Abstract

We calculate the characteristics of interband HgTe-CdHgTe quantum-well infrared photodetectors (QWIPs). Due to a small probability of the electron capture into the QWs, the interband HgTe-CdHgTe QWIPs can exhibit very high photoconductive gain. Our analysis demonstrates the significant potential advantages of these devices compared to the conventional CdHgTe photodetectors and the A3B5heterostructures. Overleaf.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Stimulated emission in the 2.8–3.5 μm wavelength range from Peltier cooled HgTe/CdHgTe quantum well heterostructures

M. A. Fadeev, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, A. V. Antonov, K. E. Kudryavtsev, S. A. Dvoretskii, N. N. Mikhailov, V. I. Gavrilenko, and S. V. Morozov
Opt. Express 26(10) 12755-12760 (2018)

Nonlinear response of infrared photodetectors based on van der Waals heterostructures with graphene layers

Victor Ryzhii, Maxim Ryzhii, Dmitry Svintsov, Vladimir Leiman, Vladimir Mitin, Michael S. Shur, and Taiichi Otsuji
Opt. Express 25(5) 5536-5549 (2017)

Experimental characterization of high-speed 1.55 μm buried heterostructure InGaAsP/InGaAlAs quantum-well lasers

M. Nadeem Akram, O. Kjebon, M. Chacinski, R. Schatz, J. Berggren, F. Olsson, S. Lourdudoss, and A. Berrier
J. Opt. Soc. Am. B 26(2) 318-327 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. K. Choi, Physics of Quantum Well Infrared Photodetectors(World Scientific, 1997).
    [Crossref]
  2. H. Schneider and H. C. Lui, Quantum Well Infrared Photodetectors: Physics and Applications(Springer, 2007).
  3. A. Rogalski, “‘Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93, 4356 (2003).
    [Crossref]
  4. F. T. Vasko and A. V. Kuznetsov, Electron States and Optical Transitions in Semiconductor Heterostructures, (Springer, 1999).
    [Crossref]
  5. N. S. Rytova, “Resonance absorption of electromagnetic waves in a thin film,” Sov. Phys. Solid State 8, 2136–2140 (1967).
  6. D. D. Coon and R. P. G. Kuranasiri, “New mode of IR detection using quantum wells,” Appl. Phys. Lett. 45, 649–651 (1984).
    [Crossref]
  7. L. C. West and S. J. Eglash, “First observation of an exteremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
    [Crossref]
  8. B. F. Levine, “Quantum well infrared photodetectors,” J. Appl. Phys. 74, R1 (1993).
    [Crossref]
  9. S. D. Gunapala, S. V. Bandara, J. K. Liu, J.M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “1024 X 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane,” J. Infrared Phys. Technol. 52, 395–398 (2009).
    [Crossref]
  10. S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Topics Quant. Electron. 20(6), 1–12 (2014).
    [Crossref]
  11. A. C. Goldberg, St. W. Kennerly, J. W. Little, T. A. Shafer, C. L. Mears, H. F. Schaake, M. L. Winn, M. Taylor, and P. N. Uppal, “Comparison of HgCdTe and quantum–well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42, 1 (2003).
    [Crossref]
  12. I. M. Nesmelova and V. A. Andreev, “Infrared detector materials alternative to CdHgTe,” J. Opt. Technol. 74, 217–223 (2007).
    [Crossref]
  13. N. A. Kulakova, A. R. Nasyrov, and I. M. Nesmelova, “Current trends in creating optical systems for the IR region,” J. Opt. Technol. 77, 324–330 (2010).
    [Crossref]
  14. V. Gueriaux, “Quantum well infrared photodetectors:present and future,” Opt. Eng. 50, 061013 (2011).
    [Crossref]
  15. C. Downs and T. E. Vandervelde, “Progress in Infrared Photodetectors Since 2000,” Sensors (Basel) 13, 5054–5098 (2013).
    [Crossref]
  16. S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S.D. Ganichev, “Growth of HgTe Quantum Wells for IR to THz Detectors,” J. Electronic Materials 39, 918–923 (2010)
    [Crossref]
  17. S. Morozov, V. Rumyantsev, M. Fadeev, M. Zholudev, K. Kudryavtsev, A. Antonov, A. Kadykov, A. Dubinov, V. Gavrilenko, N. Mikhailov, and S. Dvoretsky, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5µ m,” Appl. Phys. Lett. 111, 192101 (2017).
    [Crossref]
  18. S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
    [Crossref]
  19. Q. Chen, M. Sanderson, and C. Zhang, “Nonlinear terahertz response of HgTe/CdTe quantum wells,” Appl. Phys. Lett. 107, 081111 (2015).
    [Crossref]
  20. H. C. Liu, “Photoconductive gain mechanism of quantum well intersubband infrared detectors,” Appl. Phys. Lett. 60, 1507–1509 (1992).
    [Crossref]
  21. L. Thibaudeau, P. Bois, and J. Y. Duboz, “A selfconsistent model for quantum well infrared photodetectors,” J. Appl. Phys. 79, 446–451 (1996).
    [Crossref]
  22. M. Ryzhii, V. Ryzhii, R. Suris, and C. Hamaguchi, “Self-organization in multiple quantum well infrared photodetectors,” Semicond. Sci. Technol. 16, 202–208 (2001).
    [Crossref]
  23. V. Ryzhii, I. Khmyrova, M. Ryzhii, R. Suris, and C. Hamaguchi, “Phenomenological theory of electric-field domains induced infrared radiation in multiple quantum well structures,” Phys. Rev. B 62, 7268–7274 (2000).
    [Crossref]
  24. V. Ryzhii, M. Ryzhii, and H. C. Liu, “Self-consistent model for quantum well infrared photodetectors with thermionic injection under dark conditions,” J. Appl. Phys. 92, 207–213 (2002).
    [Crossref]
  25. V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” Infrared Phys. Technol. 84, 72–81 (2017).
    [Crossref]
  26. V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Nonlinear response of infrared photodetectors based on van der Waals heterostructures with graphene layers,” Optics Express 25, 5536–5549 (2017).
    [Crossref] [PubMed]
  27. V. Ryzhii, M. Ryzhii, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Effect of doping on the characteristics of infrared photodetectors based on van der Waals heterostructures with multiple graphene layer,” J. Appl. Phys. 122, 054505 (2017).
    [Crossref]
  28. S. M. Sze, Physics of Semiconductor Devices(Wiley, 1999), p.103.
  29. V. Ya. Aleshkin and A. A Dubinov, “Effect of the spin–orbit interaction on intersubband electron transition in GaAs/AlGaAs quantum well heterostructures,” Physica B 503, 32–37 (2016).
    [Crossref]
  30. V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, and V. Ryzhii, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Japan 84, 094703 (2015).
    [Crossref]
  31. J. H. Chu, B. Li, K. Liu, and D. Y. Tang, “Empirical rule for intrinsic absorption spectroscopy in Hg1−xCdxTe,” J. Appl. Phys. 75, 1234–1235 (1994).
    [Crossref]
  32. M. Grudzień, K. Jóźwikowski, J. Piotrowski, and H. Polakowski, ‘The influence of doping on ultimate performance of photodiodes for the 8–14 µ m spectral range,” Infrared Phys. 21, 201–205 (1981)
    [Crossref]
  33. A. Rogalski, “HgCdTe infrared detector material: history, status and outlook,” Rep. Prog. Phys. 68, 2267–2336 (2005).
    [Crossref]

