Abstract

Broadly tunable upconversion is demonstrated for long-wave infrared (LWIR) detection. The upconversion system is evaluated by the detection of 50 ns pulses from a narrow linewidth tunable quantum cascade laser (QCL) in the 9.4 to 12 µm range. The LWIR signal is mixed with a 1064 nm laser beam in a silver gallium sulfide (AgGaS2) crystal, resulting in an upconverted signal in the 956 to 977 nm range, using angle tuning for optimal phase-matching. This allows for efficient, high speed detection using a standard silicon detector. A theoretical model including absorption and diffraction shows qualitative agreement with experimental data.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Upconversion raster scanning microscope for long-wavelength infrared imaging of breast cancer microcalcifications

Yu-Pei Tseng, Pascaline Bouzy, Christian Pedersen, Nick Stone, and Peter Tidemand-Lichtenberg
Biomed. Opt. Express 9(10) 4979-4987 (2018)

Mid-infrared upconversion based hyperspectral imaging

Saher Junaid, Jan Tomko, Mykhaylo P. Semtsiv, Jan Kischkat, W. Ted Masselink, Christian Pedersen, and Peter Tidemand-Lichtenberg
Opt. Express 26(3) 2203-2211 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. Normand, M. McCulloch, G. Duxbury, and N. Langford, “Fast, real-time spectrometer based on a pulsed quantum-cascade laser,” Opt. Lett. 28(1), 16–18 (2003).
    [Crossref] [PubMed]
  2. D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3325–3335 (2004).
    [Crossref] [PubMed]
  3. M. Imaki and T. Kobayashi, “Infrared frequency upconverter for high-sensitivity imaging of gas plumes,” Opt. Lett. 32(13), 1923–1925 (2007).
    [Crossref] [PubMed]
  4. P. Tidemand-Lichtenberg, J. S. Dam, H. V. Andersen, L. Høgstedt, and C. Pedersen, “Mid-infrared upconversion spectroscopy,” J. Opt. Soc. Am. B 33(11), D28–D35 (2016).
    [Crossref]
  5. R. W. Boyd and C. H. Townes, “An infrared upconverter for astronomical imaging,” Appl. Phys. Lett. 31(7), 440–442 (1977).
    [Crossref]
  6. M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84(23), 10366–10372 (2012).
    [Crossref] [PubMed]
  7. N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
    [Crossref] [PubMed]
  8. K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87(1), 485–493 (2015).
    [Crossref] [PubMed]
  9. P. Ciais, C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Qu’er’e, R. B. Myneni, S. Piao, and P. Thornton, “2013: Carbon and Other Biogeochemical Cycles,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T. F. D. Qin, G. -K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, eds. (Cambridge University, 2013).
  10. Z. W. Sun, Z. S. Li, B. Li, M. Aldén, and P. Ewart, “Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species,” Appl. Phys. B 98(2-3), 593–600 (2010).
    [Crossref]
  11. Y. Saalberg and M. Wolff, “VOC breath biomarkers in lung cancer,” Clin. Chim. Acta 459, 5–9 (2016).
    [Crossref] [PubMed]
  12. E. van Mastrigt, A. Reyes-Reyes, K. Brand, N. Bhattacharya, H. P. Urbach, A. P. Stubbs, J. C. de Jongste, and M. W. Pijnenburg, “Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis,” J. Breath Res. 10(2), 026003 (2016).
    [Crossref] [PubMed]
  13. T. Stacewicz, Z. Bielecki, J. Wojtas, P. Magryta, J. Mikolajczyk, and D. Szabra, “Detection of disease markers in human breath with laser absorption spectroscopy,” Opto-Electron. Rev. 24(2), 82–94 (2016).
    [Crossref]
  14. R. Baker, K. D. Rogers, N. Shepherd, and N. Stone, “New relationships between breast microcalcifications and cancer,” Br. J. Cancer 103(7), 1034–1039 (2010).
    [Crossref] [PubMed]
  15. S. C. Kumar, P. G. Schunemann, K. T. Zawilski, and M. Eberahim-Zadeh, “Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2,” JOSA B33, 44–56 (2016).
  16. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.7µm,” Appl. Phys. Lett. 2834, 2007–2010 (2009)
  17. A. Rogalski, Infrared Detectors (CRC Press, 2010).
  18. J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, “Room temperature mid-IR single photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
    [Crossref]
  19. G. Temporão, S. Tanzilli, H. Zbinden, N. Gisin, T. Aellen, M. Giovannini, and J. Faist, “Mid-infrared single-photon counting,” Opt. Lett. 31(8), 1094–1096 (2006).
    [Crossref] [PubMed]
  20. L. Høgstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2,” Opt. Express 24(5), 5152–5161 (2016).
    [Crossref] [PubMed]
  21. Y.-P. Tseng, P. Bouzy, N. Stone, C. Pedersen, and P. Tidemand-Lichtenberg, “Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection,” Proc. SPIE 1049, 10490 (2018).
  22. J.-J. Zondy, “The effects of focusing in type-I and type-II difference-frequency generations,” Opt. Commun. 149(1-3), 181–206 (1998).
    [Crossref]
  23. K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43(3), 537–544 (2005).
    [Crossref]
  24. G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  25. C. Pedersen, Q. Hu, L. Høgstedt, P. Tidemand-Lichtenberg, and J. S. Dam, “Non-collinear upconversion of infrared light,” Opt. Express 22(23), 28027–28036 (2014).
    [Crossref] [PubMed]
  26. L. Wang, Z. Cao, H. Wang, H. Zhao, W. Gao, Y. Yuan, W. Chen, W. Zhang, Y. Wang, and X. Gao, “A widely tunable (5-12.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2,” Opt. Commun. 284(1), 358–362 (2011).
    [Crossref]
  27. E. Takaoka and K. Kato, “Thermo-optic dispersion formula for AgGaS2.,” Appl. Opt. 38(21), 4577–4580 (1999).
    [Crossref] [PubMed]

