Abstract

The effects of Bi in InP1-xBix ternary semiconductor alloys are studied based on first-principles. The mBJLDA potential is used to obtain accurate band structures. The band gap is modified mainly by the large Bi atom-induced strain at high concentration. The incorporation of Bi mainly perturbs the valence bands due to the interaction of Bi impurity states with heavy/light hole bands and spin-orbit split off bands. Several different Bi complexes including [100] chain, [111] chain, clustered and SQS in a 128-atom supercell are considered. For random Bi distribution at high concentration, the resulting band structures can be understood together as a work of all Bi complexes arrangements. Measuring band gap narrowing mechanism dependent on configurations as a function of Bi composition can potentially help to distinguish the types of Bi arrangement distributions in samples as well as to promote the applications in mid-infrared regime.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electronic and optical properties of quaternary alloy GaAsBiN lattice-matched to GaAs

Ming Su, Chong Li, Pengfei Yuan, Fengfei Rao, Yu Jia, and Fei Wang
Opt. Express 22(25) 30633-30640 (2014)

First principles study of Bismuth alloying effects in GaAs saturable absorber

Dechun Li, Ming Yang, Shengzhi Zhao, Yongqing Cai, and Yuanping Feng
Opt. Express 20(10) 11574-11580 (2012)

Optical properties of (Bi1-xInx)2Se3 thin films

Y. Wang and S. Law
Opt. Mater. Express 8(9) 2570-2578 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Ahola-Tuomi, P. Laukkanen, M. P. J. Punkkinen, R. E. Perälä, I. J. Väyrynen, M. Kuzmin, K. Schulte, and M. Pessa, “Formation of an ordered pattern of Bi nanolines on InAs (100) by self-assembly,” Appl. Phys. Lett. 92(1), 011926 (2008).
  2. P. Laukkanen, J. Pakarinen, M. Ahola-Tuomi, M. Kuzmin, R. E. Perälä, and M. Pessa, “Structural and electronic properties of Bi-adsorbate-stabilized reconstructions on the InP(100) and GaAsxN1-x (100) surfaces,” Phys. Rev. B 74(15), 155302 (2006).
  3. S. J. Sweeney and S. R. Jin, “Bismide-nitride alloys: Promising for efficient light emitting devices in the near and mid-infrared,” J. Appl. Phys. 113(4), 043110 (2013).
  4. X. F. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Y. Zhang, “Composition dependence of photoluminescence of GaAs1-xBix alloys,” Appl. Phys. Lett. 95(4), 041903 (2009).
  5. X. Ma, D. Li, S. Zhao, G. Li, and K. Yang, “The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study,” Nanoscale Res. Lett. 9(1), 580 (2014).
  6. V. Virkkala, V. Havu, F. Tuomisto, and M. J. Puska, “Hybrid functional study of band structures of GaAs1-xNx and GaSb1-xNx alloys,” Phys. Rev. B 85(8), 085134 (2012).
  7. V. Virkkala, V. Havu, F. Tuomisto, and M. J. Puska, “Origin of band gap bowing in dilute GaAs1-xNx and GaP1-xNx alloys: A real-space view,” Phys. Rev. B 88(3), 035204 (2013).
  8. D. G. Cooke, E. C. Young, F. A. Hegmann, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89(12), 122103 (2006).
  9. S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1-xBix, 0<x<3.6%,” Appl. Phys. Lett. 82(22), 3874–3876 (2003).
  10. B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant Spin-Orbit Bowing in GaAs1-xBix.,” Phys. Rev. Lett. 97(6), 067205 (2006).
  11. L. C. Bannow, O. Rubel, S. C. Badescu, P. Rosenow, J. Hader, J. V. Moloney, R. Tonner, and S. W. Koch, “Configuration dependence of band-gap narrowing and localization in dilute GaAs1-xBix alloys,” Phys. Rev. B 93(20), 205202 (2016).
  12. Y. Gu, K. Wang, H. Zhou, Y. Li, C. Cao, L. Zhang, Y. Zhang, Q. Gong, and S. Wang, “Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy,” Nanoscale Res. Lett. 9(1), 24 (2014).
  13. M. A. Berding, A. Sher, A. Chen, and W. E. Miller, “Structural properties of bismuth-bearing semiconductor alloys,” J. Appl. Phys. 63(1), 107–115 (1988).
  14. K. Wang, Y. Gu, H. F. Zhou, L. Y. Zhang, C. Z. Kang, M. J. Wu, W. W. Pan, P. F. Lu, Q. Gong, and S. M. Wang, “InPBi Single Crystals Grown by Molecular Beam Epitaxy,” Sci. Rep. 4(1), 5449 (2015).
  15. S. Wang, K. Wang, and Y. Gu, “Novel dilute InPBi for IR emitters,” 16th ICTON, JUL 06–10 (2014).