2017 (5)

S. Morozov, V. Rumyantsev, M. Fadeev, M. Zholudev, K. Kudryavtsev, A. Antonov, A. Kadykov, A. Dubinov, V. Gavrilenko, N. Mikhailov, and S. Dvoretsky, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5µ m,” Appl. Phys. Lett. 111, 192101 (2017).
[Crossref]

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” Infrared Phys. Technol. 84, 72–81 (2017).
[Crossref]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Nonlinear response of infrared photodetectors based on van der Waals heterostructures with graphene layers,” Optics Express 25, 5536–5549 (2017).
[Crossref] [PubMed]

V. Ryzhii, M. Ryzhii, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Effect of doping on the characteristics of infrared photodetectors based on van der Waals heterostructures with multiple graphene layer,” J. Appl. Phys. 122, 054505 (2017).
[Crossref]

2016 (1)

V. Ya. Aleshkin and A. A Dubinov, “Effect of the spin–orbit interaction on intersubband electron transition in GaAs/AlGaAs quantum well heterostructures,” Physica B 503, 32–37 (2016).
[Crossref]

2015 (2)

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, and V. Ryzhii, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Japan 84, 094703 (2015).
[Crossref]

Q. Chen, M. Sanderson, and C. Zhang, “Nonlinear terahertz response of HgTe/CdTe quantum wells,” Appl. Phys. Lett. 107, 081111 (2015).
[Crossref]

2014 (1)

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Topics Quant. Electron. 20(6), 1–12 (2014).
[Crossref]

2013 (1)

C. Downs and T. E. Vandervelde, “Progress in Infrared Photodetectors Since 2000,” Sensors (Basel) 13, 5054–5098 (2013).
[Crossref]

2011 (1)

V. Gueriaux, “Quantum well infrared photodetectors:present and future,” Opt. Eng. 50, 061013 (2011).
[Crossref]

2010 (2)

S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S.D. Ganichev, “Growth of HgTe Quantum Wells for IR to THz Detectors,” J. Electronic Materials 39, 918–923 (2010)
[Crossref]

N. A. Kulakova, A. R. Nasyrov, and I. M. Nesmelova, “Current trends in creating optical systems for the IR region,” J. Opt. Technol. 77, 324–330 (2010).
[Crossref]

2009 (1)

S. D. Gunapala, S. V. Bandara, J. K. Liu, J.M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “1024 X 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane,” J. Infrared Phys. Technol. 52, 395–398 (2009).
[Crossref]

2007 (1)

2005 (1)

A. Rogalski, “HgCdTe infrared detector material: history, status and outlook,” Rep. Prog. Phys. 68, 2267–2336 (2005).
[Crossref]

2003 (2)

A. C. Goldberg, St. W. Kennerly, J. W. Little, T. A. Shafer, C. L. Mears, H. F. Schaake, M. L. Winn, M. Taylor, and P. N. Uppal, “Comparison of HgCdTe and quantum–well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42, 1 (2003).
[Crossref]

A. Rogalski, “‘Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93, 4356 (2003).
[Crossref]

2002 (1)

V. Ryzhii, M. Ryzhii, and H. C. Liu, “Self-consistent model for quantum well infrared photodetectors with thermionic injection under dark conditions,” J. Appl. Phys. 92, 207–213 (2002).
[Crossref]

2001 (1)

M. Ryzhii, V. Ryzhii, R. Suris, and C. Hamaguchi, “Self-organization in multiple quantum well infrared photodetectors,” Semicond. Sci. Technol. 16, 202–208 (2001).
[Crossref]

2000 (1)

V. Ryzhii, I. Khmyrova, M. Ryzhii, R. Suris, and C. Hamaguchi, “Phenomenological theory of electric-field domains induced infrared radiation in multiple quantum well structures,” Phys. Rev. B 62, 7268–7274 (2000).
[Crossref]

1996 (1)

L. Thibaudeau, P. Bois, and J. Y. Duboz, “A selfconsistent model for quantum well infrared photodetectors,” J. Appl. Phys. 79, 446–451 (1996).
[Crossref]

1994 (1)

J. H. Chu, B. Li, K. Liu, and D. Y. Tang, “Empirical rule for intrinsic absorption spectroscopy in Hg1−xCdxTe,” J. Appl. Phys. 75, 1234–1235 (1994).
[Crossref]

1993 (1)

B. F. Levine, “Quantum well infrared photodetectors,” J. Appl. Phys. 74, R1 (1993).
[Crossref]

1992 (1)

H. C. Liu, “Photoconductive gain mechanism of quantum well intersubband infrared detectors,” Appl. Phys. Lett. 60, 1507–1509 (1992).
[Crossref]

1985 (1)

L. C. West and S. J. Eglash, “First observation of an exteremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
[Crossref]

1984 (1)

D. D. Coon and R. P. G. Kuranasiri, “New mode of IR detection using quantum wells,” Appl. Phys. Lett. 45, 649–651 (1984).
[Crossref]

1981 (1)

M. Grudzień, K. Jóźwikowski, J. Piotrowski, and H. Polakowski, ‘The influence of doping on ultimate performance of photodiodes for the 8–14 µ m spectral range,” Infrared Phys. 21, 201–205 (1981)
[Crossref]

1967 (1)

N. S. Rytova, “Resonance absorption of electromagnetic waves in a thin film,” Sov. Phys. Solid State 8, 2136–2140 (1967).

