Abstract

A Murky Diffusion Shell (MDS) hyper-structure is proposed and realized with an experiment showing its invisibility and its transmission function in the electromagnetic frequency range. A predefined spatial distribution is found to possess a completely different property with its homogeneous constructing unit cell, proving structure plays a prominent role. Thus we define MDS, which is analogous to a cloud of electromagnetic smoke or fog, as a form of new concept, a hyper-structure. Proper probability density is found to generate wide band low reflectivity in mono-static and bi-static observation angles. The directional structure in MDS also generates transmission characteristics with polarization, frequency, and azimuth selectivity to enable possible information communication with the outside for inclusion. MDS could easily fit in an arbitrary 3D or 2D shell shape with a smooth surface or a discontinuous edge, and does not need a PEC lining. MDS shell is fabricated and the experiment measurements show monostatic scattering reduction reaches well below −10dB with a bandwidth ratio of 69.3% and a bi-static scattering reduction that reaches well below −10dB with a bandwidth ratio of 82.8% when the PEC disk object is wrapped by MDS, which complies with the simulation results.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Realization of low-scattering metamaterial shell based on cylindrical wave expanding theory

Xiaoyu Wu, Chenggang Hu, Min Wang, Mingbo Pu, and Xiangang Luo
Opt. Express 23(8) 10396-10404 (2015)

Superscatterer: Enhancement of scattering with complementary media

Tao Yang, Huanyang Chen, Xudong Luo, and Hongru Ma
Opt. Express 16(22) 18545-18550 (2008)

References

  • View by:
  • |
  • |
  • |

  1. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
    [Crossref]
  2. K. N. Rozanov, “Ultimate Thickness to Bandwidth Ratio of Radar Absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
    [Crossref]
  3. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37(11), 2133–2135 (2012).
    [Crossref] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  5. M. J. Chen, C. X. Wang, X. D. Cheng, C. C. Gong, W. L. Song, X. J. Yuan, and D. N. Fang, “Experimental Demonstration of Invisible Electromagnetic Impedance Matching Cylindrical Transformation Optics Cloak Shell,” J. Opt.in press., doi:.
    [Crossref]
  6. M. J. Chen, Y. M. Pei, and D. N. Fang, “An Improved Method of Designing Isotropic Multilayered Spherical Cloak for Electromagnetic Invisibility,” Chin. Phys. Lett. 27(3), 034102 (2010).
    [Crossref]
  7. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [Crossref]
  8. B. Vial, Y. Liu, S. A. R. Horsley, T. G. Philbin, and Y. Hao, “A class of invisible inhomogeneous media and the control of electromagnetic waves,” Phys. Rev. B 94(24), 245119 (2016).
    [Crossref]
  9. X. Wu, C. Hu, M. Wang, M. Pu, and X. Luo, “Realization of low-scattering metamaterial shell based on cylindrical wave expanding theory,” Opt. Express 23(8), 10396–10404 (2015).
    [Crossref] [PubMed]
  10. J. Z. Ji, K. F. Tong, H. Xue, and P. L. Huang, “Quadratic recursive convolution (QRC) in dispersive media simulation of finite-difference time-domain (FDTD),” Optik (Stuttg.) 138, 542–549 (2017).
    [Crossref]
  11. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and R. D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
    [Crossref]
  12. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  13. Y. B. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Isotropic Holographic Metasurfaces for Dual-Functional Radiations without Mutual Interferences,” Adv. Funct. Mater. 26(1), 29–35 (2016).
    [Crossref]
  14. B. A. Munk, Frequency Selective Surfaces: Theory and Design, Wiley (2000).
  15. X. J. Yuan and X. F. Yuan, “A Transmissive/Absorbing Radome with Double Absorbing Band,” Microw. Opt. Technol. Lett. 58(8), 2016–2019 (2016).
    [Crossref]
  16. K. Rong, C. Sun, K. Shi, Q. Gong, and J. J. Chen, “Room-Temperature Planar Lasers Based on Water-Dripping Microplates of Colloidal Quantum Dots,” ACS Photonics 4(7), 1776–1784 (2017).
    [Crossref]
  17. M. Jin and M. Bai, “On the Transmitted Beam Shift Through FSS Structure by Phase Analysis,” IEEE Antenn. Wirel. Pr. 13, 840–843 (2014).
    [Crossref]
  18. X. Yuan, H. Wang, and Q. Ouyang, “Evidence of negative-index refraction in nonlinear chemical waves,” Phys. Rev. Lett. 106(18), 188303 (2011).
    [Crossref] [PubMed]
  19. Y. Wang, C. Sun, Q. Gong, and J. Chen, “Coupled-resonator-induced plasmonic bandgaps,” Opt. Lett. 42(20), 4235–4238 (2017).
    [Crossref] [PubMed]
  20. M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
    [Crossref] [PubMed]
  21. R. Aylo, G. Nehmetallah, H. Li, and P. P. Banerjee, “Multilayer Periodic and Random Metamaterial Structures: Analysis and Applications,” IEEE Access 2, 437–450 (2014).
    [Crossref]
  22. J. P. Hao, E. Lheurette, L. Burgnies, E. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105(8), 081102 (2014).
    [Crossref]
  23. W. R. Zhu and X. P. Zhao, “Metamaterial absorber with random dendritic cells,” Eur. Phys. J. Appl. Phys. 50(2), 21101 (2010).
    [Crossref]
  24. J. P. Hao, R. Niemiec, L. Burgnies, E. Lheurette, and D. Lippens, “Broadband absorption through extended resonance modes in random metamaterials,” J. Appl. Phys. 119(19), 193104 (2016).
    [Crossref]
  25. R. Singh, X. C. Lu, J. Q. Gu, Z. Tian, and W. L. Zhang, “Random terahertz metamaterials,” J. Opt. 12(1), 015101 (2010).
    [Crossref]
  26. A. Andryieuski, A. V. Lavrinenko, M. Petrov, and S. A. Tretyakov, “Homogenization of metasurfaces formed by random resonant particles in periodical lattices,” Phys. Rev. B 93(20), 205127 (2016).
    [Crossref]
  27. A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Extension of the Multipole Approach to Random Metamaterials,” Adv. Optoelectron. 2012, 161402 (2012).
  28. J. Luo, Z. H. Hang, C. T. Chan, and Y. Lai, “Unusual percolation threshold of electromagnetic waves in double-zero medium embedded with random inclusions,” Laser Photonics Rev. 9, 523–529 (2015).
  29. H. Ma, B. Liang, S. Zhuang, J. Chen, Q. Jiang, and J. Ding, “Subwavelength imaging of a point source based on two-dimensional photonic crystals,” Opt. Lett. 41(16), 3833–3835 (2016).
    [Crossref] [PubMed]
  30. L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Design of a lightweight magnetic radar absorber embedded with resistive FSS,” IEEE Antenn. Wirel. Pr. 11, 675–677 (2012).
    [Crossref]
  31. R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Metamaterials. Invisibility cloaking in a diffusive light scattering medium,” Science 345(6195), 427–429 (2014).
    [Crossref] [PubMed]
  32. D. R. Smith, “A cloaking coating for murky media,” Science 345(6195), 384–385 (2014).
    [Crossref] [PubMed]
  33. M. Tanzid, N. J. Hogan, A. Sobhani, H. Robatjazi, A. K. Pediredla, A. Samaniego, A. Veeraraghavan, and N. J. Halas, “Absorption-induced image resolution enhancement in scattering media,” ACS Photonics 3(10), 1787–1793 (2016).
    [Crossref]

