Abstract

Optical and electrical properties of indium tin oxide (ITO) films on Si substrates in the thickness range from 10 nm to 100 nm were investigated. Spectroscopic ellipsometry was used to obtain the complex permittivity of the ultra-thin films in the spectral range from visible to long-wave infrared. It was found that as the thickness decreases, the Drude component of the electric permittivity becomes vanishingly small, eventually leaving only positive permittivity values. This coincides with an epsilon-near-zero wavelength red-shift from 1.5 to 2.1 um for the films that retain negative permittivities. Hall measurements were conducted to determine that the mobility of the films correspondingly decreased from 35 cm2/Vs to single digits. This decreasing mobility is the result of a non-electrical dead layer that was determined to be ~14 nm thick, which occurs at the ITO/Si interface and is due predominately to interfacial defects. The thickness of this dead layer depends on the deposition process and substrate. The optical and electrical properties of ultra-thin ITO films are useful for the precise design of infrared plasmonic modulators, perfect light absorbers and other photonic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband terahertz conductivity and optical transmission of indium-tin-oxide (ITO) nanomaterials

Chan-Shan Yang, Chan-Ming Chang, Po-Han Chen, Peichen Yu, and Ci-Ling Pan
Opt. Express 21(14) 16670-16682 (2013)

Optical and electrical properties of Vanadium doped Indium oxide thin films

Huibin Li, Ning Wang, and Xingyuan Liu
Opt. Express 16(1) 194-199 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Ginley and J. D. Perkins, “Transparent conductors,” in Handbook of Transparent Conductors, D. S. Ginley, H. Hosono, and D. C. Paine, eds. (Springer, 2010).
  2. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
    [Crossref] [PubMed]
  3. A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19(9), 8855–8869 (2011).
    [Crossref] [PubMed]
  4. V. E. Babicheva and A. V. Lavrinenko, “Plasmonic modulator optimized by patterning of active layer and tuning permittivity,” Opt. Commun. 285(24), 5500–5507 (2012).
    [Crossref]
  5. V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
    [Crossref]
  6. A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
    [Crossref] [PubMed]
  7. V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
    [Crossref] [PubMed]
  8. C. Ye, S. Khan, Z. R. Li, E. Simsek, and V. J. Sorger, “λ-Size ITO and Graphene-based electro-optic modulators on SOI,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400310 (2014).
  9. H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192 (2015).
    [Crossref]
  10. R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence on on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
    [Crossref]
  11. K. Shi and Z. Lu, “Optical modulators and beam steering based on electrically tunable plasmonic material,” J. Nanophotonics 9(1), 093793 (2015).
    [Crossref]
  12. M. Ferrera, N. Kinsey, A. Shaltout, C. DeVault, V. Shalaev, and A. Boltasseva, “Dynamic nanophotonics,” J. Opt. Soc. Am. B 34(1), 95–103 (2017).
    [Crossref]
  13. Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurface,” Nano Lett. 16(9), 5319–5325 (2016).
    [Crossref] [PubMed]
  14. A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
    [Crossref] [PubMed]
  15. A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
    [Crossref]
  16. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
    [Crossref] [PubMed]
  17. J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
    [Crossref] [PubMed]
  18. J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
    [Crossref] [PubMed]
  19. J. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5, 776–781 (2016).
  20. M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Pla, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: substrate interfacial reactivity,” J. Vac. Sci. Technol. A 20(1), 37–42 (2002).
    [Crossref]
  21. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
    [Crossref]
  22. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  23. B. Gompf, J. Beister, T. Brandt, J. Pflaum, and M. Dressel, “Nanometer-thick Au-films as antireflection coating for infrared light,” Opt. Lett. 32(11), 1578–1580 (2007).
    [Crossref] [PubMed]
  24. M. Hovel, M. Alws, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
    [Crossref]
  25. S. S. Mirshafieyan, T. S. Luk, and J. Guo, “Zeroth other Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms,” Opt. Mater. Express 6(4), 1032–1042 (2016).
    [Crossref]
  26. R. F. Pierret, Semiconductor Device Fundamentals (Addison Wesley Longman, 1996), Chap.3.
  27. D. Kim, M. Park, H. Lee, and G. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
    [Crossref]
  28. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  29. E. M. Smith, W. H. Streyer, N. Nader, S. Vangala, G. Grzybowski, R. Soref, D. Wasserman, and J. W. Cleary, “Metal germanides for practical on-chip plamonics in the mid infrared,” to be submitted to Optical Materials Express (2018).
  30. R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012).
    [Crossref] [PubMed]
  31. Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415–2430 (2015).
    [Crossref]
  32. Y. Wang, A. C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, and L. Dal Negro, “Tunability of Indium Tin Oxide Materials for mid-infrared plasmonics applications,” Opt. Mater. Express 7(8), 2727–2739 (2017).
    [Crossref]
  33. R. Kykyneshi, J. Zeng, and D. P. Cann, “Transparent conducting oxides based on tin oxide,” in Handbook of transparent conductors, D. S. Ginley, H. Hosono, and D. C. Paine, eds. (Springer, 2010).
  34. X. Liu, J. Park, J. Kang, H. Yuan, Y. Ciu, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
    [Crossref]
  35. D. C. Look, K. D. Leedy, A. Kiefer, B. Claflin, N. Itagaki, K. Matsushima, and I. Surhariadi, “Model for thickness dependence of mobility and concentration in highly conductive zinc oxide,” Opt. Eng. 52(3), 033801 (2013).
    [Crossref]
  36. D. C. Look, “Mobility vs thickness in n+-ZnO films: Effects of substrates and buffer layers,” Mater. Sci. Semicond. Process. 64, 2–8 (2016).
  37. H. Lee and O. Ok Park, “Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurty scattering,” Vacuum 75(3), 275–282 (2004).
    [Crossref]
  38. C. G. Fornstad and R. H. Rediker, “Electrical properties of high-quality stannic oxide crystals,” J. Appl. Phys. 42(7), 2911–2918 (1971).
    [Crossref]
  39. F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 µm,” Opt. Lett. 34(6), 839–841 (2009).
    [Crossref] [PubMed]
  40. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 1996).
  41. D. C. Paine, B. Yaglioglu, and J. Berry, “Characterization of TCO materials,” in Handbook of transparent conductors, D. S. Ginley, H. Hosono, and D. C. Paine, eds. (Springer, 2010).