Aleshkin, V. Ya.

V. Ya. Aleshkin and A. A Dubinov, “Effect of the spin–orbit interaction on intersubband electron transition in GaAs/AlGaAs quantum well heterostructures,” Physica B 503, 32–37 (2016).
[Crossref]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, and V. Ryzhii, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Japan 84, 094703 (2015).
[Crossref]

Andreev, V. A.

Antonov, A.

S. Morozov, V. Rumyantsev, M. Fadeev, M. Zholudev, K. Kudryavtsev, A. Antonov, A. Kadykov, A. Dubinov, V. Gavrilenko, N. Mikhailov, and S. Dvoretsky, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5µ m,” Appl. Phys. Lett. 111, 192101 (2017).
[Crossref]

Bandara, S. V.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Topics Quant. Electron. 20(6), 1–12 (2014).
[Crossref]

S. D. Gunapala, S. V. Bandara, J. K. Liu, J.M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “1024 X 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane,” J. Infrared Phys. Technol. 52, 395–398 (2009).
[Crossref]

Bois, P.

L. Thibaudeau, P. Bois, and J. Y. Duboz, “A selfconsistent model for quantum well infrared photodetectors,” J. Appl. Phys. 79, 446–451 (1996).
[Crossref]

But, D.

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Chen, Q.

Q. Chen, M. Sanderson, and C. Zhang, “Nonlinear terahertz response of HgTe/CdTe quantum wells,” Appl. Phys. Lett. 107, 081111 (2015).
[Crossref]

Choi, K. K.

K. K. Choi, Physics of Quantum Well Infrared Photodetectors(World Scientific, 1997).
[Crossref]

Chu, J. H.

J. H. Chu, B. Li, K. Liu, and D. Y. Tang, “Empirical rule for intrinsic absorption spectroscopy in Hg1−xCdxTe,” J. Appl. Phys. 75, 1234–1235 (1994).
[Crossref]

Consejo, C.

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Coon, D. D.

D. D. Coon and R. P. G. Kuranasiri, “New mode of IR detection using quantum wells,” Appl. Phys. Lett. 45, 649–651 (1984).
[Crossref]

Coquillat, D.

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Danilov, S.

S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S.D. Ganichev, “Growth of HgTe Quantum Wells for IR to THz Detectors,” J. Electronic Materials 39, 918–923 (2010)
[Crossref]

Downs, C.

C. Downs and T. E. Vandervelde, “Progress in Infrared Photodetectors Since 2000,” Sensors (Basel) 13, 5054–5098 (2013).
[Crossref]

Dubinov, A.

S. Morozov, V. Rumyantsev, M. Fadeev, M. Zholudev, K. Kudryavtsev, A. Antonov, A. Kadykov, A. Dubinov, V. Gavrilenko, N. Mikhailov, and S. Dvoretsky, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5µ m,” Appl. Phys. Lett. 111, 192101 (2017).
[Crossref]

Dubinov, A. A

V. Ya. Aleshkin and A. A Dubinov, “Effect of the spin–orbit interaction on intersubband electron transition in GaAs/AlGaAs quantum well heterostructures,” Physica B 503, 32–37 (2016).
[Crossref]

Dubinov, A. A.

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, and V. Ryzhii, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Japan 84, 094703 (2015).
[Crossref]

Duboz, J. Y.

L. Thibaudeau, P. Bois, and J. Y. Duboz, “A selfconsistent model for quantum well infrared photodetectors,” J. Appl. Phys. 79, 446–451 (1996).
[Crossref]

Dvoretsky, S.

S. Morozov, V. Rumyantsev, M. Fadeev, M. Zholudev, K. Kudryavtsev, A. Antonov, A. Kadykov, A. Dubinov, V. Gavrilenko, N. Mikhailov, and S. Dvoretsky, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5µ m,” Appl. Phys. Lett. 111, 192101 (2017).
[Crossref]

S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S.D. Ganichev, “Growth of HgTe Quantum Wells for IR to THz Detectors,” J. Electronic Materials 39, 918–923 (2010)
[Crossref]

Dvoretzky, S. A.

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Eglash, S. J.

L. C. West and S. J. Eglash, “First observation of an exteremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
[Crossref]

Fadeev, M.

S. Morozov, V. Rumyantsev, M. Fadeev, M. Zholudev, K. Kudryavtsev, A. Antonov, A. Kadykov, A. Dubinov, V. Gavrilenko, N. Mikhailov, and S. Dvoretsky, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5µ m,” Appl. Phys. Lett. 111, 192101 (2017).
[Crossref]

Fadeev, M. A.

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Ganichev, S.D.

S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S.D. Ganichev, “Growth of HgTe Quantum Wells for IR to THz Detectors,” J. Electronic Materials 39, 918–923 (2010)
[Crossref]

Gavrilenko, V.

S. Morozov, V. Rumyantsev, M. Fadeev, M. Zholudev, K. Kudryavtsev, A. Antonov, A. Kadykov, A. Dubinov, V. Gavrilenko, N. Mikhailov, and S. Dvoretsky, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5µ m,” Appl. Phys. Lett. 111, 192101 (2017).
[Crossref]

Gavrilenko, V. I.