2017 (3)

J. Z. Ji, K. F. Tong, H. Xue, and P. L. Huang, “Quadratic recursive convolution (QRC) in dispersive media simulation of finite-difference time-domain (FDTD),” Optik (Stuttg.) 138, 542–549 (2017).
[Crossref]

Y. Wang, C. Sun, Q. Gong, and J. Chen, “Coupled-resonator-induced plasmonic bandgaps,” Opt. Lett. 42(20), 4235–4238 (2017).
[Crossref] [PubMed]

K. Rong, C. Sun, K. Shi, Q. Gong, and J. J. Chen, “Room-Temperature Planar Lasers Based on Water-Dripping Microplates of Colloidal Quantum Dots,” ACS Photonics 4(7), 1776–1784 (2017).
[Crossref]

2016 (7)

J. P. Hao, R. Niemiec, L. Burgnies, E. Lheurette, and D. Lippens, “Broadband absorption through extended resonance modes in random metamaterials,” J. Appl. Phys. 119(19), 193104 (2016).
[Crossref]

A. Andryieuski, A. V. Lavrinenko, M. Petrov, and S. A. Tretyakov, “Homogenization of metasurfaces formed by random resonant particles in periodical lattices,” Phys. Rev. B 93(20), 205127 (2016).
[Crossref]

H. Ma, B. Liang, S. Zhuang, J. Chen, Q. Jiang, and J. Ding, “Subwavelength imaging of a point source based on two-dimensional photonic crystals,” Opt. Lett. 41(16), 3833–3835 (2016).
[Crossref] [PubMed]

M. Tanzid, N. J. Hogan, A. Sobhani, H. Robatjazi, A. K. Pediredla, A. Samaniego, A. Veeraraghavan, and N. J. Halas, “Absorption-induced image resolution enhancement in scattering media,” ACS Photonics 3(10), 1787–1793 (2016).
[Crossref]

Y. B. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Isotropic Holographic Metasurfaces for Dual-Functional Radiations without Mutual Interferences,” Adv. Funct. Mater. 26(1), 29–35 (2016).
[Crossref]

X. J. Yuan and X. F. Yuan, “A Transmissive/Absorbing Radome with Double Absorbing Band,” Microw. Opt. Technol. Lett. 58(8), 2016–2019 (2016).
[Crossref]

B. Vial, Y. Liu, S. A. R. Horsley, T. G. Philbin, and Y. Hao, “A class of invisible inhomogeneous media and the control of electromagnetic waves,” Phys. Rev. B 94(24), 245119 (2016).
[Crossref]

2015 (3)

X. Wu, C. Hu, M. Wang, M. Pu, and X. Luo, “Realization of low-scattering metamaterial shell based on cylindrical wave expanding theory,” Opt. Express 23(8), 10396–10404 (2015).
[Crossref] [PubMed]

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

J. Luo, Z. H. Hang, C. T. Chan, and Y. Lai, “Unusual percolation threshold of electromagnetic waves in double-zero medium embedded with random inclusions,” Laser Photonics Rev. 9, 523–529 (2015).

