Abstract

GaSb-based infrared (IR) photodetectors are moving from a developmental phase into manufacturing, requiring among other things a shift to larger wafer diameters and volumes. We report on the multi-wafer molecular beam epitaxy (MBE) growth of mid-wave IR nBn photodetector structures on 5-inch GaSb and 6-inch GaAs substrates. The 5 × 5-inch and 4 × 6-inch multi-wafer configurations exhibited excellent cross-wafer uniformity of standard epiwafer characteristics, including morphology, and structural and optical properties. Large-area mesa diode characteristics from these epiwafers are comparable to those grown on smaller diameter substrates. The results represent an important technological path toward next-generation large-format IR detector array applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Materials design parameters for infrared device applications based on III-V semiconductors

Stefan P. Svensson, Wendy L. Sarney, Dmitry Donetsky, Gela Kipshidze, Youxi Lin, Leon Shterengas, Ye Xu, and Gregory Belenky
Appl. Opt. 56(3) B58-B63 (2017)

InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy

Michele Natrella, Efthymios Rouvalis, Chin-Pang Liu, Huiyun Liu, Cyril C. Renaud, and Alwyn J. Seeds
Opt. Express 20(17) 19279-19288 (2012)

Photoluminescence and photoresponse from InSb/InAs-based quantum dot structures

Oscar Gustafsson, Amir Karim, Jesper Berggren, Qin Wang, Carl Reuterskiöld-Hedlund, Christopher Ernerheim-Jokumsen, Markus Soldemo, Jonas Weissenrieder, Sirpa Persson, Susanne Almqvist, Ulf Ekenberg, Bertrand Noharet, Carl Asplund, Mats Göthelid, Jan Y. Andersson, and Mattias Hammar
Opt. Express 20(19) 21264-21271 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys. 62(6), 2545–2548 (1987).
    [Crossref]
  2. D. H. Chow, R. H. Miles, J. R. Söderström, and T. C. McGill, “Growth and characterization of InAs/Ga1−xInxSb strained-layer superlattices,” Appl. Phys. Lett. 56(15), 1418–1420 (1990).
    [Crossref]
  3. Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 µm,” Appl. Phys. Lett. 81(19), 3675–3677 (2002).
    [Crossref]
  4. F. Fuchs, U. Weimar, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1-xInxSb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
    [Crossref]
  5. A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and M. Razeghi, “High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared,” Appl. Phys. Lett. 89(9), 093506 (2006).
    [Crossref]
  6. E. H. Aifer, J. G. Tischler, J. H. Warner, I. Vurgaftman, W. W. Bewley, J. R. Meyer, J. C. Kim, L. J. Whitman, C. L. Canedy, and E. M. Jackson, “W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency,” Appl. Phys. Lett. 89(5), 053519 (2006).
    [Crossref]
  7. D. Z.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
    [Crossref]
  8. G. Bishop, E. Plis, J. B. Rodriguez, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol. B 26(3), 1145–1148 (2008).
    [Crossref]
  9. S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and high operating temperature,” Appl. Phys. Lett. 89(15), 151109 (2006).
    [Crossref]
  10. P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
    [Crossref]
  11. E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. M. Fastenau, A. W. K. Liu, S. Elhamri, O. O. Cellek, and Y.-H. Zhang, “Significantly improved minority carrier lifetime observed in long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
    [Crossref]
  12. A. W. K. Liu, D. Lubyshev, Y. Qiu, J. M. Fastenau, M. J. Furlong, M. Tyberg, B. Martinez, A. Mowbray, and B. Smith, “MBE Growth of Sb-based Bulk nBn Infrared Photodetector Structures on 6-inch GaSb Substrates,” Proc. SPIE 9451, 94510T (2015).
    [Crossref]
  13. J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “Sb-based IR photodetector epiwafers on 100 mm GaSb substrates manufactured by MBE,” Infrared Phys. Technol. 59, 158–162 (2013).
    [Crossref]
  14. D. Lubyshev, J. M. Fastenau, M. Kattner, P. Frey, A. W. K. Liu, and M. J. Furlong, “Large-format Multi-wafer Production of 5” GaSb-based Photodetectors by Molecular Beam Epitaxy,” Proc. SPIE 10177, 1017718 (2017).
    [Crossref]
  15. C. L. Canedy, E. H. Aifer, J. H. Warner, I. Vurgaftman, E. M. Jackson, J. G. Tischler, S. P. Powell, K. Olver, J. R. Meyer, and W. E. Tennant, “Controlling dark current in type-II superlattice photodiodes,” Infrared Phys. Technol. 52(6), 326–334 (2009).
    [Crossref]
  16. W. E. Hoke, P. S. Lyman, C. S. Whelan, J. J. Mosca, A. Torabi, K. L. Chang, and K. C. Hsieh, “Growth and characterization of metamorphic Inx(AlGa)1−xAs/InxGa1−xAs high electron mobility transistor material and devices with X=0.3–0.4,” J. Vac. Sci. Technol. B 18(3), 1638–1641 (2000).
    [Crossref]
  17. D. I. Lubyshev, J. M. Fastenau, X.-M. Fang, Y. Wu, C. Doss, A. Snyder, W. K. Liu, M. S. M. Lamb, S. Bals, and C. Song, “Comparison of As- and P-based Metamorphic buffers for High Performance InP Heterojunction Bipolar Transistor and High Electron Mobility Transistor Applications,” J. Vac. Sci. Technol. B 22(3), 1565–1569 (2004).
    [Crossref]
  18. W. L. Sarney, S. P. Svensson, H. Hier, G. Kipshidze, D. Donetsky, D. Wang, L. Shterengas, and G. Belenky, “Structural and luminescent properties of bulk InAsSb,” J. Vac. Sci. Technol. B 302(2), 02B105 (2012).
    [Crossref]
  19. J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “MBE Growth of GaSb-based Photodetectors on 6 inch Diameter GaAs Substrates via Select Buffers,” J. Vac. Sci. Technol. B 31(3), 03C106 (2013).
    [Crossref]

2017 (1)

D. Lubyshev, J. M. Fastenau, M. Kattner, P. Frey, A. W. K. Liu, and M. J. Furlong, “Large-format Multi-wafer Production of 5” GaSb-based Photodetectors by Molecular Beam Epitaxy,” Proc. SPIE 10177, 1017718 (2017).
[Crossref]

2015 (1)

