown by gas-source molecular-beam epitaxy,” Proc. SPIE 9002, 90021A (2014).
[Crossref]

Other (9)

J. D. Kirch and D. Botez, as per k•p analysis of the device presented in Refs. 11 and 4.

J. Faist, Quantum Cascade Lasers (Oxford University Press, Oxford UK, 2013), p. 114 and p.141 in Chap. 7.

Y. V. Flores, “Mid-infrared quantum cascade lasers: theoretical and experimental studies on temperature driven scattering,” PhD Thesis (Humboldt-Universität zu Berlin, June 2015). https://edoc.hu-berlin.de/handle/18452/17876 .

Y. T. Chiu, Y. Dikmelik, Q. Zhang, J. B. Khurgin, and C. F. Gmachl, “Engineering the intersubband lifetime with interface roughness in quantum cascade lasers,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest Series (Optical Society of America, 2012), paper CTh3N.1.
[Crossref]

Giulia Pegolotti, “Quantum engineering of collective states in semiconductor nanostructures,” PhD Thesis, Univ. Paris Diderot - Paris 7, pp. 161–164 (2011).

J. C. Shin, “Tapered active-region quantum cascade laser” in [Very low temperature sensitive, deep-well quantum cascade lasers (λ = 4.8 μm) grown by MOCVD], PhD Thesis, University of Wisconsin-Madison, 92–103, (2010) http://digital.library.wisc.edu/1793/52493

D. Botez and J. C. Shin, US Patent 8,325,774 B2 (2012) ( www.google.co.in/patents/US8325774A ).

J. Faist, Appl. Phys. Lett. “Wallplug efficiency of quantum cascade lasers: critical parameters and fundamental limits,” 90, 253512 (2007).

J. M. Wolf, “Quantum cascade laser: from 3 to 26 μm,” (Doctoral dissertation, ETH NO. 24571, Zurich, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Conduction-band diagram and relevant wavefunctions; (b) AR and extractor energy levels involved in lower-laser-levels depopulation and resonant-tunneling extraction.
Fig. 2
Fig. 2 (a) Light- and voltage-current characteristics, and spectrum; (b) Temperature dependence of the threshold-current density Jth and the slope efficiency. T0 and T1 are the characteristic temperatures for Jth and the slope efficiency, respectively.
Fig. 3
Fig. 3 Inverse slope efficiency vs. inverse mirror loss for 5 μm-emitting STA-RE QCL of different front-facet reflectivity [31].
Fig. 4
Fig. 4 Internal efficiency vs. wavelength for QCLs with carrier-leakage suppression and efficient carrier extraction: this work and [32] (filled circles); QCL with only carrier-leakage suppression [14] (half-filled circle); and conventional QCLs of two lower-level depopulation schemes [6,7] (empty circles). The horizontal red solid and dashed lines correspond to upper limits for QCLs when only LO-phonon scattering is considered [4] and, for STA QCLs, when interface-roughness (IFR) and alloy-disorder (AD) scattering are considered.
Fig. 5
Fig. 5 Measured electroluminescence spectrum for the 5 μm-emitting STA-RE QCL.
Fig. 6
Fig. 6 Calculated electroluminescence spectrum for the 5 μm-emitting STA-RE QCL.
Fig. 7
Fig. 7 CW power, V-I and wallplug-efficiency curves for ~5.0 µm-emitting STA-RE QCLs.
Fig. 8
Fig. 8 (a) Inverse slope efficiency vs. inverse mirror loss for STA-RE QCLs emitting at 8.8 μm [4]; (b) Internal efficiencies, over the 6.5 µm-11.5 µm wavelength range, for QCLs with carrier-leakage suppression and miniband-type carrier extraction [4] (filled circles); QCL with only miniband-type carrier extraction [4] (half-filled circles); and conventional QCLs of different lower-level depopulation schemes [31] (empty circles) [31]. The horizontal red solid line corresponds to the upper limit for QCLs when only LO-phonon scattering is considered [4].
Fig. 9
Fig. 9 CW power, V-I and ηwp curves for 8 μm-emitting, 45-period STA-RE QCL.
Fig. 10
Fig. 10 Temperature dependence of threshold-current and slope efficiency for 8 μm-emitting, 45-period BH STA-RE QCLs of 6 mm-long, 11 um-wide buried-ridge dimensions. T0 and T1 are the characteristic temperatures for the threshold current and the slope efficiency, respectively.
Fig. 11
Fig. 11 CW power, V-I and wallplug-efficiency curves for ~8.0 µm-emitting STA-RE QCLs.
Fig. 12
Fig. 12 Upper limits for the wallplug efficiency of mid-IR QCLs as a function of emission wavelength. The black solid curve is for a “voltage defect” at resonance Δinj = 150 meV and a 70 ps dephasing time [5], and taking the internal efficiency ηi value to be 67% [4]. The red solid curve is for the same parameter values as in [5] while taking the ηi value to be 90%. The red dashed curve corresponds to the case when elastic (IFR and AD) scattering is taken into account for STA-RE-type QCLs, resulting in an ηi value of ≈95%. The data points are: experimental results identified in Fig. 5 of [4], this work’s results at λ = 5 µm and λ = 8 µm, and a recent both-facets result at λ = 8 µm [43] and λ = 9.3 µm [45].

Tables (1)

Tables Icon

Table 1 Relevant parameters showing the effect of IFR and AD scattering on device performance

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

η d = η i α m α m + α w N p
η i η inj,tun η p η tr
η inj = η inj,tun η p
η p =(1 J leak,inj / J th )(1 J leak,ul / J th )
η tr = τ up,g τ up,g + τ 3g
J th α m + α w + α bf η inj Γg α m + α w + α bf η p Γg
J leak,ul (1/ τ 54 )exp( E 54 /k T e4 )
2 γ 4,(3, 3 ) IFR = π 2 Δ 2 Λ 2 i m ci Δ CB,i 2 ( φ 4 2 ( z i ) φ (3 3 ) 2 ( z i ) ) 2
1 τ m,n IFR = π 3 Δ 2 Λ 2 i m ci Δ CB,i 2 φ m 2 ( z i ) φ n 2 ( z i )exp( Λ 2 m ci E mn 2 2 )
1 τ ij inter,AD = 1 8 m w(b) * a 3 V w(b) alloy x(1x) π 3 alloy φ i 2 (z) φ j 2 (z)dz
η wp,max = η s η i α m,opt α m,opt + α w ( 1 J th J wpm ) N p hv q V wpm

Metrics