2014 (6)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

M. Jin and M. Bai, “On the Transmitted Beam Shift Through FSS Structure by Phase Analysis,” IEEE Antenn. Wirel. Pr. 13, 840–843 (2014).
[Crossref]

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Metamaterials. Invisibility cloaking in a diffusive light scattering medium,” Science 345(6195), 427–429 (2014).
[Crossref] [PubMed]

D. R. Smith, “A cloaking coating for murky media,” Science 345(6195), 384–385 (2014).
[Crossref] [PubMed]

R. Aylo, G. Nehmetallah, H. Li, and P. P. Banerjee, “Multilayer Periodic and Random Metamaterial Structures: Analysis and Applications,” IEEE Access 2, 437–450 (2014).
[Crossref]

J. P. Hao, E. Lheurette, L. Burgnies, E. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105(8), 081102 (2014).
[Crossref]

2012 (4)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and R. D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37(11), 2133–2135 (2012).
[Crossref] [PubMed]

L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Design of a lightweight magnetic radar absorber embedded with resistive FSS,” IEEE Antenn. Wirel. Pr. 11, 675–677 (2012).
[Crossref]

A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Extension of the Multipole Approach to Random Metamaterials,” Adv. Optoelectron. 2012, 161402 (2012).

2011 (1)

X. Yuan, H. Wang, and Q. Ouyang, “Evidence of negative-index refraction in nonlinear chemical waves,” Phys. Rev. Lett. 106(18), 188303 (2011).
[Crossref] [PubMed]

2010 (4)

R. Singh, X. C. Lu, J. Q. Gu, Z. Tian, and W. L. Zhang, “Random terahertz metamaterials,” J. Opt. 12(1), 015101 (2010).
[Crossref]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

M. J. Chen, Y. M. Pei, and D. N. Fang, “An Improved Method of Designing Isotropic Multilayered Spherical Cloak for Electromagnetic Invisibility,” Chin. Phys. Lett. 27(3), 034102 (2010).
[Crossref]

W. R. Zhu and X. P. Zhao, “Metamaterial absorber with random dendritic cells,” Eur. Phys. J. Appl. Phys. 50(2), 21101 (2010).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2002 (1)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

2000 (1)

K. N. Rozanov, “Ultimate Thickness to Bandwidth Ratio of Radar Absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
[Crossref]

Andryieuski, A.

A. Andryieuski, A. V. Lavrinenko, M. Petrov, and S. A. Tretyakov, “Homogenization of metasurfaces formed by random resonant particles in periodical lattices,” Phys. Rev. B 93(20), 205127 (2016).
[Crossref]

Aylo, R.

R. Aylo, G. Nehmetallah, H. Li, and P. P. Banerjee, “Multilayer Periodic and Random Metamaterial Structures: Analysis and Applications,” IEEE Access 2, 437–450 (2014).
[Crossref]

Bai, M.

M. Jin and M. Bai, “On the Transmitted Beam Shift Through FSS Structure by Phase Analysis,” IEEE Antenn. Wirel. Pr. 13, 840–843 (2014).
[Crossref]

Banerjee, P. P.

R. Aylo, G. Nehmetallah, H. Li, and P. P. Banerjee, “Multilayer Periodic and Random Metamaterial Structures: Analysis and Applications,” IEEE Access 2, 437–450 (2014).
[Crossref]

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and R. D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Bückmann, T.

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Metamaterials. Invisibility cloaking in a diffusive light scattering medium,” Science 345(6195), 427–429 (2014).
[Crossref] [PubMed]

Burgnies, L.

J. P. Hao, R. Niemiec, L. Burgnies, E. Lheurette, and D. Lippens, “Broadband absorption through extended resonance modes in random metamaterials,” J. Appl. Phys. 119(19), 193104 (2016).
[Crossref]

J. P. Hao, E. Lheurette, L. Burgnies, E. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105(8), 081102 (2014).
[Crossref]

Cai, B. G.

Y. B. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Isotropic Holographic Metasurfaces for Dual-Functional Radiations without Mutual Interferences,” Adv. Funct. Mater. 26(1), 29–35 (2016).
[Crossref]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Chan, C. T.

J. Luo, Z. H. Hang, C. T. Chan, and Y. Lai, “Unusual percolation threshold of electromagnetic waves in double-zero medium embedded with random inclusions,” Laser Photonics Rev. 9, 523–529 (2015).

Chen, J.

Chen, J. J.

K. Rong, C. Sun, K. Shi, Q. Gong, and J. J. Chen, “Room-Temperature Planar Lasers Based on Water-Dripping Microplates of Colloidal Quantum Dots,” ACS Photonics 4(7), 1776–1784 (2017).
[Crossref]

Chen, M. J.

M. J. Chen, Y. M. Pei, and D. N. Fang, “An Improved Method of Designing Isotropic Multilayered Spherical Cloak for Electromagnetic Invisibility,” Chin. Phys. Lett. 27(3), 034102 (2010).
[Crossref]

M. J. Chen, C. X. Wang, X. D. Cheng, C. C. Gong, W. L. Song, X. J. Yuan, and D. N. Fang, “Experimental Demonstration of Invisible Electromagnetic Impedance Matching Cylindrical Transformation Optics Cloak Shell,” J. Opt.in press., doi:.
[Crossref]

Cheng, H. F.