2017 (3)

2016 (4)

D. C. Look, “Mobility vs thickness in n+-ZnO films: Effects of substrates and buffer layers,” Mater. Sci. Semicond. Process. 64, 2–8 (2016).

J. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5, 776–781 (2016).

S. S. Mirshafieyan, T. S. Luk, and J. Guo, “Zeroth other Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms,” Opt. Mater. Express 6(4), 1032–1042 (2016).
[Crossref]

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurface,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

2015 (7)

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

K. Shi and Z. Lu, “Optical modulators and beam steering based on electrically tunable plasmonic material,” J. Nanophotonics 9(1), 093793 (2015).
[Crossref]

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref] [PubMed]

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192 (2015).
[Crossref]

Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415–2430 (2015).
[Crossref]

2014 (2)

X. Liu, J. Park, J. Kang, H. Yuan, Y. Ciu, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

C. Ye, S. Khan, Z. R. Li, E. Simsek, and V. J. Sorger, “λ-Size ITO and Graphene-based electro-optic modulators on SOI,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400310 (2014).

2013 (4)

A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
[Crossref] [PubMed]

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref] [PubMed]

D. C. Look, K. D. Leedy, A. Kiefer, B. Claflin, N. Itagaki, K. Matsushima, and I. Surhariadi, “Model for thickness dependence of mobility and concentration in highly conductive zinc oxide,” Opt. Eng. 52(3), 033801 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

2012 (4)

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012).
[Crossref] [PubMed]

V. E. Babicheva and A. V. Lavrinenko, “Plasmonic modulator optimized by patterning of active layer and tuning permittivity,” Opt. Commun. 285(24), 5500–5507 (2012).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (3)

M. Hovel, M. Alws, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (1)

2006 (1)

D. Kim, M. Park, H. Lee, and G. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

2004 (1)

H. Lee and O. Ok Park, “Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurty scattering,” Vacuum 75(3), 275–282 (2004).
[Crossref]

2002 (1)

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Pla, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: substrate interfacial reactivity,” J. Vac. Sci. Technol. A 20(1), 37–42 (2002).
[Crossref]

1971 (1)

C. G. Fornstad and R. H. Rediker, “Electrical properties of high-quality stannic oxide crystals,” J. Appl. Phys. 42(7), 2911–2918 (1971).
[Crossref]

Agarwal, R.