2018 (1)

Y.-P. Tseng, P. Bouzy, N. Stone, C. Pedersen, and P. Tidemand-Lichtenberg, “Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection,” Proc. SPIE 1049, 10490 (2018).

2016 (5)

P. Tidemand-Lichtenberg, J. S. Dam, H. V. Andersen, L. Høgstedt, and C. Pedersen, “Mid-infrared upconversion spectroscopy,” J. Opt. Soc. Am. B 33(11), D28–D35 (2016).
[Crossref]

Y. Saalberg and M. Wolff, “VOC breath biomarkers in lung cancer,” Clin. Chim. Acta 459, 5–9 (2016).
[Crossref] [PubMed]

E. van Mastrigt, A. Reyes-Reyes, K. Brand, N. Bhattacharya, H. P. Urbach, A. P. Stubbs, J. C. de Jongste, and M. W. Pijnenburg, “Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis,” J. Breath Res. 10(2), 026003 (2016).
[Crossref] [PubMed]

T. Stacewicz, Z. Bielecki, J. Wojtas, P. Magryta, J. Mikolajczyk, and D. Szabra, “Detection of disease markers in human breath with laser absorption spectroscopy,” Opto-Electron. Rev. 24(2), 82–94 (2016).
[Crossref]

L. Høgstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2,” Opt. Express 24(5), 5152–5161 (2016).
[Crossref] [PubMed]

2015 (1)

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

2014 (2)

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

C. Pedersen, Q. Hu, L. Høgstedt, P. Tidemand-Lichtenberg, and J. S. Dam, “Non-collinear upconversion of infrared light,” Opt. Express 22(23), 28027–28036 (2014).
[Crossref] [PubMed]

2012 (2)

J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, “Room temperature mid-IR single photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[Crossref] [PubMed]

2011 (1)

L. Wang, Z. Cao, H. Wang, H. Zhao, W. Gao, Y. Yuan, W. Chen, W. Zhang, Y. Wang, and X. Gao, “A widely tunable (5-12.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2,” Opt. Commun. 284(1), 358–362 (2011).
[Crossref]

2010 (2)

Z. W. Sun, Z. S. Li, B. Li, M. Aldén, and P. Ewart, “Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species,” Appl. Phys. B 98(2-3), 593–600 (2010).
[Crossref]