L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Design of a lightweight magnetic radar absorber embedded with resistive FSS,” IEEE Antenn. Wirel. Pr. 11, 675–677 (2012).
[Crossref]

Cheng, Q.

Y. B. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Isotropic Holographic Metasurfaces for Dual-Functional Radiations without Mutual Interferences,” Adv. Funct. Mater. 26(1), 29–35 (2016).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Cheng, X. D.

M. J. Chen, C. X. Wang, X. D. Cheng, C. C. Gong, W. L. Song, X. J. Yuan, and D. N. Fang, “Experimental Demonstration of Invisible Electromagnetic Impedance Matching Cylindrical Transformation Optics Cloak Shell,” J. Opt.in press., doi:.
[Crossref]

Chipouline, A.

A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Extension of the Multipole Approach to Random Metamaterials,” Adv. Optoelectron. 2012, 161402 (2012).

Cui, T. J.

Y. B. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Isotropic Holographic Metasurfaces for Dual-Functional Radiations without Mutual Interferences,” Adv. Funct. Mater. 26(1), 29–35 (2016).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Ding, J.

Fang, D. N.

M. J. Chen, Y. M. Pei, and D. N. Fang, “An Improved Method of Designing Isotropic Multilayered Spherical Cloak for Electromagnetic Invisibility,” Chin. Phys. Lett. 27(3), 034102 (2010).
[Crossref]

M. J. Chen, C. X. Wang, X. D. Cheng, C. C. Gong, W. L. Song, X. J. Yuan, and D. N. Fang, “Experimental Demonstration of Invisible Electromagnetic Impedance Matching Cylindrical Transformation Optics Cloak Shell,” J. Opt.in press., doi:.
[Crossref]

Feng, Q.

Gong, C. C.

M. J. Chen, C. X. Wang, X. D. Cheng, C. C. Gong, W. L. Song, X. J. Yuan, and D. N. Fang, “Experimental Demonstration of Invisible Electromagnetic Impedance Matching Cylindrical Transformation Optics Cloak Shell,” J. Opt.in press., doi:.
[Crossref]

Gong, Q.

K. Rong, C. Sun, K. Shi, Q. Gong, and J. J. Chen, “Room-Temperature Planar Lasers Based on Water-Dripping Microplates of Colloidal Quantum Dots,” ACS Photonics 4(7), 1776–1784 (2017).
[Crossref]

Y. Wang, C. Sun, Q. Gong, and J. Chen, “Coupled-resonator-induced plasmonic bandgaps,” Opt. Lett. 42(20), 4235–4238 (2017).
[Crossref] [PubMed]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and R. D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Gu, J. Q.

R. Singh, X. C. Lu, J. Q. Gu, Z. Tian, and W. L. Zhang, “Random terahertz metamaterials,” J. Opt. 12(1), 015101 (2010).
[Crossref]

Halas, N. J.

M. Tanzid, N. J. Hogan, A. Sobhani, H. Robatjazi, A. K. Pediredla, A. Samaniego, A. Veeraraghavan, and N. J. Halas, “Absorption-induced image resolution enhancement in scattering media,” ACS Photonics 3(10), 1787–1793 (2016).
[Crossref]

Hang, Z. H.

J. Luo, Z. H. Hang, C. T. Chan, and Y. Lai, “Unusual percolation threshold of electromagnetic waves in double-zero medium embedded with random inclusions,” Laser Photonics Rev. 9, 523–529 (2015).

Hao, J. P.

J. P. Hao, R. Niemiec, L. Burgnies, E. Lheurette, and D. Lippens, “Broadband absorption through extended resonance modes in random metamaterials,” J. Appl. Phys. 119(19), 193104 (2016).
[Crossref]

J. P. Hao, E. Lheurette, L. Burgnies, E. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105(8), 081102 (2014).
[Crossref]

Hao, Y.

B. Vial, Y. Liu, S. A. R. Horsley, T. G. Philbin, and Y. Hao, “A class of invisible inhomogeneous media and the control of electromagnetic waves,” Phys. Rev. B 94(24), 245119 (2016).
[Crossref]

Hogan, N. J.

M. Tanzid, N. J. Hogan, A. Sobhani, H. Robatjazi, A. K. Pediredla, A. Samaniego, A. Veeraraghavan, and N. J. Halas, “Absorption-induced image resolution enhancement in scattering media,” ACS Photonics 3(10), 1787–1793 (2016).
[Crossref]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and R. D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Horsley, S. A. R.

B. Vial, Y. Liu, S. A. R. Horsley, T. G. Philbin, and Y. Hao, “A class of invisible inhomogeneous media and the control of electromagnetic waves,” Phys. Rev. B 94(24), 245119 (2016).
[Crossref]

Hu, C.

Huang, C.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

Huang, P. L.

J. Z. Ji, K. F. Tong, H. Xue, and P. L. Huang, “Quadratic recursive convolution (QRC) in dispersive media simulation of finite-difference time-domain (FDTD),” Optik (Stuttg.) 138, 542–549 (2017).
[Crossref]

Ji, J. Z.