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence on on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

Alws, M.

M. Hovel, M. Alws, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

Amin, R.

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence on on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

Atwater, H. A.

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurface,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Babicheva, V. E.

Badsha, M. A.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref] [PubMed]

Beister, J.

Boltasseva, A.

M. Ferrera, N. Kinsey, A. Shaltout, C. DeVault, V. Shalaev, and A. Boltasseva, “Dynamic nanophotonics,” J. Opt. Soc. Am. B 34(1), 95–103 (2017).
[Crossref]

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Brandt, T.

Brongersma, M. L.

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

X. Liu, J. Park, J. Kang, H. Yuan, Y. Ciu, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
[Crossref] [PubMed]

Bruno, G.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Pla, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: substrate interfacial reactivity,” J. Vac. Sci. Technol. A 20(1), 37–42 (2002).
[Crossref]

Capezzuto, P.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Pla, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: substrate interfacial reactivity,” J. Vac. Sci. Technol. A 20(1), 37–42 (2002).
[Crossref]

Capretti, A.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415–2430 (2015).
[Crossref]

Ciu, Y.

X. Liu, J. Park, J. Kang, H. Yuan, Y. Ciu, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

Claflin, B.

D. C. Look, K. D. Leedy, A. Kiefer, B. Claflin, N. Itagaki, K. Matsushima, and I. Surhariadi, “Model for thickness dependence of mobility and concentration in highly conductive zinc oxide,” Opt. Eng. 52(3), 033801 (2013).
[Crossref]

Cleary, J. W.

J. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5, 776–781 (2016).

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012).
[Crossref] [PubMed]

Dal Negro, L.

Danz, N.

Dass, C.

J. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5, 776–781 (2016).

De Rosa, R.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Pla, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: substrate interfacial reactivity,” J. Vac. Sci. Technol. A 20(1), 37–42 (2002).
[Crossref]

Descrovi, E.

DeVault, C.

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Dominici, L.

Dressel, M.

M. Hovel, M. Alws, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

B. Gompf, J. Beister, T. Brandt, J. Pflaum, and M. Dressel, “Nanometer-thick Au-films as antireflection coating for infrared light,” Opt. Lett. 32(11), 1578–1580 (2007).
[Crossref] [PubMed]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Engheta, N.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Ferrera, M.

Fornstad, C. G.

C. G. Fornstad and R. H. Rediker, “Electrical properties of high-quality stannic oxide crystals,” J. Appl. Phys. 42(7), 2911–2918 (1971).
[Crossref]

Freude, W.

Giangregorio, M.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Pla, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: substrate interfacial reactivity,” J. Vac. Sci. Technol. A 20(1), 37–42 (2002).
[Crossref]

Gibson, R.

J. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5, 776–781 (2016).

Goldsmith, J.

J. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5, 776–781 (2016).

Gompf, B.

M. Hovel, M. Alws, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

B. Gompf, J. Beister, T. Brandt, J. Pflaum, and M. Dressel, “Nanometer-thick Au-films as antireflection coating for infrared light,” Opt. Lett. 32(11), 1578–1580 (2007).
[Crossref] [PubMed]

Guo, J.

J. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5, 776–781 (2016).

S. S. Mirshafieyan, T. S. Luk, and J. Guo, “Zeroth other Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms,” Opt. Mater. Express 6(4), 1032–1042 (2016).
[Crossref]

Hahn, H.

Han, S.

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurface,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Hendrickson, J.

J. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5, 776–781 (2016).

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012).
[Crossref] [PubMed]

Hovel, M.

M. Hovel, M. Alws, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

Huang, Y. W.

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurface,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Hwang, H. Y.

X. Liu, J. Park, J. Kang, H. Yuan, Y. Ciu, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

Hwangbo, C. K.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref] [PubMed]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Itagaki, N.