A. W. K. Liu, D. Lubyshev, Y. Qiu, J. M. Fastenau, M. J. Furlong, M. Tyberg, B. Martinez, A. Mowbray, and B. Smith, “MBE Growth of Sb-based Bulk nBn Infrared Photodetector Structures on 6-inch GaSb Substrates,” Proc. SPIE 9451, 94510T (2015).
[Crossref]

2013 (2)

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “Sb-based IR photodetector epiwafers on 100 mm GaSb substrates manufactured by MBE,” Infrared Phys. Technol. 59, 158–162 (2013).
[Crossref]

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “MBE Growth of GaSb-based Photodetectors on 6 inch Diameter GaAs Substrates via Select Buffers,” J. Vac. Sci. Technol. B 31(3), 03C106 (2013).
[Crossref]

2012 (1)

W. L. Sarney, S. P. Svensson, H. Hier, G. Kipshidze, D. Donetsky, D. Wang, L. Shterengas, and G. Belenky, “Structural and luminescent properties of bulk InAsSb,” J. Vac. Sci. Technol. B 302(2), 02B105 (2012).
[Crossref]

2011 (1)

E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. M. Fastenau, A. W. K. Liu, S. Elhamri, O. O. Cellek, and Y.-H. Zhang, “Significantly improved minority carrier lifetime observed in long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

2010 (1)

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

2009 (2)

C. L. Canedy, E. H. Aifer, J. H. Warner, I. Vurgaftman, E. M. Jackson, J. G. Tischler, S. P. Powell, K. Olver, J. R. Meyer, and W. E. Tennant, “Controlling dark current in type-II superlattice photodiodes,” Infrared Phys. Technol. 52(6), 326–334 (2009).
[Crossref]

D. Z.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

2008 (1)

G. Bishop, E. Plis, J. B. Rodriguez, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol. B 26(3), 1145–1148 (2008).
[Crossref]

2006 (3)

S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and high operating temperature,” Appl. Phys. Lett. 89(15), 151109 (2006).
[Crossref]

A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and M. Razeghi, “High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared,” Appl. Phys. Lett. 89(9), 093506 (2006).
[Crossref]

E. H. Aifer, J. G. Tischler, J. H. Warner, I. Vurgaftman, W. W. Bewley, J. R. Meyer, J. C. Kim, L. J. Whitman, C. L. Canedy, and E. M. Jackson, “W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency,” Appl. Phys. Lett. 89(5), 053519 (2006).
[Crossref]

2004 (1)

D. I. Lubyshev, J. M. Fastenau, X.-M. Fang, Y. Wu, C. Doss, A. Snyder, W. K. Liu, M. S. M. Lamb, S. Bals, and C. Song, “Comparison of As- and P-based Metamorphic buffers for High Performance InP Heterojunction Bipolar Transistor and High Electron Mobility Transistor Applications,” J. Vac. Sci. Technol. B 22(3), 1565–1569 (2004).
[Crossref]

2002 (1)

Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 µm,” Appl. Phys. Lett. 81(19), 3675–3677 (2002).
[Crossref]

2000 (1)

W. E. Hoke, P. S. Lyman, C. S. Whelan, J. J. Mosca, A. Torabi, K. L. Chang, and K. C. Hsieh, “Growth and characterization of metamorphic Inx(AlGa)1−xAs/InxGa1−xAs high electron mobility transistor material and devices with X=0.3–0.4,” J. Vac. Sci. Technol. B 18(3), 1638–1641 (2000).
[Crossref]

1997 (1)

F. Fuchs, U. Weimar, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1-xInxSb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

1990 (1)

D. H. Chow, R. H. Miles, J. R. Söderström, and T. C. McGill, “Growth and characterization of InAs/Ga1−xInxSb strained-layer superlattices,” Appl. Phys. Lett. 56(15), 1418–1420 (1990).
[Crossref]

1987 (1)

D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys. 62(6), 2545–2548 (1987).
[Crossref]

Ahlswede, E.

F. Fuchs, U. Weimar, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1-xInxSb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

Aifer, E. H.

C. L. Canedy, E. H. Aifer, J. H. Warner, I. Vurgaftman, E. M. Jackson, J. G. Tischler, S. P. Powell, K. Olver, J. R. Meyer, and W. E. Tennant, “Controlling dark current in type-II superlattice photodiodes,” Infrared Phys. Technol. 52(6), 326–334 (2009).
[Crossref]

E. H. Aifer, J. G. Tischler, J. H. Warner, I. Vurgaftman, W. W. Bewley, J. R. Meyer, J. C. Kim, L. J. Whitman, C. L. Canedy, and E. M. Jackson, “W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency,” Appl. Phys. Lett. 89(5), 053519 (2006).
[Crossref]

Aronov, D.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

Bals, S.

D. I. Lubyshev, J. M. Fastenau, X.-M. Fang, Y. Wu, C. Doss, A. Snyder, W. K. Liu, M. S. M. Lamb, S. Bals, and C. Song, “Comparison of As- and P-based Metamorphic buffers for High Performance InP Heterojunction Bipolar Transistor and High Electron Mobility Transistor Applications,” J. Vac. Sci. Technol. B 22(3), 1565–1569 (2004).
[Crossref]

Belenky, G.

W. L. Sarney, S. P. Svensson, H. Hier, G. Kipshidze, D. Donetsky, D. Wang, L. Shterengas, and G. Belenky, “Structural and luminescent properties of bulk InAsSb,” J. Vac. Sci. Technol. B 302(2), 02B105 (2012).
[Crossref]

Berkowitz, E.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

Bewley, W. W.

E. H. Aifer, J. G. Tischler, J. H. Warner, I. Vurgaftman, W. W. Bewley, J. R. Meyer, J. C. Kim, L. J. Whitman, C. L. Canedy, and E. M. Jackson, “W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency,” Appl. Phys. Lett. 89(5), 053519 (2006).
[Crossref]

Bishop, G.

G. Bishop, E. Plis, J. B. Rodriguez, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol. B 26(3), 1145–1148 (2008).
[Crossref]

Brown, G. J.

Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 µm,” Appl. Phys. Lett. 81(19), 3675–3677 (2002).
[Crossref]

Brumer, M.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

Canedy, C. L.