J. Z. Ji, K. F. Tong, H. Xue, and P. L. Huang, “Quadratic recursive convolution (QRC) in dispersive media simulation of finite-difference time-domain (FDTD),” Optik (Stuttg.) 138, 542–549 (2017).
[Crossref]

Jiang, Q.

Jiang, W. X.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Jin, M.

M. Jin and M. Bai, “On the Transmitted Beam Shift Through FSS Structure by Phase Analysis,” IEEE Antenn. Wirel. Pr. 13, 840–843 (2014).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kadic, M.

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Metamaterials. Invisibility cloaking in a diffusive light scattering medium,” Science 345(6195), 427–429 (2014).
[Crossref] [PubMed]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and R. D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Lai, Y.

J. Luo, Z. H. Hang, C. T. Chan, and Y. Lai, “Unusual percolation threshold of electromagnetic waves in double-zero medium embedded with random inclusions,” Laser Photonics Rev. 9, 523–529 (2015).

Lavrinenko, A. V.

A. Andryieuski, A. V. Lavrinenko, M. Petrov, and S. A. Tretyakov, “Homogenization of metasurfaces formed by random resonant particles in periodical lattices,” Phys. Rev. B 93(20), 205127 (2016).
[Crossref]

Lheurette, E.

J. P. Hao, R. Niemiec, L. Burgnies, E. Lheurette, and D. Lippens, “Broadband absorption through extended resonance modes in random metamaterials,” J. Appl. Phys. 119(19), 193104 (2016).
[Crossref]

J. P. Hao, E. Lheurette, L. Burgnies, E. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105(8), 081102 (2014).
[Crossref]

Li, H.

R. Aylo, G. Nehmetallah, H. Li, and P. P. Banerjee, “Multilayer Periodic and Random Metamaterial Structures: Analysis and Applications,” IEEE Access 2, 437–450 (2014).
[Crossref]

Li, X.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

Li, Y. B.

Y. B. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Isotropic Holographic Metasurfaces for Dual-Functional Radiations without Mutual Interferences,” Adv. Funct. Mater. 26(1), 29–35 (2016).
[Crossref]

Liang, B.

Lippens, D.

J. P. Hao, R. Niemiec, L. Burgnies, E. Lheurette, and D. Lippens, “Broadband absorption through extended resonance modes in random metamaterials,” J. Appl. Phys. 119(19), 193104 (2016).
[Crossref]

J. P. Hao, E. Lheurette, L. Burgnies, E. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105(8), 081102 (2014).
[Crossref]

Liu, Y.

B. Vial, Y. Liu, S. A. R. Horsley, T. G. Philbin, and Y. Hao, “A class of invisible inhomogeneous media and the control of electromagnetic waves,” Phys. Rev. B 94(24), 245119 (2016).
[Crossref]

Lu, X. C.

R. Singh, X. C. Lu, J. Q. Gu, Z. Tian, and W. L. Zhang, “Random terahertz metamaterials,” J. Opt. 12(1), 015101 (2010).
[Crossref]

Luo, J.

J. Luo, Z. H. Hang, C. T. Chan, and Y. Lai, “Unusual percolation threshold of electromagnetic waves in double-zero medium embedded with random inclusions,” Laser Photonics Rev. 9, 523–529 (2015).

Luo, X.

Ma, H.

Ma, X.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Nehmetallah, G.

R. Aylo, G. Nehmetallah, H. Li, and P. P. Banerjee, “Multilayer Periodic and Random Metamaterial Structures: Analysis and Applications,” IEEE Access 2, 437–450 (2014).
[Crossref]

Niemiec, R.

J. P. Hao, R. Niemiec, L. Burgnies, E. Lheurette, and D. Lippens, “Broadband absorption through extended resonance modes in random metamaterials,” J. Appl. Phys. 119(19), 193104 (2016).
[Crossref]

O’Hara, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and R. D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Okada, E.

J. P. Hao, E. Lheurette, L. Burgnies, E. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105(8), 081102 (2014).
[Crossref]

Ouyang, Q.

X. Yuan, H. Wang, and Q. Ouyang, “Evidence of negative-index refraction in nonlinear chemical waves,” Phys. Rev. Lett. 106(18), 188303 (2011).
[Crossref] [PubMed]

Pediredla, A. K.

M. Tanzid, N. J. Hogan, A. Sobhani, H. Robatjazi, A. K. Pediredla, A. Samaniego, A. Veeraraghavan, and N. J. Halas, “Absorption-induced image resolution enhancement in scattering media,” ACS Photonics 3(10), 1787–1793 (2016).
[Crossref]

Pei, Y. M.

M. J. Chen, Y. M. Pei, and D. N. Fang, “An Improved Method of Designing Isotropic Multilayered Spherical Cloak for Electromagnetic Invisibility,” Chin. Phys. Lett. 27(3), 034102 (2010).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Pertsch, T.

A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Extension of the Multipole Approach to Random Metamaterials,” Adv. Optoelectron. 2012, 161402 (2012).

Petrov, M.

A. Andryieuski, A. V. Lavrinenko, M. Petrov, and S. A. Tretyakov, “Homogenization of metasurfaces formed by random resonant particles in periodical lattices,” Phys. Rev. B 93(20), 205127 (2016).
[Crossref]

Petschulat, J.