  16. P. J. Dean, A. M. White, E. W. Williams, and M. G. Astles, “The isoelectronic trap bismuth in indium phosphide,” Solid State Commun. 9(18), 1555–1558 (1971).
  17. W. Ruhle, W. Schmid, R. Meck, N. Stath, J. U. Fischbach, I. Strottner, K. W. Benz, and M. Pilkuhn, “Isoelectronic impurity states in direct-gap III-V compounds: the case of InP:Bi,” Phys. Rev. B 18(12), 7022–7032 (1978).
  18. T. D. Das, “The effect of Bi composition on the properties of InP1-xBix grown by liquid phase epitaxy,” J. Appl. Phys. 115(17), 173107 (2014).
  19. X. Y. Wu, K. Wang, W. W. Pan, P. Wang, Y. Y. Li, Y. X. Song, Y. Gu, L. Yue, and S. M. Wang, “Effect of rapid thermal annealing on InP1-xBix grown by molecular beam epitaxy,” Semicond. Sci. Technol. 30(9), 094014 (2015).
  20. X. R. Chen, X. Y. Wu, L. Yue, L. Q. Zhu, W. W. Pan, Z. Qi, S. M. Wang, and J. Shao, “Negative thermal quenching of below-bandgap photoluminescence in InPBi,” Appl. Phys. Lett. 110(5), 051903 (2017).
  21. X. L. Zhang, P. F. Lu, L. H. Han, Z. Y. Yu, J. Chen, and S. M. Wang, “Structural and electronic properties of InPBi alloys,” Mod. Phys. Lett. B 28(17), 1450140 (2014).
  22. L. Y. Wu, P. F. Lu, C. H. Yang, D. Liang, C. F. Zhang, and S. M. Wang, “The effect of BiIn hetero-antisite defects in In1-xPBix,” J. Alloys Compd. 674, 21–25 (2016).
  23. S. A. Khan, S. Azam, and O. Sipr, “Interrelationship between structural, optical and transport properties of InP1-xBix: DFT approach,” Sci. Semi. Proce. 41, 45–53 (2016).
  24. G. Ciatto, E. C. Young, F. Glas, J. Chen, R. Alonso Mori, and T. Tiedje, “Spatial correlation between Bi atoms in dilute GaAs1-xBix: From random distribution to Bi pairing and clustering,” Phys. Rev. B 78(3), 035325 (2008).
  25. W. Kohn and L. J. Sham, “Self-Consitent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
  26. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
  27. G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
  28. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
  29. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
  30. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
  31. F. Tran and P. Blaha, “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential,” Phys. Rev. Lett. 102(22), 226401 (2009).
  32. A. Zunger, S. Wei, L. G. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Phys. Rev. Lett. 65(3), 353–356 (1990).
  33. A. V. D. Walle, P. Tiwary, M. D. Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen, and Z. K. Liu, “Efficient stochastic generation of special quasirandom structures,” Calphad 42(46), 13–18 (2013).
  34. A. V. D. Walle, M. Asta, and G. Ceder, “The alloy theoretic automated toolkit: A user guide,” Calphad 26(4), 539–553 (2002).
  35. A. van de Walle, “Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit,” Calphad 33(2), 266–278 (2009).
  36. Y. Zhao and D. G. Truhlar, “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements,” Theor. Chem. Acc. 120(1–3), 215–241 (2008).
  37. B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, “Covalent radii revisited,” Dalton. T. 21(21), 2832–2838 (2008).
  38. D. D. Nolte, W. Walukiewicz, and E. E. Haller, “Band-edge hydrostatic deformation potentials in III-V semiconductors,” Phys. Rev. Lett. 59(4), 501–504 (1987).
  39. J. Kopaczek, R. Kudrawiec, M. P. Polak, P. Scharoch, M. Birkett, T. D. Veal, K. Wang, Y. Gu, Q. Gong, and S. Wang, “Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x≤0.034,” Appl. Phys. Lett. 105(22), 222104 (2014).
  40. M. P. Polak, P. Scharoch, and R. Kudrawiec, “First-principles calculations of bismuth induced changes in the band structure of dilute Ga-V-Bi and In-V-Bi alloys: chemical trends versus experimental data,” Semi. Sci. Tech. 30(9), 094001 (2015).
  41. D. P. Samajdar and S. Dhar, “Influence of Bi-related impurity states on the bandgap and spin-orbit splitting energy of dilute III-V-Bi alloys: InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix,” Superlattices Microstruct. 89, 112–119 (2016).
  42. A. Zunger, S. Wei, L. G. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Phys. Rev. Lett. 65(3), 353–356 (1990).