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Goldberg, A. C.

A. C. Goldberg, St. W. Kennerly, J. W. Little, T. A. Shafer, C. L. Mears, H. F. Schaake, M. L. Winn, M. Taylor, and P. N. Uppal, “Comparison of HgCdTe and quantum–well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42, 1 (2003).
[Crossref]

Grudzien, M.

M. Grudzień, K. Jóźwikowski, J. Piotrowski, and H. Polakowski, ‘The influence of doping on ultimate performance of photodiodes for the 8–14 µ m spectral range,” Infrared Phys. 21, 201–205 (1981)
[Crossref]

Gueriaux, V.

V. Gueriaux, “Quantum well infrared photodetectors:present and future,” Opt. Eng. 50, 061013 (2011).
[Crossref]

Gunapala, S. D.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Topics Quant. Electron. 20(6), 1–12 (2014).
[Crossref]

S. D. Gunapala, S. V. Bandara, J. K. Liu, J.M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “1024 X 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane,” J. Infrared Phys. Technol. 52, 395–398 (2009).
[Crossref]

Hamaguchi, C.

M. Ryzhii, V. Ryzhii, R. Suris, and C. Hamaguchi, “Self-organization in multiple quantum well infrared photodetectors,” Semicond. Sci. Technol. 16, 202–208 (2001).
[Crossref]

V. Ryzhii, I. Khmyrova, M. Ryzhii, R. Suris, and C. Hamaguchi, “Phenomenological theory of electric-field domains induced infrared radiation in multiple quantum well structures,” Phys. Rev. B 62, 7268–7274 (2000).
[Crossref]

Helm, M.

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Hill, C.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Topics Quant. Electron. 20(6), 1–12 (2014).
[Crossref]

Hill, C. J.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J.M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “1024 X 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane,” J. Infrared Phys. Technol. 52, 395–398 (2009).
[Crossref]

Józwikowski, K.

M. Grudzień, K. Jóźwikowski, J. Piotrowski, and H. Polakowski, ‘The influence of doping on ultimate performance of photodiodes for the 8–14 µ m spectral range,” Infrared Phys. 21, 201–205 (1981)
[Crossref]

Kadykov, A.

S. Morozov, V. Rumyantsev, M. Fadeev, M. Zholudev, K. Kudryavtsev, A. Antonov, A. Kadykov, A. Dubinov, V. Gavrilenko, N. Mikhailov, and S. Dvoretsky, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5µ m,” Appl. Phys. Lett. 111, 192101 (2017).
[Crossref]

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Kennerly, St. W.

A. C. Goldberg, St. W. Kennerly, J. W. Little, T. A. Shafer, C. L. Mears, H. F. Schaake, M. L. Winn, M. Taylor, and P. N. Uppal, “Comparison of HgCdTe and quantum–well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42, 1 (2003).
[Crossref]

Khmyrova, I.

V. Ryzhii, I. Khmyrova, M. Ryzhii, R. Suris, and C. Hamaguchi, “Phenomenological theory of electric-field domains induced infrared radiation in multiple quantum well structures,” Phys. Rev. B 62, 7268–7274 (2000).
[Crossref]

Knap, W.

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Krishtopenko, S. S.

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Kudryavtsev, K.

S. Morozov, V. Rumyantsev, M. Fadeev, M. Zholudev, K. Kudryavtsev, A. Antonov, A. Kadykov, A. Dubinov, V. Gavrilenko, N. Mikhailov, and S. Dvoretsky, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5µ m,” Appl. Phys. Lett. 111, 192101 (2017).
[Crossref]

Kulakova, N. A.

Kuranasiri, R. P. G.

D. D. Coon and R. P. G. Kuranasiri, “New mode of IR detection using quantum wells,” Appl. Phys. Lett. 45, 649–651 (1984).
[Crossref]

Kuznetsov, A. V.

F. T. Vasko and A. V. Kuznetsov, Electron States and Optical Transitions in Semiconductor Heterostructures, (Springer, 1999).
[Crossref]

Leiman, V.

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” Infrared Phys. Technol. 84, 72–81 (2017).
[Crossref]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Nonlinear response of infrared photodetectors based on van der Waals heterostructures with graphene layers,” Optics Express 25, 5536–5549 (2017).
[Crossref] [PubMed]

V. Ryzhii, M. Ryzhii, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Effect of doping on the characteristics of infrared photodetectors based on van der Waals heterostructures with multiple graphene layer,” J. Appl. Phys. 122, 054505 (2017).
[Crossref]

LeVan, P. D.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J.M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “1024 X 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane,” J. Infrared Phys. Technol. 52, 395–398 (2009).
[Crossref]

Levine, B. F.

B. F. Levine, “Quantum well infrared photodetectors,” J. Appl. Phys. 74, R1 (1993).
[Crossref]

Li, B.

J. H. Chu, B. Li, K. Liu, and D. Y. Tang, “Empirical rule for intrinsic absorption spectroscopy in Hg1−xCdxTe,” J. Appl. Phys. 75, 1234–1235 (1994).
[Crossref]

Li, W.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J.M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “1024 X 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane,” J. Infrared Phys. Technol. 52, 395–398 (2009).
[Crossref]

Little, J. W.

A. C. Goldberg, St. W. Kennerly, J. W. Little, T. A. Shafer, C. L. Mears, H. F. Schaake, M. L. Winn, M. Taylor, and P. N. Uppal, “Comparison of HgCdTe and quantum–well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42, 1 (2003).
[Crossref]

Liu, H. C.

V. Ryzhii, M. Ryzhii, and H. C. Liu, “Self-consistent model for quantum well infrared photodetectors with thermionic injection under dark conditions,” J. Appl. Phys. 92, 207–213 (2002).
[Crossref]

H. C. Liu, “Photoconductive gain mechanism of quantum well intersubband infrared detectors,” Appl. Phys. Lett. 60, 1507–1509 (1992).
[Crossref]

Liu, J. K.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Topics Quant. Electron. 20(6), 1–12 (2014).
[Crossref]

S. D. Gunapala, S. V. Bandara, J. K. Liu, J.M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “1024 X 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane,” J. Infrared Phys. Technol. 52, 395–398 (2009).
[Crossref]

Liu, K.