A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Extension of the Multipole Approach to Random Metamaterials,” Adv. Optoelectron. 2012, 161402 (2012).

Philbin, T. G.

B. Vial, Y. Liu, S. A. R. Horsley, T. G. Philbin, and Y. Hao, “A class of invisible inhomogeneous media and the control of electromagnetic waves,” Phys. Rev. B 94(24), 245119 (2016).
[Crossref]

Pu, M.

Qi, M. Q.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Robatjazi, H.

M. Tanzid, N. J. Hogan, A. Sobhani, H. Robatjazi, A. K. Pediredla, A. Samaniego, A. Veeraraghavan, and N. J. Halas, “Absorption-induced image resolution enhancement in scattering media,” ACS Photonics 3(10), 1787–1793 (2016).
[Crossref]

Rong, K.

K. Rong, C. Sun, K. Shi, Q. Gong, and J. J. Chen, “Room-Temperature Planar Lasers Based on Water-Dripping Microplates of Colloidal Quantum Dots,” ACS Photonics 4(7), 1776–1784 (2017).
[Crossref]

Rozanov, K. N.

K. N. Rozanov, “Ultimate Thickness to Bandwidth Ratio of Radar Absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
[Crossref]

Samaniego, A.

M. Tanzid, N. J. Hogan, A. Sobhani, H. Robatjazi, A. K. Pediredla, A. Samaniego, A. Veeraraghavan, and N. J. Halas, “Absorption-induced image resolution enhancement in scattering media,” ACS Photonics 3(10), 1787–1793 (2016).
[Crossref]

Schittny, R.

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Metamaterials. Invisibility cloaking in a diffusive light scattering medium,” Science 345(6195), 427–429 (2014).
[Crossref] [PubMed]

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shi, K.

K. Rong, C. Sun, K. Shi, Q. Gong, and J. J. Chen, “Room-Temperature Planar Lasers Based on Water-Dripping Microplates of Colloidal Quantum Dots,” ACS Photonics 4(7), 1776–1784 (2017).
[Crossref]

Singh, R.

R. Singh, X. C. Lu, J. Q. Gu, Z. Tian, and W. L. Zhang, “Random terahertz metamaterials,” J. Opt. 12(1), 015101 (2010).
[Crossref]

Smith, D. R.

D. R. Smith, “A cloaking coating for murky media,” Science 345(6195), 384–385 (2014).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Smith, R. D.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and R. D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Sobhani, A.

M. Tanzid, N. J. Hogan, A. Sobhani, H. Robatjazi, A. K. Pediredla, A. Samaniego, A. Veeraraghavan, and N. J. Halas, “Absorption-induced image resolution enhancement in scattering media,” ACS Photonics 3(10), 1787–1793 (2016).
[Crossref]

Song, W. L.

M. J. Chen, C. X. Wang, X. D. Cheng, C. C. Gong, W. L. Song, X. J. Yuan, and D. N. Fang, “Experimental Demonstration of Invisible Electromagnetic Impedance Matching Cylindrical Transformation Optics Cloak Shell,” J. Opt.in press., doi:.
[Crossref]

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sugavanam, S.

A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Extension of the Multipole Approach to Random Metamaterials,” Adv. Optoelectron. 2012, 161402 (2012).

Sun, C.

K. Rong, C. Sun, K. Shi, Q. Gong, and J. J. Chen, “Room-Temperature Planar Lasers Based on Water-Dripping Microplates of Colloidal Quantum Dots,” ACS Photonics 4(7), 1776–1784 (2017).
[Crossref]

Y. Wang, C. Sun, Q. Gong, and J. Chen, “Coupled-resonator-induced plasmonic bandgaps,” Opt. Lett. 42(20), 4235–4238 (2017).
[Crossref] [PubMed]

Sun, L. K.

L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Design of a lightweight magnetic radar absorber embedded with resistive FSS,” IEEE Antenn. Wirel. Pr. 11, 675–677 (2012).
[Crossref]

Tanzid, M.

M. Tanzid, N. J. Hogan, A. Sobhani, H. Robatjazi, A. K. Pediredla, A. Samaniego, A. Veeraraghavan, and N. J. Halas, “Absorption-induced image resolution enhancement in scattering media,” ACS Photonics 3(10), 1787–1793 (2016).
[Crossref]

Tian, Z.

R. Singh, X. C. Lu, J. Q. Gu, Z. Tian, and W. L. Zhang, “Random terahertz metamaterials,” J. Opt. 12(1), 015101 (2010).
[Crossref]

Tong, K. F.

J. Z. Ji, K. F. Tong, H. Xue, and P. L. Huang, “Quadratic recursive convolution (QRC) in dispersive media simulation of finite-difference time-domain (FDTD),” Optik (Stuttg.) 138, 542–549 (2017).
[Crossref]

Tretyakov, S. A.

A. Andryieuski, A. V. Lavrinenko, M. Petrov, and S. A. Tretyakov, “Homogenization of metasurfaces formed by random resonant particles in periodical lattices,” Phys. Rev. B 93(20), 205127 (2016).
[Crossref]

Veeraraghavan, A.

M. Tanzid, N. J. Hogan, A. Sobhani, H. Robatjazi, A. K. Pediredla, A. Samaniego, A. Veeraraghavan, and N. J. Halas, “Absorption-induced image resolution enhancement in scattering media,” ACS Photonics 3(10), 1787–1793 (2016).
[Crossref]

Vial, B.