R. Baker, K. D. Rogers, N. Shepherd, and N. Stone, “New relationships between breast microcalcifications and cancer,” Br. J. Cancer 103(7), 1034–1039 (2010).
[Crossref] [PubMed]

2007 (1)

2006 (1)

2005 (1)

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43(3), 537–544 (2005).
[Crossref]

2004 (1)

D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3325–3335 (2004).
[Crossref] [PubMed]

2003 (1)

1999 (1)

1998 (1)

J.-J. Zondy, “The effects of focusing in type-I and type-II difference-frequency generations,” Opt. Commun. 149(1-3), 181–206 (1998).
[Crossref]

1977 (1)

R. W. Boyd and C. H. Townes, “An infrared upconverter for astronomical imaging,” Appl. Phys. Lett. 31(7), 440–442 (1977).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Aellen, T.

G. Temporão, S. Tanzilli, H. Zbinden, N. Gisin, T. Aellen, M. Giovannini, and J. Faist, “Mid-infrared single-photon counting,” Opt. Lett. 31(8), 1094–1096 (2006).
[Crossref] [PubMed]

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43(3), 537–544 (2005).
[Crossref]

Aldén, M.

Z. W. Sun, Z. S. Li, B. Li, M. Aldén, and P. Ewart, “Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species,” Appl. Phys. B 98(2-3), 593–600 (2010).
[Crossref]

Andersen, H. V.

Baker, R.

R. Baker, K. D. Rogers, N. Shepherd, and N. Stone, “New relationships between breast microcalcifications and cancer,” Br. J. Cancer 103(7), 1034–1039 (2010).
[Crossref] [PubMed]

Beck, M.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43(3), 537–544 (2005).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.7µm,” Appl. Phys. Lett. 2834, 2007–2010 (2009)

Bhargava, R.

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[Crossref] [PubMed]

Bhattacharya, N.

E. van Mastrigt, A. Reyes-Reyes, K. Brand, N. Bhattacharya, H. P. Urbach, A. P. Stubbs, J. C. de Jongste, and M. W. Pijnenburg, “Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis,” J. Breath Res. 10(2), 026003 (2016).
[Crossref] [PubMed]

Bielecki, Z.

T. Stacewicz, Z. Bielecki, J. Wojtas, P. Magryta, J. Mikolajczyk, and D. Szabra, “Detection of disease markers in human breath with laser absorption spectroscopy,” Opto-Electron. Rev. 24(2), 82–94 (2016).
[Crossref]

Bonetti, Y.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.7µm,” Appl. Phys. Lett. 2834, 2007–2010 (2009)

Bouzy, P.

Y.-P. Tseng, P. Bouzy, N. Stone, C. Pedersen, and P. Tidemand-Lichtenberg, “Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection,” Proc. SPIE 1049, 10490 (2018).

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Boyd, R. W.

R. W. Boyd and C. H. Townes, “An infrared upconverter for astronomical imaging,” Appl. Phys. Lett. 31(7), 440–442 (1977).
[Crossref]

Brand, K.

E. van Mastrigt, A. Reyes-Reyes, K. Brand, N. Bhattacharya, H. P. Urbach, A. P. Stubbs, J. C. de Jongste, and M. W. Pijnenburg, “Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis,” J. Breath Res. 10(2), 026003 (2016).
[Crossref] [PubMed]

Cao, Z.

L. Wang, Z. Cao, H. Wang, H. Zhao, W. Gao, Y. Yuan, W. Chen, W. Zhang, Y. Wang, and X. Gao, “A widely tunable (5-12.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2,” Opt. Commun. 284(1), 358–362 (2011).
[Crossref]

Chen, W.

L. Wang, Z. Cao, H. Wang, H. Zhao, W. Gao, Y. Yuan, W. Chen, W. Zhang, Y. Wang, and X. Gao, “A widely tunable (5-12.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2,” Opt. Commun. 284(1), 358–362 (2011).
[Crossref]

Dam, J. S.

de Jongste, J. C.