2017 (1)

X. R. Chen, X. Y. Wu, L. Yue, L. Q. Zhu, W. W. Pan, Z. Qi, S. M. Wang, and J. Shao, “Negative thermal quenching of below-bandgap photoluminescence in InPBi,” Appl. Phys. Lett. 110(5), 051903 (2017).

2016 (4)

L. Y. Wu, P. F. Lu, C. H. Yang, D. Liang, C. F. Zhang, and S. M. Wang, “The effect of BiIn hetero-antisite defects in In1-xPBix,” J. Alloys Compd. 674, 21–25 (2016).

S. A. Khan, S. Azam, and O. Sipr, “Interrelationship between structural, optical and transport properties of InP1-xBix: DFT approach,” Sci. Semi. Proce. 41, 45–53 (2016).

L. C. Bannow, O. Rubel, S. C. Badescu, P. Rosenow, J. Hader, J. V. Moloney, R. Tonner, and S. W. Koch, “Configuration dependence of band-gap narrowing and localization in dilute GaAs1-xBix alloys,” Phys. Rev. B 93(20), 205202 (2016).

D. P. Samajdar and S. Dhar, “Influence of Bi-related impurity states on the bandgap and spin-orbit splitting energy of dilute III-V-Bi alloys: InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix,” Superlattices Microstruct. 89, 112–119 (2016).

2015 (3)

M. P. Polak, P. Scharoch, and R. Kudrawiec, “First-principles calculations of bismuth induced changes in the band structure of dilute Ga-V-Bi and In-V-Bi alloys: chemical trends versus experimental data,” Semi. Sci. Tech. 30(9), 094001 (2015).

K. Wang, Y. Gu, H. F. Zhou, L. Y. Zhang, C. Z. Kang, M. J. Wu, W. W. Pan, P. F. Lu, Q. Gong, and S. M. Wang, “InPBi Single Crystals Grown by Molecular Beam Epitaxy,” Sci. Rep. 4(1), 5449 (2015).

X. Y. Wu, K. Wang, W. W. Pan, P. Wang, Y. Y. Li, Y. X. Song, Y. Gu, L. Yue, and S. M. Wang, “Effect of rapid thermal annealing on InP1-xBix grown by molecular beam epitaxy,” Semicond. Sci. Technol. 30(9), 094014 (2015).

2014 (5)

T. D. Das, “The effect of Bi composition on the properties of InP1-xBix grown by liquid phase epitaxy,” J. Appl. Phys. 115(17), 173107 (2014).

Y. Gu, K. Wang, H. Zhou, Y. Li, C. Cao, L. Zhang, Y. Zhang, Q. Gong, and S. Wang, “Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy,” Nanoscale Res. Lett. 9(1), 24 (2014).

X. Ma, D. Li, S. Zhao, G. Li, and K. Yang, “The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study,” Nanoscale Res. Lett. 9(1), 580 (2014).

X. L. Zhang, P. F. Lu, L. H. Han, Z. Y. Yu, J. Chen, and S. M. Wang, “Structural and electronic properties of InPBi alloys,” Mod. Phys. Lett. B 28(17), 1450140 (2014).

J. Kopaczek, R. Kudrawiec, M. P. Polak, P. Scharoch, M. Birkett, T. D. Veal, K. Wang, Y. Gu, Q. Gong, and S. Wang, “Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x≤0.034,” Appl. Phys. Lett. 105(22), 222104 (2014).

2013 (3)

A. V. D. Walle, P. Tiwary, M. D. Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen, and Z. K. Liu, “Efficient stochastic generation of special quasirandom structures,” Calphad 42(46), 13–18 (2013).

V. Virkkala, V. Havu, F. Tuomisto, and M. J. Puska, “Origin of band gap bowing in dilute GaAs1-xNx and GaP1-xNx alloys: A real-space view,” Phys. Rev. B 88(3), 035204 (2013).

S. J. Sweeney and S. R. Jin, “Bismide-nitride alloys: Promising for efficient light emitting devices in the near and mid-infrared,” J. Appl. Phys. 113(4), 043110 (2013).

2012 (1)

V. Virkkala, V. Havu, F. Tuomisto, and M. J. Puska, “Hybrid functional study of band structures of GaAs1-xNx and GaSb1-xNx alloys,” Phys. Rev. B 85(8), 085134 (2012).

2009 (3)

X. F. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Y. Zhang, “Composition dependence of photoluminescence of GaAs1-xBix alloys,” Appl. Phys. Lett. 95(4), 041903 (2009).

F. Tran and P. Blaha, “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential,” Phys. Rev. Lett. 102(22), 226401 (2009).

A. van de Walle, “Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit,” Calphad 33(2), 266–278 (2009).

2008 (4)

Y. Zhao and D. G. Truhlar, “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements,” Theor. Chem. Acc. 120(1–3), 215–241 (2008).

