Abstract

A silicon (Si) grating coupler on a Si-strip-loaded lithium niobate (LN) thin film waveguide was proposed and realized. The optimized coupling efficiency (CE) by simulation was −5 dB at a wavelength of 1550 nm by the two-dimensional finite-different time-domain method (2D-FDTD), while the measured CE was about −18 dB. The coupler was etched by the focused ion beam etching method (FIB) in the Si strip thin film which was deposited by magnetron sputtering technology, patterned by photolithography and a lift-off process. The realization of the Si grating coupler and tapered waveguide could benefit the research of more advanced and complicated integrated optical devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector

Zhihua Chen, Ruihong Peng, Yiwen Wang, Houbin Zhu, and Hui Hu
Opt. Mater. Express 7(11) 4010-4017 (2017)

Amorphous silicon-lithium niobate thin film strip-loaded waveguides

Yiwen Wang, Zhihua Chen, Lutong Cai, Yunpeng Jiang, Houbin Zhu, and Hui Hu
Opt. Mater. Express 7(11) 4018-4028 (2017)

Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe

Shuang Li, Lutong Cai, Yiwen Wang, Yunpeng Jiang, and Hui Hu
Opt. Express 23(19) 24212-24219 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
    [Crossref]
  2. M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform,” IEEE Photonics J. 10(1), 1 (2018).
    [Crossref]
  3. A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–14 (2018).
    [Crossref]
  4. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X. F. Ren, G. C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
    [Crossref] [PubMed]
  5. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
    [Crossref] [PubMed]
  6. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
    [Crossref]
  7. L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330(1), 40–44 (2014).
    [Crossref]
  8. Y. W. Wang, Z. H. Chen, L. T. Cai, H. B. Zhu, and H. Hu, “Amorphous silicon-lithium niobate thin film strip-loaded waveguides,” Opt. Mater. Express 7(11), 4018–4028 (2017).
    [Crossref]
  9. L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23(10), 13255–13264 (2015).
    [Crossref] [PubMed]
  10. P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
    [Crossref] [PubMed]
  11. M. Mahmoud, S. Ghosh, and G. Piazza, “Lithium niobate on insulator (LNOI) grating couplers,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2015), pp. 1–2.
    [Crossref]
  12. M. S. Nisar, X. J. Zhao, A. Pan, S. Yuan, and J. S. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photonics J. 9(1), 1 (2017).
    [Crossref]
  13. Z. H. Chen, R. H. Peng, Y. W. Wang, H. B. Zhu, and H. Hu, “Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector,” Opt. Mater. Express 7(11), 4010–4017 (2017).
    [Crossref]
  14. M. A. Baghban, J. Schollhammer, C. E. Herranz, K. B. Gylfason, and K. Gallo, “Bragg gratings in thin-film LiNbO3 waveguides,” Opt. Express 25(26), 32323–32332 (2017).
    [Crossref]
  15. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977).
    [Crossref]
  16. S. Jun, P. D. Rack, T. E. McKnight, A. V. Melechko, and M. L. Simpson, “Low-temperature solid-phase crystallization of amorphous silicon thin films deposited by rf magnetron sputtering with substrate bias,” Appl. Phys. Lett. 89(2), 022104 (2006).
    [Crossref]

2018 (2)

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform,” IEEE Photonics J. 10(1), 1 (2018).
[Crossref]

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–14 (2018).
[Crossref]

2017 (5)

2016 (2)

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
[Crossref]

2015 (2)

2014 (1)

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330(1), 40–44 (2014).
[Crossref]

2006 (1)

S. Jun, P. D. Rack, T. E. McKnight, A. V. Melechko, and M. L. Simpson, “Low-temperature solid-phase crystallization of amorphous silicon thin films deposited by rf magnetron sputtering with substrate bias,” Appl. Phys. Lett. 89(2), 022104 (2006).
[Crossref]

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

1977 (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977).
[Crossref]

Aboketaf, A.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330(1), 40–44 (2014).
[Crossref]

Andrade, N.

Baghban, M. A.

Bottenfield, C.

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform,” IEEE Photonics J. 10(1), 1 (2018).
[Crossref]

Bowers, J. E.

Cai, L.

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform,” IEEE Photonics J. 10(1), 1 (2018).
[Crossref]

Cai, L. T.

Cao, L.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330(1), 40–44 (2014).
[Crossref]

Chang, L.

Chen, J.

Chen, L.

Chen, Z. H.

DeRose, C. T.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Diziain, S.

Fathpour, S.

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–14 (2018).
[Crossref]

Gallo, K.

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Geiss, R.

Ghosh, S.

M. Mahmoud, S. Ghosh, and G. Piazza, “Lithium niobate on insulator (LNOI) grating couplers,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2015), pp. 1–2.
[Crossref]

Grange, R.

Guo, G. C.

Gylfason, K. B.

Herranz, C. E.

Hu, H.

Jun, S.

S. Jun, P. D. Rack, T. E. McKnight, A. V. Melechko, and M. L. Simpson, “Low-temperature solid-phase crystallization of amorphous silicon thin films deposited by rf magnetron sputtering with substrate bias,” Appl. Phys. Lett. 89(2), 022104 (2006).
[Crossref]

Kley, E. B.

Lentine, A. L.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Li, Y.

Loncar, M.

Mahmoud, M.

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform,” IEEE Photonics J. 10(1), 1 (2018).
[Crossref]

M. Mahmoud, S. Ghosh, and G. Piazza, “Lithium niobate on insulator (LNOI) grating couplers,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2015), pp. 1–2.
[Crossref]

McKnight, T. E.