E. van Mastrigt, A. Reyes-Reyes, K. Brand, N. Bhattacharya, H. P. Urbach, A. P. Stubbs, J. C. de Jongste, and M. W. Pijnenburg, “Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis,” J. Breath Res. 10(2), 026003 (2016).
[Crossref] [PubMed]

Duxbury, G.

Eberahim-Zadeh, M.

S. C. Kumar, P. G. Schunemann, K. T. Zawilski, and M. Eberahim-Zadeh, “Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2,” JOSA B33, 44–56 (2016).

Egl, A.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Engel, M.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Ewart, P.

Z. W. Sun, Z. S. Li, B. Li, M. Aldén, and P. Ewart, “Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species,” Appl. Phys. B 98(2-3), 593–600 (2010).
[Crossref]

Faist, J.

G. Temporão, S. Tanzilli, H. Zbinden, N. Gisin, T. Aellen, M. Giovannini, and J. Faist, “Mid-infrared single-photon counting,” Opt. Lett. 31(8), 1094–1096 (2006).
[Crossref] [PubMed]

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43(3), 537–544 (2005).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.7µm,” Appl. Phys. Lett. 2834, 2007–2010 (2009)

Fischer, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.7µm,” Appl. Phys. Lett. 2834, 2007–2010 (2009)

Fix, A.

Gao, W.

L. Wang, Z. Cao, H. Wang, H. Zhao, W. Gao, Y. Yuan, W. Chen, W. Zhang, Y. Wang, and X. Gao, “A widely tunable (5-12.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2,” Opt. Commun. 284(1), 358–362 (2011).
[Crossref]

Gao, X.

L. Wang, Z. Cao, H. Wang, H. Zhao, W. Gao, Y. Yuan, W. Chen, W. Zhang, Y. Wang, and X. Gao, “A widely tunable (5-12.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2,” Opt. Commun. 284(1), 358–362 (2011).
[Crossref]

Gelber, M. K.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[Crossref] [PubMed]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.7µm,” Appl. Phys. Lett. 2834, 2007–2010 (2009)

Giovannini, M.

Gisin, N.

G. Temporão, S. Tanzilli, H. Zbinden, N. Gisin, T. Aellen, M. Giovannini, and J. Faist, “Mid-infrared single-photon counting,” Opt. Lett. 31(8), 1094–1096 (2006).
[Crossref] [PubMed]

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43(3), 537–544 (2005).
[Crossref]

Gretz, N.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Haase, K.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Herndon, S.

D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3325–3335 (2004).
[Crossref] [PubMed]

Herpich, I.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Høgstedt, L.

Hu, Q.

Hugi, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.7µm,” Appl. Phys. Lett. 2834, 2007–2010 (2009)

Imaki, M.

Karstad, K.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43(3), 537–544 (2005).
[Crossref]

Kato, K.

Kenkel, S.

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Kobayashi, T.

Kole, M. R.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[Crossref] [PubMed]

Kränzlin, B.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Kröger, N.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Kumar, S. C.

S. C. Kumar, P. G. Schunemann, K. T. Zawilski, and M. Eberahim-Zadeh, “Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2,” JOSA B33, 44–56 (2016).

Langford, N.

Li, B.

Z. W. Sun, Z. S. Li, B. Li, M. Aldén, and P. Ewart, “Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species,” Appl. Phys. B 98(2-3), 593–600 (2010).
[Crossref]

Li, Z. S.

Z. W. Sun, Z. S. Li, B. Li, M. Aldén, and P. Ewart, “Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species,” Appl. Phys. B 98(2-3), 593–600 (2010).
[Crossref]

Liu, J. N.

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

Magryta, P.

T. Stacewicz, Z. Bielecki, J. Wojtas, P. Magryta, J. Mikolajczyk, and D. Szabra, “Detection of disease markers in human breath with laser absorption spectroscopy,” Opto-Electron. Rev. 24(2), 82–94 (2016).
[Crossref]

McCulloch, M.

McManus, B.

D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3325–3335 (2004).
[Crossref] [PubMed]

Mikolajczyk, J.