D. C. Look, K. D. Leedy, A. Kiefer, B. Claflin, N. Itagaki, K. Matsushima, and I. Surhariadi, “Model for thickness dependence of mobility and concentration in highly conductive zinc oxide,” Opt. Eng. 52(3), 033801 (2013).
[Crossref]

Jun, Y. C.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref] [PubMed]

Kang, J.

X. Liu, J. Park, J. Kang, H. Yuan, Y. Ciu, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

Kang, J. H.

Khan, S.

C. Ye, S. Khan, Z. R. Li, E. Simsek, and V. J. Sorger, “λ-Size ITO and Graphene-based electro-optic modulators on SOI,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400310 (2014).

Khurgin, J. B.

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence on on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

Kiefer, A.

D. C. Look, K. D. Leedy, A. Kiefer, B. Claflin, N. Itagaki, K. Matsushima, and I. Surhariadi, “Model for thickness dependence of mobility and concentration in highly conductive zinc oxide,” Opt. Eng. 52(3), 033801 (2013).
[Crossref]

Kildishev, A. V.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Kim, D.

D. Kim, M. Park, H. Lee, and G. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

Kim, J.

Kim, T. Y.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref] [PubMed]

Kim, W.

J. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5, 776–781 (2016).

Kinsey, N.

Klamkin, J.

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192 (2015).
[Crossref]

Koos, C.

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Lavrinenko, A. V.

Lee, G.

D. Kim, M. Park, H. Lee, and G. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

Lee, H.

D. Kim, M. Park, H. Lee, and G. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

H. Lee and O. Ok Park, “Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurty scattering,” Vacuum 75(3), 275–282 (2004).
[Crossref]

Lee, H. W. H.

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurface,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Leedy, K.

J. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5, 776–781 (2016).

Leedy, K. D.

D. C. Look, K. D. Leedy, A. Kiefer, B. Claflin, N. Itagaki, K. Matsushima, and I. Surhariadi, “Model for thickness dependence of mobility and concentration in highly conductive zinc oxide,” Opt. Eng. 52(3), 033801 (2013).
[Crossref]

Leufke, P. M.

Leuthold, J.

Li, Z. R.

C. Ye, S. Khan, Z. R. Li, E. Simsek, and V. J. Sorger, “λ-Size ITO and Graphene-based electro-optic modulators on SOI,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400310 (2014).

Lindenmann, N.

Liu, J.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Liu, X.

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

X. Liu, J. Park, J. Kang, H. Yuan, Y. Ciu, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
[Crossref] [PubMed]

Look, D. C.

D. C. Look, “Mobility vs thickness in n+-ZnO films: Effects of substrates and buffer layers,” Mater. Sci. Semicond. Process. 64, 2–8 (2016).

D. C. Look, K. D. Leedy, A. Kiefer, B. Claflin, N. Itagaki, K. Matsushima, and I. Surhariadi, “Model for thickness dependence of mobility and concentration in highly conductive zinc oxide,” Opt. Eng. 52(3), 033801 (2013).
[Crossref]

Losurdo, M.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Pla, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: substrate interfacial reactivity,” J. Vac. Sci. Technol. A 20(1), 37–42 (2002).
[Crossref]

Lu, Z.

K. Shi and Z. Lu, “Optical modulators and beam steering based on electrically tunable plasmonic material,” J. Nanophotonics 9(1), 093793 (2015).
[Crossref]

Luk, T. S.

Ma, R.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Ma, Z.

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence on on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

Matsushima, K.

D. C. Look, K. D. Leedy, A. Kiefer, B. Claflin, N. Itagaki, K. Matsushima, and I. Surhariadi, “Model for thickness dependence of mobility and concentration in highly conductive zinc oxide,” Opt. Eng. 52(3), 033801 (2013).
[Crossref]

Melikyan, A.

Menchini, F.

Michelotti, F.

Mirshafieyan, S. S.

Naik, G. V.

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Negro, L. D.

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192 (2015).
[Crossref]

Ok Park, O.

H. Lee and O. Ok Park, “Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurty scattering,” Vacuum 75(3), 275–282 (2004).
[Crossref]

Overvig, A. C.

Pala, R. A.

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurface,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Park, J.