C. L. Canedy, E. H. Aifer, J. H. Warner, I. Vurgaftman, E. M. Jackson, J. G. Tischler, S. P. Powell, K. Olver, J. R. Meyer, and W. E. Tennant, “Controlling dark current in type-II superlattice photodiodes,” Infrared Phys. Technol. 52(6), 326–334 (2009).
[Crossref]

E. H. Aifer, J. G. Tischler, J. H. Warner, I. Vurgaftman, W. W. Bewley, J. R. Meyer, J. C. Kim, L. J. Whitman, C. L. Canedy, and E. M. Jackson, “W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency,” Appl. Phys. Lett. 89(5), 053519 (2006).
[Crossref]

Cellek, O. O.

E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. M. Fastenau, A. W. K. Liu, S. Elhamri, O. O. Cellek, and Y.-H. Zhang, “Significantly improved minority carrier lifetime observed in long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Chang, K. L.

W. E. Hoke, P. S. Lyman, C. S. Whelan, J. J. Mosca, A. Torabi, K. L. Chang, and K. C. Hsieh, “Growth and characterization of metamorphic Inx(AlGa)1−xAs/InxGa1−xAs high electron mobility transistor material and devices with X=0.3–0.4,” J. Vac. Sci. Technol. B 18(3), 1638–1641 (2000).
[Crossref]

Chow, D. H.

D. H. Chow, R. H. Miles, J. R. Söderström, and T. C. McGill, “Growth and characterization of InAs/Ga1−xInxSb strained-layer superlattices,” Appl. Phys. Lett. 56(15), 1418–1420 (1990).
[Crossref]

Connelly, B. C.

E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. M. Fastenau, A. W. K. Liu, S. Elhamri, O. O. Cellek, and Y.-H. Zhang, “Significantly improved minority carrier lifetime observed in long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Dawson, L. R.

G. Bishop, E. Plis, J. B. Rodriguez, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol. B 26(3), 1145–1148 (2008).
[Crossref]

Delaunay, P. Y.

A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and M. Razeghi, “High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared,” Appl. Phys. Lett. 89(9), 093506 (2006).
[Crossref]

Donetsky, D.

W. L. Sarney, S. P. Svensson, H. Hier, G. Kipshidze, D. Donetsky, D. Wang, L. Shterengas, and G. Belenky, “Structural and luminescent properties of bulk InAsSb,” J. Vac. Sci. Technol. B 302(2), 02B105 (2012).
[Crossref]

Doss, C.

D. I. Lubyshev, J. M. Fastenau, X.-M. Fang, Y. Wu, C. Doss, A. Snyder, W. K. Liu, M. S. M. Lamb, S. Bals, and C. Song, “Comparison of As- and P-based Metamorphic buffers for High Performance InP Heterojunction Bipolar Transistor and High Electron Mobility Transistor Applications,” J. Vac. Sci. Technol. B 22(3), 1565–1569 (2004).
[Crossref]

Elhamri, S.

E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. M. Fastenau, A. W. K. Liu, S. Elhamri, O. O. Cellek, and Y.-H. Zhang, “Significantly improved minority carrier lifetime observed in long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Fang, X.-M.

D. I. Lubyshev, J. M. Fastenau, X.-M. Fang, Y. Wu, C. Doss, A. Snyder, W. K. Liu, M. S. M. Lamb, S. Bals, and C. Song, “Comparison of As- and P-based Metamorphic buffers for High Performance InP Heterojunction Bipolar Transistor and High Electron Mobility Transistor Applications,” J. Vac. Sci. Technol. B 22(3), 1565–1569 (2004).
[Crossref]

Fastenau, J. M.

D. Lubyshev, J. M. Fastenau, M. Kattner, P. Frey, A. W. K. Liu, and M. J. Furlong, “Large-format Multi-wafer Production of 5” GaSb-based Photodetectors by Molecular Beam Epitaxy,” Proc. SPIE 10177, 1017718 (2017).
[Crossref]

A. W. K. Liu, D. Lubyshev, Y. Qiu, J. M. Fastenau, M. J. Furlong, M. Tyberg, B. Martinez, A. Mowbray, and B. Smith, “MBE Growth of Sb-based Bulk nBn Infrared Photodetector Structures on 6-inch GaSb Substrates,” Proc. SPIE 9451, 94510T (2015).
[Crossref]

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “Sb-based IR photodetector epiwafers on 100 mm GaSb substrates manufactured by MBE,” Infrared Phys. Technol. 59, 158–162 (2013).
[Crossref]

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “MBE Growth of GaSb-based Photodetectors on 6 inch Diameter GaAs Substrates via Select Buffers,” J. Vac. Sci. Technol. B 31(3), 03C106 (2013).
[Crossref]

E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. M. Fastenau, A. W. K. Liu, S. Elhamri, O. O. Cellek, and Y.-H. Zhang, “Significantly improved minority carrier lifetime observed in long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

D. I. Lubyshev, J. M. Fastenau, X.-M. Fang, Y. Wu, C. Doss, A. Snyder, W. K. Liu, M. S. M. Lamb, S. Bals, and C. Song, “Comparison of As- and P-based Metamorphic buffers for High Performance InP Heterojunction Bipolar Transistor and High Electron Mobility Transistor Applications,” J. Vac. Sci. Technol. B 22(3), 1565–1569 (2004).
[Crossref]

Fishman, T.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

Frey, P.

D. Lubyshev, J. M. Fastenau, M. Kattner, P. Frey, A. W. K. Liu, and M. J. Furlong, “Large-format Multi-wafer Production of 5” GaSb-based Photodetectors by Molecular Beam Epitaxy,” Proc. SPIE 10177, 1017718 (2017).
[Crossref]

Fuchs, F.

F. Fuchs, U. Weimar, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1-xInxSb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

Furlong, M. J.

D. Lubyshev, J. M. Fastenau, M. Kattner, P. Frey, A. W. K. Liu, and M. J. Furlong, “Large-format Multi-wafer Production of 5” GaSb-based Photodetectors by Molecular Beam Epitaxy,” Proc. SPIE 10177, 1017718 (2017).
[Crossref]

A. W. K. Liu, D. Lubyshev, Y. Qiu, J. M. Fastenau, M. J. Furlong, M. Tyberg, B. Martinez, A. Mowbray, and B. Smith, “MBE Growth of Sb-based Bulk nBn Infrared Photodetector Structures on 6-inch GaSb Substrates,” Proc. SPIE 9451, 94510T (2015).
[Crossref]

Gin, A.

Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 µm,” Appl. Phys. Lett. 81(19), 3675–3677 (2002).
[Crossref]

Glozman, A.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

Grossman, S.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

Gunapala, S.

D. Z.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

Hier, H.

W. L. Sarney, S. P. Svensson, H. Hier, G. Kipshidze, D. Donetsky, D. Wang, L. Shterengas, and G. Belenky, “Structural and luminescent properties of bulk InAsSb,” J. Vac. Sci. Technol. B 302(2), 02B105 (2012).
[Crossref]

Hill, C. J.

D. Z.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

Hoffman, D.

A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and M. Razeghi, “High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared,” Appl. Phys. Lett. 89(9), 093506 (2006).
[Crossref]

Hoke, W. E.

W. E. Hoke, P. S. Lyman, C. S. Whelan, J. J. Mosca, A. Torabi, K. L. Chang, and K. C. Hsieh, “Growth and characterization of metamorphic Inx(AlGa)1−xAs/InxGa1−xAs high electron mobility transistor material and devices with X=0.3–0.4,” J. Vac. Sci. Technol. B 18(3), 1638–1641 (2000).
[Crossref]

Hood, A.

A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and M. Razeghi, “High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared,” Appl. Phys. Lett. 89(9), 093506 (2006).
[Crossref]

Hsieh, K. C.

W. E. Hoke, P. S. Lyman, C. S. Whelan, J. J. Mosca, A. Torabi, K. L. Chang, and K. C. Hsieh, “Growth and characterization of metamorphic Inx(AlGa)1−xAs/InxGa1−xAs high electron mobility transistor material and devices with X=0.3–0.4,” J. Vac. Sci. Technol. B 18(3), 1638–1641 (2000).
[Crossref]

Jackson, E. M.

C. L. Canedy, E. H. Aifer, J. H. Warner, I. Vurgaftman, E. M. Jackson, J. G. Tischler, S. P. Powell, K. Olver, J. R. Meyer, and W. E. Tennant, “Controlling dark current in type-II superlattice photodiodes,” Infrared Phys. Technol. 52(6), 326–334 (2009).
[Crossref]

E. H. Aifer, J. G. Tischler, J. H. Warner, I. Vurgaftman, W. W. Bewley, J. R. Meyer, J. C. Kim, L. J. Whitman, C. L. Canedy, and E. M. Jackson, “W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency,” Appl. Phys. Lett. 89(5), 053519 (2006).
[Crossref]

Kattner, M.

D. Lubyshev, J. M. Fastenau, M. Kattner, P. Frey, A. W. K. Liu, and M. J. Furlong, “Large-format Multi-wafer Production of 5” GaSb-based Photodetectors by Molecular Beam Epitaxy,” Proc. SPIE 10177, 1017718 (2017).
[Crossref]

Keo, S. A.

D. Z.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

Kim, H. S.

G. Bishop, E. Plis, J. B. Rodriguez, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol. B 26(3), 1145–1148 (2008).
[Crossref]

Kim, J. C.

E. H. Aifer, J. G. Tischler, J. H. Warner, I. Vurgaftman, W. W. Bewley, J. R. Meyer, J. C. Kim, L. J. Whitman, C. L. Canedy, and E. M. Jackson, “W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency,” Appl. Phys. Lett. 89(5), 053519 (2006).
[Crossref]

Kipshidze, G.

W. L. Sarney, S. P. Svensson, H. Hier, G. Kipshidze, D. Donetsky, D. Wang, L. Shterengas, and G. Belenky, “Structural and luminescent properties of bulk InAsSb,” J. Vac. Sci. Technol. B 302(2), 02B105 (2012).
[Crossref]

Klin, O.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

Klipstein, P.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

Koerperick, E. J.

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “MBE Growth of GaSb-based Photodetectors on 6 inch Diameter GaAs Substrates via Select Buffers,” J. Vac. Sci. Technol. B 31(3), 03C106 (2013).
[Crossref]

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “Sb-based IR photodetector epiwafers on 100 mm GaSb substrates manufactured by MBE,” Infrared Phys. Technol. 59, 158–162 (2013).
[Crossref]

Koidl, P.

F. Fuchs, U. Weimar, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1-xInxSb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

Krishna, S.

G. Bishop, E. Plis, J. B. Rodriguez, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol. B 26(3), 1145–1148 (2008).
[Crossref]

Lamb, M. S. M.

D. I. Lubyshev, J. M. Fastenau, X.-M. Fang, Y. Wu, C. Doss, A. Snyder, W. K. Liu, M. S. M. Lamb, S. Bals, and C. Song, “Comparison of As- and P-based Metamorphic buffers for High Performance InP Heterojunction Bipolar Transistor and High Electron Mobility Transistor Applications,” J. Vac. Sci. Technol. B 22(3), 1565–1569 (2004).
[Crossref]

Liu, A. W. K.

D. Lubyshev, J. M. Fastenau, M. Kattner, P. Frey, A. W. K. Liu, and M. J. Furlong, “Large-format Multi-wafer Production of 5” GaSb-based Photodetectors by Molecular Beam Epitaxy,” Proc. SPIE 10177, 1017718 (2017).
[Crossref]

A. W. K. Liu, D. Lubyshev, Y. Qiu, J. M. Fastenau, M. J. Furlong, M. Tyberg, B. Martinez, A. Mowbray, and B. Smith, “MBE Growth of Sb-based Bulk nBn Infrared Photodetector Structures on 6-inch GaSb Substrates,” Proc. SPIE 9451, 94510T (2015).
[Crossref]

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “Sb-based IR photodetector epiwafers on 100 mm GaSb substrates manufactured by MBE,” Infrared Phys. Technol. 59, 158–162 (2013).
[Crossref]

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “MBE Growth of GaSb-based Photodetectors on 6 inch Diameter GaAs Substrates via Select Buffers,” J. Vac. Sci. Technol. B 31(3), 03C106 (2013).
[Crossref]

E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. M. Fastenau, A. W. K. Liu, S. Elhamri, O. O. Cellek, and Y.-H. Zhang, “Significantly improved minority carrier lifetime observed in long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Liu, W. K.

D. I. Lubyshev, J. M. Fastenau, X.-M. Fang, Y. Wu, C. Doss, A. Snyder, W. K. Liu, M. S. M. Lamb, S. Bals, and C. Song, “Comparison of As- and P-based Metamorphic buffers for High Performance InP Heterojunction Bipolar Transistor and High Electron Mobility Transistor Applications,” J. Vac. Sci. Technol. B 22(3), 1565–1569 (2004).
[Crossref]

Lubyshev, D.