T. Stacewicz, Z. Bielecki, J. Wojtas, P. Magryta, J. Mikolajczyk, and D. Szabra, “Detection of disease markers in human breath with laser absorption spectroscopy,” Opto-Electron. Rev. 24(2), 82–94 (2016).
[Crossref]

Nelson, D. D.

D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3325–3335 (2004).
[Crossref] [PubMed]

Neudecker, S.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Normand, E.

Pedersen, C.

Y.-P. Tseng, P. Bouzy, N. Stone, C. Pedersen, and P. Tidemand-Lichtenberg, “Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection,” Proc. SPIE 1049, 10490 (2018).

P. Tidemand-Lichtenberg, J. S. Dam, H. V. Andersen, L. Høgstedt, and C. Pedersen, “Mid-infrared upconversion spectroscopy,” J. Opt. Soc. Am. B 33(11), D28–D35 (2016).
[Crossref]

L. Høgstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2,” Opt. Express 24(5), 5152–5161 (2016).
[Crossref] [PubMed]

C. Pedersen, Q. Hu, L. Høgstedt, P. Tidemand-Lichtenberg, and J. S. Dam, “Non-collinear upconversion of infrared light,” Opt. Express 22(23), 28027–28036 (2014).
[Crossref] [PubMed]

J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, “Room temperature mid-IR single photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Petrich, W.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Pijnenburg, M. W.

E. van Mastrigt, A. Reyes-Reyes, K. Brand, N. Bhattacharya, H. P. Urbach, A. P. Stubbs, J. C. de Jongste, and M. W. Pijnenburg, “Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis,” J. Breath Res. 10(2), 026003 (2016).
[Crossref] [PubMed]

Pucci, A.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Reddy, R. K.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[Crossref] [PubMed]

Reyes-Reyes, A.

E. van Mastrigt, A. Reyes-Reyes, K. Brand, N. Bhattacharya, H. P. Urbach, A. P. Stubbs, J. C. de Jongste, and M. W. Pijnenburg, “Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis,” J. Breath Res. 10(2), 026003 (2016).
[Crossref] [PubMed]

Rogers, K. D.

R. Baker, K. D. Rogers, N. Shepherd, and N. Stone, “New relationships between breast microcalcifications and cancer,” Br. J. Cancer 103(7), 1034–1039 (2010).
[Crossref] [PubMed]

Saalberg, Y.

Y. Saalberg and M. Wolff, “VOC breath biomarkers in lung cancer,” Clin. Chim. Acta 459, 5–9 (2016).
[Crossref] [PubMed]

Schönhals, A.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Schulmerich, M. V.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[Crossref] [PubMed]

Schunemann, P. G.

S. C. Kumar, P. G. Schunemann, K. T. Zawilski, and M. Eberahim-Zadeh, “Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2,” JOSA B33, 44–56 (2016).

Shepherd, N.

R. Baker, K. D. Rogers, N. Shepherd, and N. Stone, “New relationships between breast microcalcifications and cancer,” Br. J. Cancer 103(7), 1034–1039 (2010).
[Crossref] [PubMed]

Stacewicz, T.

T. Stacewicz, Z. Bielecki, J. Wojtas, P. Magryta, J. Mikolajczyk, and D. Szabra, “Detection of disease markers in human breath with laser absorption spectroscopy,” Opto-Electron. Rev. 24(2), 82–94 (2016).
[Crossref]

Stefanov, A.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43(3), 537–544 (2005).
[Crossref]

Stone, N.

Y.-P. Tseng, P. Bouzy, N. Stone, C. Pedersen, and P. Tidemand-Lichtenberg, “Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection,” Proc. SPIE 1049, 10490 (2018).

R. Baker, K. D. Rogers, N. Shepherd, and N. Stone, “New relationships between breast microcalcifications and cancer,” Br. J. Cancer 103(7), 1034–1039 (2010).
[Crossref] [PubMed]

Stubbs, A. P.

E. van Mastrigt, A. Reyes-Reyes, K. Brand, N. Bhattacharya, H. P. Urbach, A. P. Stubbs, J. C. de Jongste, and M. W. Pijnenburg, “Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis,” J. Breath Res. 10(2), 026003 (2016).
[Crossref] [PubMed]

Sun, Z. W.