J. H. Chu, B. Li, K. Liu, and D. Y. Tang, “Empirical rule for intrinsic absorption spectroscopy in Hg1−xCdxTe,” J. Appl. Phys. 75, 1234–1235 (1994).
[Crossref]

Lui, H. C.

H. Schneider and H. C. Lui, Quantum Well Infrared Photodetectors: Physics and Applications(Springer, 2007).

Mears, C. L.

A. C. Goldberg, St. W. Kennerly, J. W. Little, T. A. Shafer, C. L. Mears, H. F. Schaake, M. L. Winn, M. Taylor, and P. N. Uppal, “Comparison of HgCdTe and quantum–well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42, 1 (2003).
[Crossref]

Mikhailov, N.

S. Morozov, V. Rumyantsev, M. Fadeev, M. Zholudev, K. Kudryavtsev, A. Antonov, A. Kadykov, A. Dubinov, V. Gavrilenko, N. Mikhailov, and S. Dvoretsky, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5µ m,” Appl. Phys. Lett. 111, 192101 (2017).
[Crossref]

S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S.D. Ganichev, “Growth of HgTe Quantum Wells for IR to THz Detectors,” J. Electronic Materials 39, 918–923 (2010)
[Crossref]

Mikhailov, N. N.

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Mitin, V.

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” Infrared Phys. Technol. 84, 72–81 (2017).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Effect of doping on the characteristics of infrared photodetectors based on van der Waals heterostructures with multiple graphene layer,” J. Appl. Phys. 122, 054505 (2017).
[Crossref]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Nonlinear response of infrared photodetectors based on van der Waals heterostructures with graphene layers,” Optics Express 25, 5536–5549 (2017).
[Crossref] [PubMed]

Morozov, S.

S. Morozov, V. Rumyantsev, M. Fadeev, M. Zholudev, K. Kudryavtsev, A. Antonov, A. Kadykov, A. Dubinov, V. Gavrilenko, N. Mikhailov, and S. Dvoretsky, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5µ m,” Appl. Phys. Lett. 111, 192101 (2017).
[Crossref]

Morozov, S. V.

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Mumolo, J. M.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Topics Quant. Electron. 20(6), 1–12 (2014).
[Crossref]

Mumolo, J.M.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J.M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “1024 X 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane,” J. Infrared Phys. Technol. 52, 395–398 (2009).
[Crossref]

Nasyrov, A. R.

Nesmelova, I. M.

Nguyen, J.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J.M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “1024 X 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane,” J. Infrared Phys. Technol. 52, 395–398 (2009).
[Crossref]

Otsuji, T.

V. Ryzhii, M. Ryzhii, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Effect of doping on the characteristics of infrared photodetectors based on van der Waals heterostructures with multiple graphene layer,” J. Appl. Phys. 122, 054505 (2017).
[Crossref]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Nonlinear response of infrared photodetectors based on van der Waals heterostructures with graphene layers,” Optics Express 25, 5536–5549 (2017).
[Crossref] [PubMed]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” Infrared Phys. Technol. 84, 72–81 (2017).
[Crossref]

Piotrowski, J.

M. Grudzień, K. Jóźwikowski, J. Piotrowski, and H. Polakowski, ‘The influence of doping on ultimate performance of photodiodes for the 8–14 µ m spectral range,” Infrared Phys. 21, 201–205 (1981)
[Crossref]

Polakowski, H.

M. Grudzień, K. Jóźwikowski, J. Piotrowski, and H. Polakowski, ‘The influence of doping on ultimate performance of photodiodes for the 8–14 µ m spectral range,” Infrared Phys. 21, 201–205 (1981)
[Crossref]

Rafol, S. B.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Topics Quant. Electron. 20(6), 1–12 (2014).
[Crossref]

Rogalski, A.

A. Rogalski, “HgCdTe infrared detector material: history, status and outlook,” Rep. Prog. Phys. 68, 2267–2336 (2005).
[Crossref]

A. Rogalski, “‘Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93, 4356 (2003).
[Crossref]

Ruffenach, S.

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Rumyantsev, V.

S. Morozov, V. Rumyantsev, M. Fadeev, M. Zholudev, K. Kudryavtsev, A. Antonov, A. Kadykov, A. Dubinov, V. Gavrilenko, N. Mikhailov, and S. Dvoretsky, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5µ m,” Appl. Phys. Lett. 111, 192101 (2017).
[Crossref]

Rumyantsev, V. V.

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Rytova, N. S.

N. S. Rytova, “Resonance absorption of electromagnetic waves in a thin film,” Sov. Phys. Solid State 8, 2136–2140 (1967).

Ryzhii, M.

V. Ryzhii, M. Ryzhii, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Effect of doping on the characteristics of infrared photodetectors based on van der Waals heterostructures with multiple graphene layer,” J. Appl. Phys. 122, 054505 (2017).
[Crossref]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” Infrared Phys. Technol. 84, 72–81 (2017).
[Crossref]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Nonlinear response of infrared photodetectors based on van der Waals heterostructures with graphene layers,” Optics Express 25, 5536–5549 (2017).
[Crossref] [PubMed]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, and V. Ryzhii, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Japan 84, 094703 (2015).
[Crossref]

V. Ryzhii, M. Ryzhii, and H. C. Liu, “Self-consistent model for quantum well infrared photodetectors with thermionic injection under dark conditions,” J. Appl. Phys. 92, 207–213 (2002).
[Crossref]

M. Ryzhii, V. Ryzhii, R. Suris, and C. Hamaguchi, “Self-organization in multiple quantum well infrared photodetectors,” Semicond. Sci. Technol. 16, 202–208 (2001).
[Crossref]

V. Ryzhii, I. Khmyrova, M. Ryzhii, R. Suris, and C. Hamaguchi, “Phenomenological theory of electric-field domains induced infrared radiation in multiple quantum well structures,” Phys. Rev. B 62, 7268–7274 (2000).
[Crossref]

Ryzhii, V.