B. Vial, Y. Liu, S. A. R. Horsley, T. G. Philbin, and Y. Hao, “A class of invisible inhomogeneous media and the control of electromagnetic waves,” Phys. Rev. B 94(24), 245119 (2016).
[Crossref]

Wan, X.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Wang, C.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

Wang, C. X.

M. J. Chen, C. X. Wang, X. D. Cheng, C. C. Gong, W. L. Song, X. J. Yuan, and D. N. Fang, “Experimental Demonstration of Invisible Electromagnetic Impedance Matching Cylindrical Transformation Optics Cloak Shell,” J. Opt.in press., doi:.
[Crossref]

Wang, H.

X. Yuan, H. Wang, and Q. Ouyang, “Evidence of negative-index refraction in nonlinear chemical waves,” Phys. Rev. Lett. 106(18), 188303 (2011).
[Crossref] [PubMed]

Wang, J.

L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Design of a lightweight magnetic radar absorber embedded with resistive FSS,” IEEE Antenn. Wirel. Pr. 11, 675–677 (2012).
[Crossref]

Wang, M.

Wang, Y.

Y. Wang, C. Sun, Q. Gong, and J. Chen, “Coupled-resonator-induced plasmonic bandgaps,” Opt. Lett. 42(20), 4235–4238 (2017).
[Crossref] [PubMed]

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

Wegener, M.

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Metamaterials. Invisibility cloaking in a diffusive light scattering medium,” Science 345(6195), 427–429 (2014).
[Crossref] [PubMed]

Wu, X.

Xue, H.

J. Z. Ji, K. F. Tong, H. Xue, and P. L. Huang, “Quadratic recursive convolution (QRC) in dispersive media simulation of finite-difference time-domain (FDTD),” Optik (Stuttg.) 138, 542–549 (2017).
[Crossref]

Yuan, X.

X. Yuan, H. Wang, and Q. Ouyang, “Evidence of negative-index refraction in nonlinear chemical waves,” Phys. Rev. Lett. 106(18), 188303 (2011).
[Crossref] [PubMed]

Yuan, X. F.

X. J. Yuan and X. F. Yuan, “A Transmissive/Absorbing Radome with Double Absorbing Band,” Microw. Opt. Technol. Lett. 58(8), 2016–2019 (2016).
[Crossref]

Yuan, X. J.

X. J. Yuan and X. F. Yuan, “A Transmissive/Absorbing Radome with Double Absorbing Band,” Microw. Opt. Technol. Lett. 58(8), 2016–2019 (2016).
[Crossref]

M. J. Chen, C. X. Wang, X. D. Cheng, C. C. Gong, W. L. Song, X. J. Yuan, and D. N. Fang, “Experimental Demonstration of Invisible Electromagnetic Impedance Matching Cylindrical Transformation Optics Cloak Shell,” J. Opt.in press., doi:.
[Crossref]

Zhang, W. L.

R. Singh, X. C. Lu, J. Q. Gu, Z. Tian, and W. L. Zhang, “Random terahertz metamaterials,” J. Opt. 12(1), 015101 (2010).
[Crossref]

Zhao, J.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Zhao, X. P.

W. R. Zhu and X. P. Zhao, “Metamaterial absorber with random dendritic cells,” Eur. Phys. J. Appl. Phys. 50(2), 21101 (2010).
[Crossref]

Zhao, Z.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

Zhou, Y. J.

L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Design of a lightweight magnetic radar absorber embedded with resistive FSS,” IEEE Antenn. Wirel. Pr. 11, 675–677 (2012).
[Crossref]

Zhu, W. R.

W. R. Zhu and X. P. Zhao, “Metamaterial absorber with random dendritic cells,” Eur. Phys. J. Appl. Phys. 50(2), 21101 (2010).
[Crossref]

Zhuang, S.

ACS Photonics (2)

K. Rong, C. Sun, K. Shi, Q. Gong, and J. J. Chen, “Room-Temperature Planar Lasers Based on Water-Dripping Microplates of Colloidal Quantum Dots,” ACS Photonics 4(7), 1776–1784 (2017).
[Crossref]

M. Tanzid, N. J. Hogan, A. Sobhani, H. Robatjazi, A. K. Pediredla, A. Samaniego, A. Veeraraghavan, and N. J. Halas, “Absorption-induced image resolution enhancement in scattering media,” ACS Photonics 3(10), 1787–1793 (2016).
[Crossref]

Adv. Funct. Mater. (1)

Y. B. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Isotropic Holographic Metasurfaces for Dual-Functional Radiations without Mutual Interferences,” Adv. Funct. Mater. 26(1), 29–35 (2016).
[Crossref]

Adv. Optoelectron. (1)

A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Extension of the Multipole Approach to Random Metamaterials,” Adv. Optoelectron. 2012, 161402 (2012).