D. Lubyshev, J. M. Fastenau, M. Kattner, P. Frey, A. W. K. Liu, and M. J. Furlong, “Large-format Multi-wafer Production of 5” GaSb-based Photodetectors by Molecular Beam Epitaxy,” Proc. SPIE 10177, 1017718 (2017).
[Crossref]

A. W. K. Liu, D. Lubyshev, Y. Qiu, J. M. Fastenau, M. J. Furlong, M. Tyberg, B. Martinez, A. Mowbray, and B. Smith, “MBE Growth of Sb-based Bulk nBn Infrared Photodetector Structures on 6-inch GaSb Substrates,” Proc. SPIE 9451, 94510T (2015).
[Crossref]

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “Sb-based IR photodetector epiwafers on 100 mm GaSb substrates manufactured by MBE,” Infrared Phys. Technol. 59, 158–162 (2013).
[Crossref]

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “MBE Growth of GaSb-based Photodetectors on 6 inch Diameter GaAs Substrates via Select Buffers,” J. Vac. Sci. Technol. B 31(3), 03C106 (2013).
[Crossref]

E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. M. Fastenau, A. W. K. Liu, S. Elhamri, O. O. Cellek, and Y.-H. Zhang, “Significantly improved minority carrier lifetime observed in long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Lubyshev, D. I.

D. I. Lubyshev, J. M. Fastenau, X.-M. Fang, Y. Wu, C. Doss, A. Snyder, W. K. Liu, M. S. M. Lamb, S. Bals, and C. Song, “Comparison of As- and P-based Metamorphic buffers for High Performance InP Heterojunction Bipolar Transistor and High Electron Mobility Transistor Applications,” J. Vac. Sci. Technol. B 22(3), 1565–1569 (2004).
[Crossref]

Lukomsky, I.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

Lyman, P. S.

W. E. Hoke, P. S. Lyman, C. S. Whelan, J. J. Mosca, A. Torabi, K. L. Chang, and K. C. Hsieh, “Growth and characterization of metamorphic Inx(AlGa)1−xAs/InxGa1−xAs high electron mobility transistor material and devices with X=0.3–0.4,” J. Vac. Sci. Technol. B 18(3), 1638–1641 (2000).
[Crossref]

Magen, O.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

Mailhiot, C.

D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys. 62(6), 2545–2548 (1987).
[Crossref]

Maimon, S.

S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and high operating temperature,” Appl. Phys. Lett. 89(15), 151109 (2006).
[Crossref]

Martinez, B.

A. W. K. Liu, D. Lubyshev, Y. Qiu, J. M. Fastenau, M. J. Furlong, M. Tyberg, B. Martinez, A. Mowbray, and B. Smith, “MBE Growth of Sb-based Bulk nBn Infrared Photodetector Structures on 6-inch GaSb Substrates,” Proc. SPIE 9451, 94510T (2015).
[Crossref]

McGill, T. C.

D. H. Chow, R. H. Miles, J. R. Söderström, and T. C. McGill, “Growth and characterization of InAs/Ga1−xInxSb strained-layer superlattices,” Appl. Phys. Lett. 56(15), 1418–1420 (1990).
[Crossref]

Metcalfe, G. D.

E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. M. Fastenau, A. W. K. Liu, S. Elhamri, O. O. Cellek, and Y.-H. Zhang, “Significantly improved minority carrier lifetime observed in long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Meyer, J. R.

C. L. Canedy, E. H. Aifer, J. H. Warner, I. Vurgaftman, E. M. Jackson, J. G. Tischler, S. P. Powell, K. Olver, J. R. Meyer, and W. E. Tennant, “Controlling dark current in type-II superlattice photodiodes,” Infrared Phys. Technol. 52(6), 326–334 (2009).
[Crossref]

E. H. Aifer, J. G. Tischler, J. H. Warner, I. Vurgaftman, W. W. Bewley, J. R. Meyer, J. C. Kim, L. J. Whitman, C. L. Canedy, and E. M. Jackson, “W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency,” Appl. Phys. Lett. 89(5), 053519 (2006).
[Crossref]

Michel, E.

A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and M. Razeghi, “High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared,” Appl. Phys. Lett. 89(9), 093506 (2006).
[Crossref]

Miles, R. H.

D. H. Chow, R. H. Miles, J. R. Söderström, and T. C. McGill, “Growth and characterization of InAs/Ga1−xInxSb strained-layer superlattices,” Appl. Phys. Lett. 56(15), 1418–1420 (1990).
[Crossref]

Mosca, J. J.

W. E. Hoke, P. S. Lyman, C. S. Whelan, J. J. Mosca, A. Torabi, K. L. Chang, and K. C. Hsieh, “Growth and characterization of metamorphic Inx(AlGa)1−xAs/InxGa1−xAs high electron mobility transistor material and devices with X=0.3–0.4,” J. Vac. Sci. Technol. B 18(3), 1638–1641 (2000).
[Crossref]

Mowbray, A.

A. W. K. Liu, D. Lubyshev, Y. Qiu, J. M. Fastenau, M. J. Furlong, M. Tyberg, B. Martinez, A. Mowbray, and B. Smith, “MBE Growth of Sb-based Bulk nBn Infrared Photodetector Structures on 6-inch GaSb Substrates,” Proc. SPIE 9451, 94510T (2015).
[Crossref]

Mumolo, J. M.

D. Z.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

Nguyen, B. M.

A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and M. Razeghi, “High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared,” Appl. Phys. Lett. 89(9), 093506 (2006).
[Crossref]

Nguyen, J.

D. Z.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

Norton, D.

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “Sb-based IR photodetector epiwafers on 100 mm GaSb substrates manufactured by MBE,” Infrared Phys. Technol. 59, 158–162 (2013).
[Crossref]

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “MBE Growth of GaSb-based Photodetectors on 6 inch Diameter GaAs Substrates via Select Buffers,” J. Vac. Sci. Technol. B 31(3), 03C106 (2013).
[Crossref]

Olesberg, J. T.