S. Jun, P. D. Rack, T. E. McKnight, A. V. Melechko, and M. L. Simpson, “Low-temperature solid-phase crystallization of amorphous silicon thin films deposited by rf magnetron sputtering with substrate bias,” Appl. Phys. Lett. 89(2), 022104 (2006).
[Crossref]

Melechko, A. V.

S. Jun, P. D. Rack, T. E. McKnight, A. V. Melechko, and M. L. Simpson, “Low-temperature solid-phase crystallization of amorphous silicon thin films deposited by rf magnetron sputtering with substrate bias,” Appl. Phys. Lett. 89(2), 022104 (2006).
[Crossref]

Mookherjea, S.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Nagy, J.

Nisar, M. S.

M. S. Nisar, X. J. Zhao, A. Pan, S. Yuan, and J. S. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photonics J. 9(1), 1 (2017).
[Crossref]

Pan, A.

M. S. Nisar, X. J. Zhao, A. Pan, S. Yuan, and J. S. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photonics J. 9(1), 1 (2017).
[Crossref]

Peng, R. H.

Peng, S. T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977).
[Crossref]

Pertsch, T.

Peters, J.

Piazza, G.

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform,” IEEE Photonics J. 10(1), 1 (2018).
[Crossref]

M. Mahmoud, S. Ghosh, and G. Piazza, “Lithium niobate on insulator (LNOI) grating couplers,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2015), pp. 1–2.
[Crossref]

Pomerene, A. T.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Preble, S.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330(1), 40–44 (2014).
[Crossref]

Rack, P. D.

S. Jun, P. D. Rack, T. E. McKnight, A. V. Melechko, and M. L. Simpson, “Low-temperature solid-phase crystallization of amorphous silicon thin films deposited by rf magnetron sputtering with substrate bias,” Appl. Phys. Lett. 89(2), 022104 (2006).
[Crossref]

Rao, A.

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–14 (2018).
[Crossref]

Reano, R. M.

Ren, X. F.

Saravi, S.

Savanier, M.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Schollhammer, J.

Schrempel, F.

Sergeyev, A.

Setzpfandt, F.

Simpson, M. L.

S. Jun, P. D. Rack, T. E. McKnight, A. V. Melechko, and M. L. Simpson, “Low-temperature solid-phase crystallization of amorphous silicon thin films deposited by rf magnetron sputtering with substrate bias,” Appl. Phys. Lett. 89(2), 022104 (2006).
[Crossref]

Starbuck, A. L.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Stenger, V.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Tamir, T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977).
[Crossref]

Tünnermann, A.

Venkataraman, V.

Volet, N.

Wang, C.

Wang, L.

Wang, Y. W.

Wang, Z.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330(1), 40–44 (2014).
[Crossref]

Weigel, P. O.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Xia, J. S.

M. S. Nisar, X. J. Zhao, A. Pan, S. Yuan, and J. S. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photonics J. 9(1), 1 (2017).
[Crossref]

Xiong, X.

Yuan, S.

M. S. Nisar, X. J. Zhao, A. Pan, S. Yuan, and J. S. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photonics J. 9(1), 1 (2017).
[Crossref]

Zhao, X. J.

M. S. Nisar, X. J. Zhao, A. Pan, S. Yuan, and J. S. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photonics J. 9(1), 1 (2017).
[Crossref]

Zhu, H. B.

Appl. Phys. (Berl.) (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977).
[Crossref]

Appl. Phys. Lett. (1)

S. Jun, P. D. Rack, T. E. McKnight, A. V. Melechko, and M. L. Simpson, “Low-temperature solid-phase crystallization of amorphous silicon thin films deposited by rf magnetron sputtering with substrate bias,” Appl. Phys. Lett. 89(2), 022104 (2006).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–14 (2018).
[Crossref]

IEEE Photonics J. (2)

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform,” IEEE Photonics J. 10(1), 1 (2018).
[Crossref]

M. S. Nisar, X. J. Zhao, A. Pan, S. Yuan, and J. S. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photonics J. 9(1), 1 (2017).
[Crossref]

Opt. Commun. (1)

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330(1), 40–44 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (2)

Optica (1)

Sci. Rep. (1)

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6(1), 22301 (2016).
[Crossref] [PubMed]

Other (1)

M. Mahmoud, S. Ghosh, and G. Piazza, “Lithium niobate on insulator (LNOI) grating couplers,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2015), pp. 1–2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the proposed grating couplers (a) top view (b) cross section view.
Fig. 2
Fig. 2 Simulated CE of the Si grating couplers on Si-LNOI. (The thickness of Si thin film was 50 nm, the filling factor was 0.5, fiber angle θ was 8°, and the wavelength was 1550 nm).
Fig. 3
Fig. 3 Fabrication procedure of the Si-strip-loaded LNOI.
Fig. 4
Fig. 4 Si-strip-loaded waveguides and grating. (a) Optical microscope photograph of the Si- strip-loaded waveguide (b) FIB photograph of grating with and (c) without Au deposited.
Fig. 5
Fig. 5 Schematic and normalized transmission T of Si-strip-loaded waveguide grating couplers. Structure A had a waveguide length of 0.5 mm and a width of 12 μm. Structure B had a waveguide length of 1 mm and a width of 12 μm. Structure C contained two 300-μm-long tapered waveguides, two 100-μm-long and 12-μm-wide strip waveguides, and a 200-μm-long and 3-μm-wide strip waveguide. The identical gratings (red strips) were etched in both ends of each waveguide (A, B, C).
Fig. 6
Fig. 6 Simulated and measured CEs of Si grating coupler on Si-LNOI. (The thickness of Si thin film was 50 nm, the thickness of LN thin film was 292 nm, the period was 870 nm, the filling factor was 0.6, and the fiber angle θ was 8°)

Metrics