Z. W. Sun, Z. S. Li, B. Li, M. Aldén, and P. Ewart, “Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species,” Appl. Phys. B 98(2-3), 593–600 (2010).
[Crossref]

Szabra, D.

T. Stacewicz, Z. Bielecki, J. Wojtas, P. Magryta, J. Mikolajczyk, and D. Szabra, “Detection of disease markers in human breath with laser absorption spectroscopy,” Opto-Electron. Rev. 24(2), 82–94 (2016).
[Crossref]

Takaoka, E.

Tanzilli, S.

Temporão, G.

Terazzi, R.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.7µm,” Appl. Phys. Lett. 2834, 2007–2010 (2009)

Tidemand-Lichtenberg, P.

Y.-P. Tseng, P. Bouzy, N. Stone, C. Pedersen, and P. Tidemand-Lichtenberg, “Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection,” Proc. SPIE 1049, 10490 (2018).

L. Høgstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2,” Opt. Express 24(5), 5152–5161 (2016).
[Crossref] [PubMed]

P. Tidemand-Lichtenberg, J. S. Dam, H. V. Andersen, L. Høgstedt, and C. Pedersen, “Mid-infrared upconversion spectroscopy,” J. Opt. Soc. Am. B 33(11), D28–D35 (2016).
[Crossref]

C. Pedersen, Q. Hu, L. Høgstedt, P. Tidemand-Lichtenberg, and J. S. Dam, “Non-collinear upconversion of infrared light,” Opt. Express 22(23), 28027–28036 (2014).
[Crossref] [PubMed]

J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, “Room temperature mid-IR single photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Townes, C. H.

R. W. Boyd and C. H. Townes, “An infrared upconverter for astronomical imaging,” Appl. Phys. Lett. 31(7), 440–442 (1977).
[Crossref]

Tseng, Y.-P.

Y.-P. Tseng, P. Bouzy, N. Stone, C. Pedersen, and P. Tidemand-Lichtenberg, “Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection,” Proc. SPIE 1049, 10490 (2018).

Urbach, H. P.

E. van Mastrigt, A. Reyes-Reyes, K. Brand, N. Bhattacharya, H. P. Urbach, A. P. Stubbs, J. C. de Jongste, and M. W. Pijnenburg, “Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis,” J. Breath Res. 10(2), 026003 (2016).
[Crossref] [PubMed]

Urbanski, S.

D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3325–3335 (2004).
[Crossref] [PubMed]

van Mastrigt, E.

E. van Mastrigt, A. Reyes-Reyes, K. Brand, N. Bhattacharya, H. P. Urbach, A. P. Stubbs, J. C. de Jongste, and M. W. Pijnenburg, “Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis,” J. Breath Res. 10(2), 026003 (2016).
[Crossref] [PubMed]

Vogt, J.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Wang, H.

L. Wang, Z. Cao, H. Wang, H. Zhao, W. Gao, Y. Yuan, W. Chen, W. Zhang, Y. Wang, and X. Gao, “A widely tunable (5-12.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2,” Opt. Commun. 284(1), 358–362 (2011).
[Crossref]

Wang, L.

L. Wang, Z. Cao, H. Wang, H. Zhao, W. Gao, Y. Yuan, W. Chen, W. Zhang, Y. Wang, and X. Gao, “A widely tunable (5-12.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2,” Opt. Commun. 284(1), 358–362 (2011).
[Crossref]

Wang, Y.

L. Wang, Z. Cao, H. Wang, H. Zhao, W. Gao, Y. Yuan, W. Chen, W. Zhang, Y. Wang, and X. Gao, “A widely tunable (5-12.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2,” Opt. Commun. 284(1), 358–362 (2011).
[Crossref]

Wegmuller, M.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43(3), 537–544 (2005).
[Crossref]

Wirth, M.

Wittmann, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.7µm,” Appl. Phys. Lett. 2834, 2007–2010 (2009)

Wojtas, J.