V. Ryzhii, M. Ryzhii, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Effect of doping on the characteristics of infrared photodetectors based on van der Waals heterostructures with multiple graphene layer,” J. Appl. Phys. 122, 054505 (2017).
[Crossref]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” Infrared Phys. Technol. 84, 72–81 (2017).
[Crossref]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Nonlinear response of infrared photodetectors based on van der Waals heterostructures with graphene layers,” Optics Express 25, 5536–5549 (2017).
[Crossref] [PubMed]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, and V. Ryzhii, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Japan 84, 094703 (2015).
[Crossref]

V. Ryzhii, M. Ryzhii, and H. C. Liu, “Self-consistent model for quantum well infrared photodetectors with thermionic injection under dark conditions,” J. Appl. Phys. 92, 207–213 (2002).
[Crossref]

M. Ryzhii, V. Ryzhii, R. Suris, and C. Hamaguchi, “Self-organization in multiple quantum well infrared photodetectors,” Semicond. Sci. Technol. 16, 202–208 (2001).
[Crossref]

V. Ryzhii, I. Khmyrova, M. Ryzhii, R. Suris, and C. Hamaguchi, “Phenomenological theory of electric-field domains induced infrared radiation in multiple quantum well structures,” Phys. Rev. B 62, 7268–7274 (2000).
[Crossref]

Sanderson, M.

Q. Chen, M. Sanderson, and C. Zhang, “Nonlinear terahertz response of HgTe/CdTe quantum wells,” Appl. Phys. Lett. 107, 081111 (2015).
[Crossref]

Schaake, H. F.

A. C. Goldberg, St. W. Kennerly, J. W. Little, T. A. Shafer, C. L. Mears, H. F. Schaake, M. L. Winn, M. Taylor, and P. N. Uppal, “Comparison of HgCdTe and quantum–well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42, 1 (2003).
[Crossref]

Schneider, H.

H. Schneider and H. C. Lui, Quantum Well Infrared Photodetectors: Physics and Applications(Springer, 2007).

Shafer, T. A.

A. C. Goldberg, St. W. Kennerly, J. W. Little, T. A. Shafer, C. L. Mears, H. F. Schaake, M. L. Winn, M. Taylor, and P. N. Uppal, “Comparison of HgCdTe and quantum–well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42, 1 (2003).
[Crossref]

Shur, M. S.

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” Infrared Phys. Technol. 84, 72–81 (2017).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Effect of doping on the characteristics of infrared photodetectors based on van der Waals heterostructures with multiple graphene layer,” J. Appl. Phys. 122, 054505 (2017).
[Crossref]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Nonlinear response of infrared photodetectors based on van der Waals heterostructures with graphene layers,” Optics Express 25, 5536–5549 (2017).
[Crossref] [PubMed]

Shvets, V.

S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S.D. Ganichev, “Growth of HgTe Quantum Wells for IR to THz Detectors,” J. Electronic Materials 39, 918–923 (2010)
[Crossref]

Sidorov, Y.

S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S.D. Ganichev, “Growth of HgTe Quantum Wells for IR to THz Detectors,” J. Electronic Materials 39, 918–923 (2010)
[Crossref]

Simolon, B.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J.M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “1024 X 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane,” J. Infrared Phys. Technol. 52, 395–398 (2009).
[Crossref]

Soibel, A.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Topics Quant. Electron. 20(6), 1–12 (2014).
[Crossref]

Suris, R.

M. Ryzhii, V. Ryzhii, R. Suris, and C. Hamaguchi, “Self-organization in multiple quantum well infrared photodetectors,” Semicond. Sci. Technol. 16, 202–208 (2001).
[Crossref]

V. Ryzhii, I. Khmyrova, M. Ryzhii, R. Suris, and C. Hamaguchi, “Phenomenological theory of electric-field domains induced infrared radiation in multiple quantum well structures,” Phys. Rev. B 62, 7268–7274 (2000).
[Crossref]

Svintsov, D.

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Nonlinear response of infrared photodetectors based on van der Waals heterostructures with graphene layers,” Optics Express 25, 5536–5549 (2017).
[Crossref] [PubMed]

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” Infrared Phys. Technol. 84, 72–81 (2017).
[Crossref]

Sze, S. M.

S. M. Sze, Physics of Semiconductor Devices(Wiley, 1999), p.103.

Tang, D. Y.

J. H. Chu, B. Li, K. Liu, and D. Y. Tang, “Empirical rule for intrinsic absorption spectroscopy in Hg1−xCdxTe,” J. Appl. Phys. 75, 1234–1235 (1994).
[Crossref]

Taylor, M.

A. C. Goldberg, St. W. Kennerly, J. W. Little, T. A. Shafer, C. L. Mears, H. F. Schaake, M. L. Winn, M. Taylor, and P. N. Uppal, “Comparison of HgCdTe and quantum–well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42, 1 (2003).
[Crossref]

Teppe, F.

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Thibaudeau, L.

L. Thibaudeau, P. Bois, and J. Y. Duboz, “A selfconsistent model for quantum well infrared photodetectors,” J. Appl. Phys. 79, 446–451 (1996).
[Crossref]

Tidrow, M. Z.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J.M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “1024 X 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane,” J. Infrared Phys. Technol. 52, 395–398 (2009).
[Crossref]

Ting, D. Z.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Topics Quant. Electron. 20(6), 1–12 (2014).
[Crossref]

S. D. Gunapala, S. V. Bandara, J. K. Liu, J.M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “1024 X 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane,” J. Infrared Phys. Technol. 52, 395–398 (2009).
[Crossref]

Torres, J.

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Uppal, P. N.

A. C. Goldberg, St. W. Kennerly, J. W. Little, T. A. Shafer, C. L. Mears, H. F. Schaake, M. L. Winn, M. Taylor, and P. N. Uppal, “Comparison of HgCdTe and quantum–well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42, 1 (2003).
[Crossref]

Vandervelde, T. E.