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

X. Liu, J. Park, J. Kang, H. Yuan, Y. Ciu, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
[Crossref] [PubMed]

Park, M.

D. Kim, M. Park, H. Lee, and G. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

Pflaum, J.

Pla, J.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Pla, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: substrate interfacial reactivity,” J. Vac. Sci. Technol. A 20(1), 37–42 (2002).
[Crossref]

Rediker, R. H.

C. G. Fornstad and R. H. Rediker, “Electrical properties of high-quality stannic oxide crystals,” J. Appl. Phys. 42(7), 2911–2918 (1971).
[Crossref]

Rizzoli, R.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Pla, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: substrate interfacial reactivity,” J. Vac. Sci. Technol. A 20(1), 37–42 (2002).
[Crossref]

Roca, F.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Pla, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: substrate interfacial reactivity,” J. Vac. Sci. Technol. A 20(1), 37–42 (2002).
[Crossref]

Sarpkaya, I.

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence on on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

Schimmel, T.

Shalaev, V.

Shalaev, V. M.

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shaltout, A.

Shi, K.

K. Shi and Z. Lu, “Optical modulators and beam steering based on electrically tunable plasmonic material,” J. Nanophotonics 9(1), 093793 (2015).
[Crossref]

Shrestha, S.

Simsek, E.

C. Ye, S. Khan, Z. R. Li, E. Simsek, and V. J. Sorger, “λ-Size ITO and Graphene-based electro-optic modulators on SOI,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400310 (2014).

Sokhoyan, R.

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurface,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Soref, R.

Sorger, V. J.

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence on on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

C. Ye, S. Khan, Z. R. Li, E. Simsek, and V. J. Sorger, “λ-Size ITO and Graphene-based electro-optic modulators on SOI,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400310 (2014).

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Suer, C.

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence on on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

Summonte, C.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Pla, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: substrate interfacial reactivity,” J. Vac. Sci. Technol. A 20(1), 37–42 (2002).
[Crossref]

Surhariadi, I.

D. C. Look, K. D. Leedy, A. Kiefer, B. Claflin, N. Itagaki, K. Matsushima, and I. Surhariadi, “Model for thickness dependence of mobility and concentration in highly conductive zinc oxide,” Opt. Eng. 52(3), 033801 (2013).
[Crossref]

Thyagarajan, K.

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurface,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Tsai, D. P.

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurface,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Ulrich, S.

Vangala, S.

J. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5, 776–781 (2016).

Vasudev, A. P.

Vincze, P.

Walheim, S.

Walker, D. E.

J. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5, 776–781 (2016).

Wang, R.

Wang, Y.

Y. Wang, A. C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, and L. Dal Negro, “Tunability of Indium Tin Oxide Materials for mid-infrared plasmonics applications,” Opt. Mater. Express 7(8), 2727–2739 (2017).
[Crossref]

Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415–2430 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Ye, C.

C. Ye, S. Khan, Z. R. Li, E. Simsek, and V. J. Sorger, “λ-Size ITO and Graphene-based electro-optic modulators on SOI,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400310 (2014).

Ye, J.

Yoon, J.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref] [PubMed]

Yu, N.

Yuan, H.

X. Liu, J. Park, J. Kang, H. Yuan, Y. Ciu, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

Zhang, R.

Zhang, X.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Zhao, H.

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192 (2015).
[Crossref]

Zhou, M.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref] [PubMed]

ACS Photonics (2)

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

J. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5, 776–781 (2016).

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

X. Liu, J. Park, J. Kang, H. Yuan, Y. Ciu, H. Y. Hwang, and M. L. Brongersma, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105(18), 181117 (2014).
[Crossref]

Appl. Surf. Sci. (1)

D. Kim, M. Park, H. Lee, and G. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Ye, S. Khan, Z. R. Li, E. Simsek, and V. J. Sorger, “λ-Size ITO and Graphene-based electro-optic modulators on SOI,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400310 (2014).