T. Stacewicz, Z. Bielecki, J. Wojtas, P. Magryta, J. Mikolajczyk, and D. Szabra, “Detection of disease markers in human breath with laser absorption spectroscopy,” Opto-Electron. Rev. 24(2), 82–94 (2016).
[Crossref]

Wolff, M.

Y. Saalberg and M. Wolff, “VOC breath biomarkers in lung cancer,” Clin. Chim. Acta 459, 5–9 (2016).
[Crossref] [PubMed]

Yeh, K.

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

Yuan, Y.

L. Wang, Z. Cao, H. Wang, H. Zhao, W. Gao, Y. Yuan, W. Chen, W. Zhang, Y. Wang, and X. Gao, “A widely tunable (5-12.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2,” Opt. Commun. 284(1), 358–362 (2011).
[Crossref]

Zahniser, M. S.

D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3325–3335 (2004).
[Crossref] [PubMed]

Zawilski, K. T.

S. C. Kumar, P. G. Schunemann, K. T. Zawilski, and M. Eberahim-Zadeh, “Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2,” JOSA B33, 44–56 (2016).

Zbinden, H.

G. Temporão, S. Tanzilli, H. Zbinden, N. Gisin, T. Aellen, M. Giovannini, and J. Faist, “Mid-infrared single-photon counting,” Opt. Lett. 31(8), 1094–1096 (2006).
[Crossref] [PubMed]

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43(3), 537–544 (2005).
[Crossref]

Zhang, W.

L. Wang, Z. Cao, H. Wang, H. Zhao, W. Gao, Y. Yuan, W. Chen, W. Zhang, Y. Wang, and X. Gao, “A widely tunable (5-12.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2,” Opt. Commun. 284(1), 358–362 (2011).
[Crossref]

Zhao, H.

L. Wang, Z. Cao, H. Wang, H. Zhao, W. Gao, Y. Yuan, W. Chen, W. Zhang, Y. Wang, and X. Gao, “A widely tunable (5-12.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2,” Opt. Commun. 284(1), 358–362 (2011).
[Crossref]

Zondy, J.-J.

J.-J. Zondy, “The effects of focusing in type-I and type-II difference-frequency generations,” Opt. Commun. 149(1-3), 181–206 (1998).
[Crossref]

Anal. Chem. (2)

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[Crossref] [PubMed]

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

Z. W. Sun, Z. S. Li, B. Li, M. Aldén, and P. Ewart, “Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species,” Appl. Phys. B 98(2-3), 593–600 (2010).
[Crossref]

Appl. Phys. Lett. (1)

R. W. Boyd and C. H. Townes, “An infrared upconverter for astronomical imaging,” Appl. Phys. Lett. 31(7), 440–442 (1977).
[Crossref]

Br. J. Cancer (1)

R. Baker, K. D. Rogers, N. Shepherd, and N. Stone, “New relationships between breast microcalcifications and cancer,” Br. J. Cancer 103(7), 1034–1039 (2010).
[Crossref] [PubMed]

Clin. Chim. Acta (1)

Y. Saalberg and M. Wolff, “VOC breath biomarkers in lung cancer,” Clin. Chim. Acta 459, 5–9 (2016).
[Crossref] [PubMed]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

J. Biomed. Opt. (1)

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

J. Breath Res. (1)

E. van Mastrigt, A. Reyes-Reyes, K. Brand, N. Bhattacharya, H. P. Urbach, A. P. Stubbs, J. C. de Jongste, and M. W. Pijnenburg, “Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis,” J. Breath Res. 10(2), 026003 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, “Room temperature mid-IR single photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Opt. Commun. (2)

J.-J. Zondy, “The effects of focusing in type-I and type-II difference-frequency generations,” Opt. Commun. 149(1-3), 181–206 (1998).
[Crossref]

L. Wang, Z. Cao, H. Wang, H. Zhao, W. Gao, Y. Yuan, W. Chen, W. Zhang, Y. Wang, and X. Gao, “A widely tunable (5-12.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2,” Opt. Commun. 284(1), 358–362 (2011).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43(3), 537–544 (2005).
[Crossref]

Opt. Lett. (3)

Opto-Electron. Rev. (1)

T. Stacewicz, Z. Bielecki, J. Wojtas, P. Magryta, J. Mikolajczyk, and D. Szabra, “Detection of disease markers in human breath with laser absorption spectroscopy,” Opto-Electron. Rev. 24(2), 82–94 (2016).
[Crossref]

Proc. SPIE (1)

Y.-P. Tseng, P. Bouzy, N. Stone, C. Pedersen, and P. Tidemand-Lichtenberg, “Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection,” Proc. SPIE 1049, 10490 (2018).