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “MBE Growth of GaSb-based Photodetectors on 6 inch Diameter GaAs Substrates via Select Buffers,” J. Vac. Sci. Technol. B 31(3), 03C106 (2013).
[Crossref]

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “Sb-based IR photodetector epiwafers on 100 mm GaSb substrates manufactured by MBE,” Infrared Phys. Technol. 59, 158–162 (2013).
[Crossref]

Olver, K.

C. L. Canedy, E. H. Aifer, J. H. Warner, I. Vurgaftman, E. M. Jackson, J. G. Tischler, S. P. Powell, K. Olver, J. R. Meyer, and W. E. Tennant, “Controlling dark current in type-II superlattice photodiodes,” Infrared Phys. Technol. 52(6), 326–334 (2009).
[Crossref]

Pletschen, W.

F. Fuchs, U. Weimar, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1-xInxSb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

Plis, E.

G. Bishop, E. Plis, J. B. Rodriguez, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol. B 26(3), 1145–1148 (2008).
[Crossref]

Powell, S. P.

C. L. Canedy, E. H. Aifer, J. H. Warner, I. Vurgaftman, E. M. Jackson, J. G. Tischler, S. P. Powell, K. Olver, J. R. Meyer, and W. E. Tennant, “Controlling dark current in type-II superlattice photodiodes,” Infrared Phys. Technol. 52(6), 326–334 (2009).
[Crossref]

Qiu, Y.

A. W. K. Liu, D. Lubyshev, Y. Qiu, J. M. Fastenau, M. J. Furlong, M. Tyberg, B. Martinez, A. Mowbray, and B. Smith, “MBE Growth of Sb-based Bulk nBn Infrared Photodetector Structures on 6-inch GaSb Substrates,” Proc. SPIE 9451, 94510T (2015).
[Crossref]

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “Sb-based IR photodetector epiwafers on 100 mm GaSb substrates manufactured by MBE,” Infrared Phys. Technol. 59, 158–162 (2013).
[Crossref]

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “MBE Growth of GaSb-based Photodetectors on 6 inch Diameter GaAs Substrates via Select Buffers,” J. Vac. Sci. Technol. B 31(3), 03C106 (2013).
[Crossref]

E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. M. Fastenau, A. W. K. Liu, S. Elhamri, O. O. Cellek, and Y.-H. Zhang, “Significantly improved minority carrier lifetime observed in long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Razeghi, M.

A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and M. Razeghi, “High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared,” Appl. Phys. Lett. 89(9), 093506 (2006).
[Crossref]

Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 µm,” Appl. Phys. Lett. 81(19), 3675–3677 (2002).
[Crossref]

Rodriguez, J. B.

G. Bishop, E. Plis, J. B. Rodriguez, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol. B 26(3), 1145–1148 (2008).
[Crossref]

Sarney, W. L.

W. L. Sarney, S. P. Svensson, H. Hier, G. Kipshidze, D. Donetsky, D. Wang, L. Shterengas, and G. Belenky, “Structural and luminescent properties of bulk InAsSb,” J. Vac. Sci. Technol. B 302(2), 02B105 (2012).
[Crossref]

Schmitz, J.

F. Fuchs, U. Weimar, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1-xInxSb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

Sharma, Y. D.

G. Bishop, E. Plis, J. B. Rodriguez, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol. B 26(3), 1145–1148 (2008).
[Crossref]

Shen, H.

E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. M. Fastenau, A. W. K. Liu, S. Elhamri, O. O. Cellek, and Y.-H. Zhang, “Significantly improved minority carrier lifetime observed in long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Shterengas, L.

W. L. Sarney, S. P. Svensson, H. Hier, G. Kipshidze, D. Donetsky, D. Wang, L. Shterengas, and G. Belenky, “Structural and luminescent properties of bulk InAsSb,” J. Vac. Sci. Technol. B 302(2), 02B105 (2012).
[Crossref]

Shtrichman, I.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

Smith, B.

A. W. K. Liu, D. Lubyshev, Y. Qiu, J. M. Fastenau, M. J. Furlong, M. Tyberg, B. Martinez, A. Mowbray, and B. Smith, “MBE Growth of Sb-based Bulk nBn Infrared Photodetector Structures on 6-inch GaSb Substrates,” Proc. SPIE 9451, 94510T (2015).
[Crossref]

Smith, D. L.

D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys. 62(6), 2545–2548 (1987).
[Crossref]

Snapi, N.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

Snyder, A.

D. I. Lubyshev, J. M. Fastenau, X.-M. Fang, Y. Wu, C. Doss, A. Snyder, W. K. Liu, M. S. M. Lamb, S. Bals, and C. Song, “Comparison of As- and P-based Metamorphic buffers for High Performance InP Heterojunction Bipolar Transistor and High Electron Mobility Transistor Applications,” J. Vac. Sci. Technol. B 22(3), 1565–1569 (2004).
[Crossref]

Söderström, J. R.

D. H. Chow, R. H. Miles, J. R. Söderström, and T. C. McGill, “Growth and characterization of InAs/Ga1−xInxSb strained-layer superlattices,” Appl. Phys. Lett. 56(15), 1418–1420 (1990).
[Crossref]

Soibel, A.

D. Z.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

Song, C.

D. I. Lubyshev, J. M. Fastenau, X.-M. Fang, Y. Wu, C. Doss, A. Snyder, W. K. Liu, M. S. M. Lamb, S. Bals, and C. Song, “Comparison of As- and P-based Metamorphic buffers for High Performance InP Heterojunction Bipolar Transistor and High Electron Mobility Transistor Applications,” J. Vac. Sci. Technol. B 22(3), 1565–1569 (2004).
[Crossref]

Steenbergen, E. H.

E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. M. Fastenau, A. W. K. Liu, S. Elhamri, O. O. Cellek, and Y.-H. Zhang, “Significantly improved minority carrier lifetime observed in long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Svensson, S. P.

W. L. Sarney, S. P. Svensson, H. Hier, G. Kipshidze, D. Donetsky, D. Wang, L. Shterengas, and G. Belenky, “Structural and luminescent properties of bulk InAsSb,” J. Vac. Sci. Technol. B 302(2), 02B105 (2012).
[Crossref]

Tennant, W. E.

C. L. Canedy, E. H. Aifer, J. H. Warner, I. Vurgaftman, E. M. Jackson, J. G. Tischler, S. P. Powell, K. Olver, J. R. Meyer, and W. E. Tennant, “Controlling dark current in type-II superlattice photodiodes,” Infrared Phys. Technol. 52(6), 326–334 (2009).
[Crossref]

Ting, D. Z.-Y.