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192 (2015).
[Crossref]

J. Appl. Phys. (1)

C. G. Fornstad and R. H. Rediker, “Electrical properties of high-quality stannic oxide crystals,” J. Appl. Phys. 42(7), 2911–2918 (1971).
[Crossref]

J. Nanophotonics (1)

K. Shi and Z. Lu, “Optical modulators and beam steering based on electrically tunable plasmonic material,” J. Nanophotonics 9(1), 093793 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. A (1)

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Pla, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: substrate interfacial reactivity,” J. Vac. Sci. Technol. A 20(1), 37–42 (2002).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Mater. Sci. Semicond. Process. (1)

D. C. Look, “Mobility vs thickness in n+-ZnO films: Effects of substrates and buffer layers,” Mater. Sci. Semicond. Process. 64, 2–8 (2016).

Nano Lett. (2)

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurface,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Nanophotonics (1)

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Opt. Commun. (1)

V. E. Babicheva and A. V. Lavrinenko, “Plasmonic modulator optimized by patterning of active layer and tuning permittivity,” Opt. Commun. 285(24), 5500–5507 (2012).
[Crossref]

Opt. Eng. (1)

D. C. Look, K. D. Leedy, A. Kiefer, B. Claflin, N. Itagaki, K. Matsushima, and I. Surhariadi, “Model for thickness dependence of mobility and concentration in highly conductive zinc oxide,” Opt. Eng. 52(3), 033801 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (4)

Phys. Rev. B (1)

M. Hovel, M. Alws, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Sci. Rep. (2)

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref] [PubMed]

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

Solid-State Electron. (1)

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence on on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

Vacuum (1)

H. Lee and O. Ok Park, “Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurty scattering,” Vacuum 75(3), 275–282 (2004).
[Crossref]

Other (6)

R. Kykyneshi, J. Zeng, and D. P. Cann, “Transparent conducting oxides based on tin oxide,” in Handbook of transparent conductors, D. S. Ginley, H. Hosono, and D. C. Paine, eds. (Springer, 2010).

R. F. Pierret, Semiconductor Device Fundamentals (Addison Wesley Longman, 1996), Chap.3.

E. M. Smith, W. H. Streyer, N. Nader, S. Vangala, G. Grzybowski, R. Soref, D. Wasserman, and J. W. Cleary, “Metal germanides for practical on-chip plamonics in the mid infrared,” to be submitted to Optical Materials Express (2018).

D. S. Ginley and J. D. Perkins, “Transparent conductors,” in Handbook of Transparent Conductors, D. S. Ginley, H. Hosono, and D. C. Paine, eds. (Springer, 2010).

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 1996).

D. C. Paine, B. Yaglioglu, and J. Berry, “Characterization of TCO materials,” in Handbook of transparent conductors, D. S. Ginley, H. Hosono, and D. C. Paine, eds. (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 AFM images for pulse laser deposited ITO films with nominal thicknesses of 5 nm (A), 10 nm (B), 15 nm (C), and 20 nm (D).
Fig. 2
Fig. 2 Determined ITO film thicknesses compared with the nominal values.
Fig. 3
Fig. 3 Infrared complex permittivity of ITO films as determined by spectroscopic ellipsometry. The similar colored data sets are for similar targeted thicknesses.
Fig. 4
Fig. 4 Near-infrared complex permittivity of ITO films as determined by spectroscopic ellipsometry. The similar colored data sets are for similar targeted thicknesses.
Fig. 5
Fig. 5 Rs, and Ns as a function of film thickness. The inset shows a magnified portion of Ns.
Fig. 6
Fig. 6 ρ, t, Ns and μ as a function of film thickness. ρ, and N are determined using the electrical thickness of the films. The magenta dashed line on those curves indicates the thickness of the non-electrical dead layer.
Fig. 7
Fig. 7 (Upper) ωp, Γ, and μ as a function of film thickness using the electrically and optically determined parameters. (Lower) λENZ determined from ellipsometry as a function of thickness.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

  ε Ellipsometry Drude = 2 ε 0 ρ( τ E 2 +iE ) ,
μ =  τq m *  ,
N=   m * ρτ q 2  .
ρ =  R s  d,and N=   N s /d.
μ( d )= μ *  [ 1+  d * /( dδd ) ] 1  ,
ω p = N q 2 m * ε 0 ε   ,
Γ= τ 1 .
ε Drude = ε ( 1 ω p 2 ω 2 +iωΓ ).

Metrics