C. Downs and T. E. Vandervelde, “Progress in Infrared Photodetectors Since 2000,” Sensors (Basel) 13, 5054–5098 (2013).
[Crossref]

Vasko, F. T.

F. T. Vasko and A. V. Kuznetsov, Electron States and Optical Transitions in Semiconductor Heterostructures, (Springer, 1999).
[Crossref]

Wang, S. C.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J.M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “1024 X 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane,” J. Infrared Phys. Technol. 52, 395–398 (2009).
[Crossref]

West, L. C.

L. C. West and S. J. Eglash, “First observation of an exteremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
[Crossref]

Winn, M. L.

A. C. Goldberg, St. W. Kennerly, J. W. Little, T. A. Shafer, C. L. Mears, H. F. Schaake, M. L. Winn, M. Taylor, and P. N. Uppal, “Comparison of HgCdTe and quantum–well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42, 1 (2003).
[Crossref]

Winner, S.

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Wittman, B.

S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S.D. Ganichev, “Growth of HgTe Quantum Wells for IR to THz Detectors,” J. Electronic Materials 39, 918–923 (2010)
[Crossref]

Woolaway, J.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J.M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “1024 X 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane,” J. Infrared Phys. Technol. 52, 395–398 (2009).
[Crossref]

Zhang, C.

Q. Chen, M. Sanderson, and C. Zhang, “Nonlinear terahertz response of HgTe/CdTe quantum wells,” Appl. Phys. Lett. 107, 081111 (2015).
[Crossref]

Zholudev, M.

S. Morozov, V. Rumyantsev, M. Fadeev, M. Zholudev, K. Kudryavtsev, A. Antonov, A. Kadykov, A. Dubinov, V. Gavrilenko, N. Mikhailov, and S. Dvoretsky, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5µ m,” Appl. Phys. Lett. 111, 192101 (2017).
[Crossref]

APL Materials (1)

S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winner, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretzky, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, “HgCdTe-based heterostructures for terahertz photonics,” APL Materials 5, 035503 (2017).
[Crossref]

Appl. Phys. Lett. (5)

Q. Chen, M. Sanderson, and C. Zhang, “Nonlinear terahertz response of HgTe/CdTe quantum wells,” Appl. Phys. Lett. 107, 081111 (2015).
[Crossref]

H. C. Liu, “Photoconductive gain mechanism of quantum well intersubband infrared detectors,” Appl. Phys. Lett. 60, 1507–1509 (1992).
[Crossref]

S. Morozov, V. Rumyantsev, M. Fadeev, M. Zholudev, K. Kudryavtsev, A. Antonov, A. Kadykov, A. Dubinov, V. Gavrilenko, N. Mikhailov, and S. Dvoretsky, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5µ m,” Appl. Phys. Lett. 111, 192101 (2017).
[Crossref]

D. D. Coon and R. P. G. Kuranasiri, “New mode of IR detection using quantum wells,” Appl. Phys. Lett. 45, 649–651 (1984).
[Crossref]

L. C. West and S. J. Eglash, “First observation of an exteremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
[Crossref]

IEEE J. Sel. Topics Quant. Electron. (1)

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, S. B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Well Infrared Photodetector Technology and Applications,” IEEE J. Sel. Topics Quant. Electron. 20(6), 1–12 (2014).
[Crossref]

Infrared Phys. (1)

M. Grudzień, K. Jóźwikowski, J. Piotrowski, and H. Polakowski, ‘The influence of doping on ultimate performance of photodiodes for the 8–14 µ m spectral range,” Infrared Phys. 21, 201–205 (1981)
[Crossref]

Infrared Phys. Technol. (1)

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Infrared photodetectors based on graphene van der Waals heterostructures,” Infrared Phys. Technol. 84, 72–81 (2017).
[Crossref]

J. Appl. Phys. (6)

L. Thibaudeau, P. Bois, and J. Y. Duboz, “A selfconsistent model for quantum well infrared photodetectors,” J. Appl. Phys. 79, 446–451 (1996).
[Crossref]

J. H. Chu, B. Li, K. Liu, and D. Y. Tang, “Empirical rule for intrinsic absorption spectroscopy in Hg1−xCdxTe,” J. Appl. Phys. 75, 1234–1235 (1994).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Effect of doping on the characteristics of infrared photodetectors based on van der Waals heterostructures with multiple graphene layer,” J. Appl. Phys. 122, 054505 (2017).
[Crossref]

V. Ryzhii, M. Ryzhii, and H. C. Liu, “Self-consistent model for quantum well infrared photodetectors with thermionic injection under dark conditions,” J. Appl. Phys. 92, 207–213 (2002).
[Crossref]

B. F. Levine, “Quantum well infrared photodetectors,” J. Appl. Phys. 74, R1 (1993).
[Crossref]

A. Rogalski, “‘Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93, 4356 (2003).
[Crossref]

J. Electronic Materials (1)

S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S.D. Ganichev, “Growth of HgTe Quantum Wells for IR to THz Detectors,” J. Electronic Materials 39, 918–923 (2010)
[Crossref]

J. Infrared Phys. Technol. (1)

S. D. Gunapala, S. V. Bandara, J. K. Liu, J.M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “1024 X 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane,” J. Infrared Phys. Technol. 52, 395–398 (2009).
[Crossref]

J. Opt. Technol. (2)

J. Phys. Soc. Japan (1)

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, and V. Ryzhii, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Japan 84, 094703 (2015).
[Crossref]

Opt. Eng. (2)

V. Gueriaux, “Quantum well infrared photodetectors:present and future,” Opt. Eng. 50, 061013 (2011).
[Crossref]

A. C. Goldberg, St. W. Kennerly, J. W. Little, T. A. Shafer, C. L. Mears, H. F. Schaake, M. L. Winn, M. Taylor, and P. N. Uppal, “Comparison of HgCdTe and quantum–well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42, 1 (2003).
[Crossref]