D. Z.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

Tischler, J. G.

C. L. Canedy, E. H. Aifer, J. H. Warner, I. Vurgaftman, E. M. Jackson, J. G. Tischler, S. P. Powell, K. Olver, J. R. Meyer, and W. E. Tennant, “Controlling dark current in type-II superlattice photodiodes,” Infrared Phys. Technol. 52(6), 326–334 (2009).
[Crossref]

E. H. Aifer, J. G. Tischler, J. H. Warner, I. Vurgaftman, W. W. Bewley, J. R. Meyer, J. C. Kim, L. J. Whitman, C. L. Canedy, and E. M. Jackson, “W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency,” Appl. Phys. Lett. 89(5), 053519 (2006).
[Crossref]

Torabi, A.

W. E. Hoke, P. S. Lyman, C. S. Whelan, J. J. Mosca, A. Torabi, K. L. Chang, and K. C. Hsieh, “Growth and characterization of metamorphic Inx(AlGa)1−xAs/InxGa1−xAs high electron mobility transistor material and devices with X=0.3–0.4,” J. Vac. Sci. Technol. B 18(3), 1638–1641 (2000).
[Crossref]

Tyberg, M.

A. W. K. Liu, D. Lubyshev, Y. Qiu, J. M. Fastenau, M. J. Furlong, M. Tyberg, B. Martinez, A. Mowbray, and B. Smith, “MBE Growth of Sb-based Bulk nBn Infrared Photodetector Structures on 6-inch GaSb Substrates,” Proc. SPIE 9451, 94510T (2015).
[Crossref]

Vurgaftman, I.

C. L. Canedy, E. H. Aifer, J. H. Warner, I. Vurgaftman, E. M. Jackson, J. G. Tischler, S. P. Powell, K. Olver, J. R. Meyer, and W. E. Tennant, “Controlling dark current in type-II superlattice photodiodes,” Infrared Phys. Technol. 52(6), 326–334 (2009).
[Crossref]

E. H. Aifer, J. G. Tischler, J. H. Warner, I. Vurgaftman, W. W. Bewley, J. R. Meyer, J. C. Kim, L. J. Whitman, C. L. Canedy, and E. M. Jackson, “W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency,” Appl. Phys. Lett. 89(5), 053519 (2006).
[Crossref]

Wagner, J.

F. Fuchs, U. Weimar, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1-xInxSb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

Walther, M.

F. Fuchs, U. Weimar, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1-xInxSb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

Wang, D.

W. L. Sarney, S. P. Svensson, H. Hier, G. Kipshidze, D. Donetsky, D. Wang, L. Shterengas, and G. Belenky, “Structural and luminescent properties of bulk InAsSb,” J. Vac. Sci. Technol. B 302(2), 02B105 (2012).
[Crossref]

Warner, J. H.

C. L. Canedy, E. H. Aifer, J. H. Warner, I. Vurgaftman, E. M. Jackson, J. G. Tischler, S. P. Powell, K. Olver, J. R. Meyer, and W. E. Tennant, “Controlling dark current in type-II superlattice photodiodes,” Infrared Phys. Technol. 52(6), 326–334 (2009).
[Crossref]

E. H. Aifer, J. G. Tischler, J. H. Warner, I. Vurgaftman, W. W. Bewley, J. R. Meyer, J. C. Kim, L. J. Whitman, C. L. Canedy, and E. M. Jackson, “W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency,” Appl. Phys. Lett. 89(5), 053519 (2006).
[Crossref]

Wei, Y.

Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 µm,” Appl. Phys. Lett. 81(19), 3675–3677 (2002).
[Crossref]

Weimar, U.

F. Fuchs, U. Weimar, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1-xInxSb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

Weiss, E.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

Whelan, C. S.

W. E. Hoke, P. S. Lyman, C. S. Whelan, J. J. Mosca, A. Torabi, K. L. Chang, and K. C. Hsieh, “Growth and characterization of metamorphic Inx(AlGa)1−xAs/InxGa1−xAs high electron mobility transistor material and devices with X=0.3–0.4,” J. Vac. Sci. Technol. B 18(3), 1638–1641 (2000).
[Crossref]

Whitman, L. J.

E. H. Aifer, J. G. Tischler, J. H. Warner, I. Vurgaftman, W. W. Bewley, J. R. Meyer, J. C. Kim, L. J. Whitman, C. L. Canedy, and E. M. Jackson, “W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency,” Appl. Phys. Lett. 89(5), 053519 (2006).
[Crossref]

Wicks, G. W.

S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and high operating temperature,” Appl. Phys. Lett. 89(15), 151109 (2006).
[Crossref]

Wraback, M.

E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. M. Fastenau, A. W. K. Liu, S. Elhamri, O. O. Cellek, and Y.-H. Zhang, “Significantly improved minority carrier lifetime observed in long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Wu, Y.

D. I. Lubyshev, J. M. Fastenau, X.-M. Fang, Y. Wu, C. Doss, A. Snyder, W. K. Liu, M. S. M. Lamb, S. Bals, and C. Song, “Comparison of As- and P-based Metamorphic buffers for High Performance InP Heterojunction Bipolar Transistor and High Electron Mobility Transistor Applications,” J. Vac. Sci. Technol. B 22(3), 1565–1569 (2004).
[Crossref]

Yaakobovitz, B.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

Yassen, M.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

Yofis, B.

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

Zhang, Y.-H.