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3325–3335 (2004).
[Crossref] [PubMed]

Other (4)

P. Ciais, C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Qu’er’e, R. B. Myneni, S. Piao, and P. Thornton, “2013: Carbon and Other Biogeochemical Cycles,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T. F. D. Qin, G. -K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, eds. (Cambridge University, 2013).

S. C. Kumar, P. G. Schunemann, K. T. Zawilski, and M. Eberahim-Zadeh, “Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2,” JOSA B33, 44–56 (2016).

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.7µm,” Appl. Phys. Lett. 2834, 2007–2010 (2009)

A. Rogalski, Infrared Detectors (CRC Press, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic layout of experimental setup for upconversion detection. (b) Normalized spectral output of QCL at setting points from 9.35 µm (1070 cm−1) to 11.9 µm (840 cm−1) at ~120 nm (10 cm−1) intervals. The different colors corresponds to different wavelength settings of the QCL laser. (c) Output power of QCL laser.
Fig. 2
Fig. 2 (a) Experimental images of upconverted signals detected with a Si-based camera at the crystal rotation angles of −7.9, −8.8, and −9.6° as the central (optimal phase-matched angles) obtained at the wavelengths of 10, 10.3, and 10.6 µm, respectively. (b) Simulated images of upconverted signal intensities at the crystal rotation angles of −7.5, −8.4, and −9.2° corresponding to the wavelengths of 10, 10.3, and 10.6 µm, respectively.
Fig. 3
Fig. 3 (a) Phase-matching angle tuning versus wavelength of long-wave infrared from 9.4 µm to 12 µm at ~120 nm (10 cm-1) intervals. (b) Conversion efficiency versus crystal rotation angle at a wavelength of 10.3 µm. The angles calculated using plane wave theory were shifted by 0.05 degree. (c) Wavelength acceptance bandwidth at −8.5° crystal rotation angle. The wavelengths calculated using plane wave theory were shifted by 15 nm.
Fig. 4
Fig. 4 (a) Experimental (Red circles) and theoretical upconversion powers in terms of plane wave approximation based non-absorbed (Blue curve) at 10 mm crystal length and focused infrared beam based on integral theory at the crystal lengths of 10 mm, dotted (non-absorbed) and (with absorption) Red curves. The dashed Red (with absorption) curve shows simulated upconverted power at 7.7 mm crystal length based on integral theory. (b) Experimental conversion efficiency (Red circles) as a function of pump power at a given infrared power. The dashed Red line shows conversion efficiency calculated at IR power of 10.47 mW and a 7.7 mm interaction length using integral theory.
Fig. 5
Fig. 5 (a) Oscilloscope traces of upconverted signals, at IR power of 5.24, 8.48, and 10.22 mW respectively. (b) Oscilloscope traces of upconverted signals averaged by 50 sweeps.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E up ( u,v, r uv )= 4 d eff π 2 c ε 0 λ up 2 exp( i k up r uv ) r uv 2 P ir π n ir w ir 2 2 P p π n p w p 2 l 1 l 2 exp( α ir 2 ( z+ l 2 ) ) w ir 2 w p 2 w ir 2 +i λ ir z π n ir + w p 2 +i λ p z π n p exp( 1 4 ( w ir 2 +i λ ir z π n ir )( w p 2 +i λ p z π n p ) w ir 2 +i λ ir z π n ir + w p 2 +i λ p z π n p ( Δ k u 2 +Δ k v 2 ) )exp( iΔ k z z )dz
P up = c ε 0 n up 2 u,v | E up ( u,v, r uv ) | 2 r uv 2 dudv

Metrics