Optics Express (1)

V. Ryzhii, M. Ryzhii, D. Svintsov, V. Leiman, V. Mitin, M. S. Shur, and T. Otsuji, “Nonlinear response of infrared photodetectors based on van der Waals heterostructures with graphene layers,” Optics Express 25, 5536–5549 (2017).
[Crossref] [PubMed]

Phys. Rev. B (1)

V. Ryzhii, I. Khmyrova, M. Ryzhii, R. Suris, and C. Hamaguchi, “Phenomenological theory of electric-field domains induced infrared radiation in multiple quantum well structures,” Phys. Rev. B 62, 7268–7274 (2000).
[Crossref]

Physica B (1)

V. Ya. Aleshkin and A. A Dubinov, “Effect of the spin–orbit interaction on intersubband electron transition in GaAs/AlGaAs quantum well heterostructures,” Physica B 503, 32–37 (2016).
[Crossref]

Rep. Prog. Phys. (1)

A. Rogalski, “HgCdTe infrared detector material: history, status and outlook,” Rep. Prog. Phys. 68, 2267–2336 (2005).
[Crossref]

Semicond. Sci. Technol. (1)

M. Ryzhii, V. Ryzhii, R. Suris, and C. Hamaguchi, “Self-organization in multiple quantum well infrared photodetectors,” Semicond. Sci. Technol. 16, 202–208 (2001).
[Crossref]

Sensors (Basel) (1)

C. Downs and T. E. Vandervelde, “Progress in Infrared Photodetectors Since 2000,” Sensors (Basel) 13, 5054–5098 (2013).
[Crossref]

Sov. Phys. Solid State (1)

N. S. Rytova, “Resonance absorption of electromagnetic waves in a thin film,” Sov. Phys. Solid State 8, 2136–2140 (1967).

Other (4)

F. T. Vasko and A. V. Kuznetsov, Electron States and Optical Transitions in Semiconductor Heterostructures, (Springer, 1999).
[Crossref]

K. K. Choi, Physics of Quantum Well Infrared Photodetectors(World Scientific, 1997).
[Crossref]

H. Schneider and H. C. Lui, Quantum Well Infrared Photodetectors: Physics and Applications(Springer, 2007).

S. M. Sze, Physics of Semiconductor Devices(Wiley, 1999), p.103.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic views of (a) interband HgTe-CdHgTe QWIP structure, (b) its band diagram at the bias voltage V. The inset in Fig. 1(b) shows a fragment of the band diagram in more detail. Wavy arrows correspond to the incident photons and to the processes of the electron transitions from the subband of the QW valence band to the electron subband (above its bottom). Solid arrows indicate the propagation of the electrons (both injected from the emitter and the preceding QWs) above the barriers, capture of these electrons into the QW, and tunneling of the photoexcited electrons from the QW.
Fig. 2
Fig. 2 Energy spectra of the HgTe QWs (a) with the width d = 2.2 nm surrounded by the Cd0.27Hg0.73Te barriers at T = 77 K and (b) with the width d = 3.2 nm surrounded by Cd0.3Hg0.7Te barriers at T = 200 K: e1 and e2 lines correspond so slightly split lowest electron subband, h1, h2 and h3, h4 correspond to two split hole subbands. Horizontal dotted lines show the bottom of the barrier conduction band E c (for the Cd contents x = 0.27 and x = 0.3) and the conduction band bottom energy minus the optical phonon energy ħω0, respectively. The energy is counted from the top of the CdTe valence band.
Fig. 3
Fig. 3 The energy gap ΔQWand the barrier height ΔBversus the QW width d for different Cd content x at (a) T = 77 K and (b) T = 200 K.
Fig. 4
Fig. 4 The interband absorption coefficient βωversus photon energy ħω (a) in the HgTe–Cd0.23Hg0.73Te heterostructures with the QW widths d = 2.2 nm and d = 1.7 nm (at T = 77 K) and at (b) in the HgTe–Cd0.3Hg0.7Te heterostructures with the QW thicknesses d = 3.2 nm and d = 2.5 nm (at T = 200 K).
Fig. 5
Fig. 5 The spectral dependences of the responsivity R for the interband HgTe–Cd0.3Hg0.7Te QWIPs with γ = 0.5, N = 1, and different normalized electric fields U = E/Etunn: (a) d = 3.2 nm (pc = 0.36%) and (b) d = 2.5 nm (pc = 0.58%) at T = 200 K.
Fig. 6
Fig. 6 The spectral dependences of the responsivity R for the interband HgTe–Cd0.3Hg0.7Te QWIPs with different number of the QWs N (N = 1, 3, and 10) at T = 200 K, γ = 0.5, and U = E/Etunn = 0.5: (a) d = 3.2 nm, pc = 0.36% and (b) d = 2.5 nm, pc = 0.58%,.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ω Δ Q W + ( 1 + m M ) Δ B Δ Q W + Δ B = ω t h .
j p h o t o = e β ω θ ω ξ N p c I ω , R = e β ω θ ω ξ N p c ω .
θ ω = { 1 + τ e s c τ r e l a x exp [ ( ω t h ω ω t h ) 3 / 2 E t u n n E ] } 1 ,
θ ω = ( 1 + τ e s c τ r e l a x ) 1 ,
β ω = e 2 c ω n d 2 k i , j | ν i , j x | 2 + | ν i , j y | 2 2 π × Γ [ ( ε i ( k ) ε j ( k ) + ω ) 2 + Γ 2 ] .
R R P D 1 p c β ω β ω , P D .
D * D P D * β ω N β ω , P D 2 G P D N G .
D * D P D * β ω β ω , P D 2 N W m k B T 2 π .
j p h o t o , P D e β ω , P D I ω , R P D e β , ω , P D ω .
G = m k B T π 2 W τ R exp ( ω t h k B T ) ,
G P D = 2 ( 2 π m k B T ) 3 / 2 ( 2 π ) 3 τ R exp ( ω t h k B T ) ,
G P D G = m k B T 2 π W .

Metrics