Appl. Phys. Lett. (1)

J. P. Hao, E. Lheurette, L. Burgnies, E. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105(8), 081102 (2014).
[Crossref]

Chin. Phys. Lett. (1)

M. J. Chen, Y. M. Pei, and D. N. Fang, “An Improved Method of Designing Isotropic Multilayered Spherical Cloak for Electromagnetic Invisibility,” Chin. Phys. Lett. 27(3), 034102 (2010).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

W. R. Zhu and X. P. Zhao, “Metamaterial absorber with random dendritic cells,” Eur. Phys. J. Appl. Phys. 50(2), 21101 (2010).
[Crossref]

IEEE Access (1)

R. Aylo, G. Nehmetallah, H. Li, and P. P. Banerjee, “Multilayer Periodic and Random Metamaterial Structures: Analysis and Applications,” IEEE Access 2, 437–450 (2014).
[Crossref]

IEEE Antenn. Wirel. Pr. (2)

L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Design of a lightweight magnetic radar absorber embedded with resistive FSS,” IEEE Antenn. Wirel. Pr. 11, 675–677 (2012).
[Crossref]

M. Jin and M. Bai, “On the Transmitted Beam Shift Through FSS Structure by Phase Analysis,” IEEE Antenn. Wirel. Pr. 13, 840–843 (2014).
[Crossref]

IEEE Antennas Propag. Mag. (1)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and R. D. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

K. N. Rozanov, “Ultimate Thickness to Bandwidth Ratio of Radar Absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
[Crossref]

J. Appl. Phys. (1)

J. P. Hao, R. Niemiec, L. Burgnies, E. Lheurette, and D. Lippens, “Broadband absorption through extended resonance modes in random metamaterials,” J. Appl. Phys. 119(19), 193104 (2016).
[Crossref]

J. Opt. (1)

R. Singh, X. C. Lu, J. Q. Gu, Z. Tian, and W. L. Zhang, “Random terahertz metamaterials,” J. Opt. 12(1), 015101 (2010).
[Crossref]

Laser Photonics Rev. (1)

J. Luo, Z. H. Hang, C. T. Chan, and Y. Lai, “Unusual percolation threshold of electromagnetic waves in double-zero medium embedded with random inclusions,” Laser Photonics Rev. 9, 523–529 (2015).

Light Sci. Appl. (1)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Microw. Opt. Technol. Lett. (1)

X. J. Yuan and X. F. Yuan, “A Transmissive/Absorbing Radome with Double Absorbing Band,” Microw. Opt. Technol. Lett. 58(8), 2016–2019 (2016).
[Crossref]

New J. Phys. (1)

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Optik (Stuttg.) (1)

J. Z. Ji, K. F. Tong, H. Xue, and P. L. Huang, “Quadratic recursive convolution (QRC) in dispersive media simulation of finite-difference time-domain (FDTD),” Optik (Stuttg.) 138, 542–549 (2017).
[Crossref]

Phys. Rev. B (3)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

B. Vial, Y. Liu, S. A. R. Horsley, T. G. Philbin, and Y. Hao, “A class of invisible inhomogeneous media and the control of electromagnetic waves,” Phys. Rev. B 94(24), 245119 (2016).
[Crossref]

A. Andryieuski, A. V. Lavrinenko, M. Petrov, and S. A. Tretyakov, “Homogenization of metasurfaces formed by random resonant particles in periodical lattices,” Phys. Rev. B 93(20), 205127 (2016).
[Crossref]

Phys. Rev. Lett. (1)

X. Yuan, H. Wang, and Q. Ouyang, “Evidence of negative-index refraction in nonlinear chemical waves,” Phys. Rev. Lett. 106(18), 188303 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

Science (3)

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Metamaterials. Invisibility cloaking in a diffusive light scattering medium,” Science 345(6195), 427–429 (2014).
[Crossref] [PubMed]

D. R. Smith, “A cloaking coating for murky media,” Science 345(6195), 384–385 (2014).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Other (2)

M. J. Chen, C. X. Wang, X. D. Cheng, C. C. Gong, W. L. Song, X. J. Yuan, and D. N. Fang, “Experimental Demonstration of Invisible Electromagnetic Impedance Matching Cylindrical Transformation Optics Cloak Shell,” J. Opt.in press., doi:.
[Crossref]

B. A. Munk, Frequency Selective Surfaces: Theory and Design, Wiley (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Invisibility and transparency in light scattering medium. (a) opaque cloud which could hide object inside; (b) seemingly transparent cloud.
Fig. 2
Fig. 2 Reflection coefficient comparison of different subwavelength unit used as cell blocks of diffusive metamaterial in TE polarization wave illumination: (a), incidence on facial direction; (b), incidence on side direction; (c), periodic BGR array sample picture corresponding to reflectivity indicated by purple dash-dotted line in (a).
Fig. 3
Fig. 3 S-parameter of different unit densities array shows formation prerequisite of murky media indicating by Eq. (1).
Fig. 4
Fig. 4 Overall cell unit configuration of murky diffusion shell (MDS). Upper row: design illustration; Lower row: fabricated sample. (a) BGR unit; (b) PCB with random BGR unit position; (c) PCB with spacer layer; (d) spherical shell.
Fig. 5
Fig. 5 MDS momostatic scattering reduction in TE and TM polarizations.
Fig. 6
Fig. 6 Bi-static scattering of MDS in TE and TM polarizations.
Fig. 7
Fig. 7 Transmission coefficients of MDS in TE and TM polarizations with inclusion ball, empty MDS and sole inclusion.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ unit ~0.1 p average ~3.162 d unit

Metrics