E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. M. Fastenau, A. W. K. Liu, S. Elhamri, O. O. Cellek, and Y.-H. Zhang, “Significantly improved minority carrier lifetime observed in long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Appl. Phys. Lett. (8)

D. H. Chow, R. H. Miles, J. R. Söderström, and T. C. McGill, “Growth and characterization of InAs/Ga1−xInxSb strained-layer superlattices,” Appl. Phys. Lett. 56(15), 1418–1420 (1990).
[Crossref]

Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 µm,” Appl. Phys. Lett. 81(19), 3675–3677 (2002).
[Crossref]

F. Fuchs, U. Weimar, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, J. Wagner, and P. Koidl, “High performance InAs/Ga1-xInxSb superlattice infrared photodiodes,” Appl. Phys. Lett. 71(22), 3251–3253 (1997).
[Crossref]

A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and M. Razeghi, “High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared,” Appl. Phys. Lett. 89(9), 093506 (2006).
[Crossref]

E. H. Aifer, J. G. Tischler, J. H. Warner, I. Vurgaftman, W. W. Bewley, J. R. Meyer, J. C. Kim, L. J. Whitman, C. L. Canedy, and E. M. Jackson, “W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency,” Appl. Phys. Lett. 89(5), 053519 (2006).
[Crossref]

D. Z.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and high operating temperature,” Appl. Phys. Lett. 89(15), 151109 (2006).
[Crossref]

E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. M. Fastenau, A. W. K. Liu, S. Elhamri, O. O. Cellek, and Y.-H. Zhang, “Significantly improved minority carrier lifetime observed in long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Appl. Phys. Lett. 99(25), 251110 (2011).
[Crossref]

Infrared Phys. Technol. (2)

C. L. Canedy, E. H. Aifer, J. H. Warner, I. Vurgaftman, E. M. Jackson, J. G. Tischler, S. P. Powell, K. Olver, J. R. Meyer, and W. E. Tennant, “Controlling dark current in type-II superlattice photodiodes,” Infrared Phys. Technol. 52(6), 326–334 (2009).
[Crossref]

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “Sb-based IR photodetector epiwafers on 100 mm GaSb substrates manufactured by MBE,” Infrared Phys. Technol. 59, 158–162 (2013).
[Crossref]

J. Appl. Phys. (1)

D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys. 62(6), 2545–2548 (1987).
[Crossref]

J. Vac. Sci. Technol. B (5)

W. E. Hoke, P. S. Lyman, C. S. Whelan, J. J. Mosca, A. Torabi, K. L. Chang, and K. C. Hsieh, “Growth and characterization of metamorphic Inx(AlGa)1−xAs/InxGa1−xAs high electron mobility transistor material and devices with X=0.3–0.4,” J. Vac. Sci. Technol. B 18(3), 1638–1641 (2000).
[Crossref]

D. I. Lubyshev, J. M. Fastenau, X.-M. Fang, Y. Wu, C. Doss, A. Snyder, W. K. Liu, M. S. M. Lamb, S. Bals, and C. Song, “Comparison of As- and P-based Metamorphic buffers for High Performance InP Heterojunction Bipolar Transistor and High Electron Mobility Transistor Applications,” J. Vac. Sci. Technol. B 22(3), 1565–1569 (2004).
[Crossref]

W. L. Sarney, S. P. Svensson, H. Hier, G. Kipshidze, D. Donetsky, D. Wang, L. Shterengas, and G. Belenky, “Structural and luminescent properties of bulk InAsSb,” J. Vac. Sci. Technol. B 302(2), 02B105 (2012).
[Crossref]

J. M. Fastenau, D. Lubyshev, Y. Qiu, A. W. K. Liu, E. J. Koerperick, J. T. Olesberg, and D. Norton., “MBE Growth of GaSb-based Photodetectors on 6 inch Diameter GaAs Substrates via Select Buffers,” J. Vac. Sci. Technol. B 31(3), 03C106 (2013).
[Crossref]

G. Bishop, E. Plis, J. B. Rodriguez, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “nBn detectors based on InAs/GaSb type-II strain layer superlattice,” J. Vac. Sci. Technol. B 26(3), 1145–1148 (2008).
[Crossref]

Proc. SPIE (3)

A. W. K. Liu, D. Lubyshev, Y. Qiu, J. M. Fastenau, M. J. Furlong, M. Tyberg, B. Martinez, A. Mowbray, and B. Smith, “MBE Growth of Sb-based Bulk nBn Infrared Photodetector Structures on 6-inch GaSb Substrates,” Proc. SPIE 9451, 94510T (2015).
[Crossref]

P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, “MWIR InAsSb XBn detectors for high operating temperatures,” Proc. SPIE 8012, 76602Y (2010).
[Crossref]

D. Lubyshev, J. M. Fastenau, M. Kattner, P. Frey, A. W. K. Liu, and M. J. Furlong, “Large-format Multi-wafer Production of 5” GaSb-based Photodetectors by Molecular Beam Epitaxy,” Proc. SPIE 10177, 1017718 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Surface morphology of an nBn MWIR detector structure grown on a 5 × 5-inch GaSb platform: (a) schematic of platen configuration with an outer ring of 5 × 5-inch wafers and a 3-inch witness wafer in the center, (b) full wafer Surfscan map showing low defect density (1.3−50 µm2) of 72 /cm2, (c) Nomarski contrast optical microscope images, and (d) AFM images showing smooth surface with low rms roughness of <3 Å (5 µm × 5 µm area scan).
Fig. 2
Fig. 2 Multi-point HRXRD and PL measurements across an nBn MWIR detector structure grown on a 5 × 5-inch GaSb platform. (a) Schematic showing the orientation of the measurement points, (b) overlay of 5-point HRXRD spectra, the intensity of each scan has been intentionally offset to allow for a clearer depiction of the trend in the peaks across the wafer, and (c) 3-point 77K PL spectra across the same wafer.
Fig. 3
Fig. 3 Large-area mesa diode test data taken at 140K and 150K on a bulk nBn MWIR epiwafer grown using the 5 × 5-inch configuration: (a) J-V, (b) QE versus bias, and (c) spectral QE plots.
Fig. 4
Fig. 4 Surface morphology of a metamorphic nBn MWIR detector structure: (a) Schematic showing the 4 × 6-inch platen configuration, (b) full wafer Surfscan map showing low defect density (1.3−50 µm2) of 75 /cm2, (c) Nomarski contrast optical microscope image, and (c) AFM image showing smooth surface with low rms roughness of 11 Å (20 µm × 20 µm area scan).
Fig. 5
Fig. 5 Multi-point HRXRD and PL measurements across a M-nBn MWIR detector structure grown on the 4 × 6-inch GaAs platform; data points are color-coded in reference to Fig. 4a. (a) Overlay of 5-point HRXRD spectra, the intensity of each scan has been intentionally offset to allow for a clearer depiction of the trend in the peaks across the wafer and (c) 5-point PL spectra taken at 77K across the same wafer.
Fig. 6
Fig. 6 Multi-point 150K large-area mesa diode characteristics measured across a M-nBn MWIR epiwafer grown GaAs substrate using the 4 × 6-inch platen configuration: (a) J-V, (b) QE versus bias, and (c) spectral QE spectra (5-point measurements based on Fig. 6a).

Metrics