B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, “Covalent radii revisited,” Dalton. T. 21(21), 2832–2838 (2008).

G. Ciatto, E. C. Young, F. Glas, J. Chen, R. Alonso Mori, and T. Tiedje, “Spatial correlation between Bi atoms in dilute GaAs1-xBix: From random distribution to Bi pairing and clustering,” Phys. Rev. B 78(3), 035325 (2008).

M. Ahola-Tuomi, P. Laukkanen, M. P. J. Punkkinen, R. E. Perälä, I. J. Väyrynen, M. Kuzmin, K. Schulte, and M. Pessa, “Formation of an ordered pattern of Bi nanolines on InAs (100) by self-assembly,” Appl. Phys. Lett. 92(1), 011926 (2008).

2006 (3)

P. Laukkanen, J. Pakarinen, M. Ahola-Tuomi, M. Kuzmin, R. E. Perälä, and M. Pessa, “Structural and electronic properties of Bi-adsorbate-stabilized reconstructions on the InP(100) and GaAsxN1-x (100) surfaces,” Phys. Rev. B 74(15), 155302 (2006).

D. G. Cooke, E. C. Young, F. A. Hegmann, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89(12), 122103 (2006).

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant Spin-Orbit Bowing in GaAs1-xBix.,” Phys. Rev. Lett. 97(6), 067205 (2006).

2003 (1)

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1-xBix, 0<x<3.6%,” Appl. Phys. Lett. 82(22), 3874–3876 (2003).

2002 (1)

A. V. D. Walle, M. Asta, and G. Ceder, “The alloy theoretic automated toolkit: A user guide,” Calphad 26(4), 539–553 (2002).

1999 (1)

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).

1996 (3)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).

1994 (1)

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).

1990 (2)

A. Zunger, S. Wei, L. G. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Phys. Rev. Lett. 65(3), 353–356 (1990).

A. Zunger, S. Wei, L. G. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Phys. Rev. Lett. 65(3), 353–356 (1990).

1988 (1)

M. A. Berding, A. Sher, A. Chen, and W. E. Miller, “Structural properties of bismuth-bearing semiconductor alloys,” J. Appl. Phys. 63(1), 107–115 (1988).

1987 (1)

D. D. Nolte, W. Walukiewicz, and E. E. Haller, “Band-edge hydrostatic deformation potentials in III-V semiconductors,” Phys. Rev. Lett. 59(4), 501–504 (1987).

1978 (1)

W. Ruhle, W. Schmid, R. Meck, N. Stath, J. U. Fischbach, I. Strottner, K. W. Benz, and M. Pilkuhn, “Isoelectronic impurity states in direct-gap III-V compounds: the case of InP:Bi,” Phys. Rev. B 18(12), 7022–7032 (1978).

1971 (1)

P. J. Dean, A. M. White, E. W. Williams, and M. G. Astles, “The isoelectronic trap bismuth in indium phosphide,” Solid State Commun. 9(18), 1555–1558 (1971).

1965 (1)

W. Kohn and L. J. Sham, “Self-Consitent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).

Adamcyk, M.

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1-xBix, 0<x<3.6%,” Appl. Phys. Lett. 82(22), 3874–3876 (2003).

Ahola-Tuomi, M.

M. Ahola-Tuomi, P. Laukkanen, M. P. J. Punkkinen, R. E. Perälä, I. J. Väyrynen, M. Kuzmin, K. Schulte, and M. Pessa, “Formation of an ordered pattern of Bi nanolines on InAs (100) by self-assembly,” Appl. Phys. Lett. 92(1), 011926 (2008).

P. Laukkanen, J. Pakarinen, M. Ahola-Tuomi, M. Kuzmin, R. E. Perälä, and M. Pessa, “Structural and electronic properties of Bi-adsorbate-stabilized reconstructions on the InP(100) and GaAsxN1-x (100) surfaces,” Phys. Rev. B 74(15), 155302 (2006).

Alonso Mori, R.

G. Ciatto, E. C. Young, F. Glas, J. Chen, R. Alonso Mori, and T. Tiedje, “Spatial correlation between Bi atoms in dilute GaAs1-xBix: From random distribution to Bi pairing and clustering,” Phys. Rev. B 78(3), 035325 (2008).

Alvarez, S.

B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, “Covalent radii revisited,” Dalton. T. 21(21), 2832–2838 (2008).

Asta, M.

A. V. D. Walle, P. Tiwary, M. D. Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen, and Z. K. Liu, “Efficient stochastic generation of special quasirandom structures,” Calphad 42(46), 13–18 (2013).

A. V. D. Walle, M. Asta, and G. Ceder, “The alloy theoretic automated toolkit: A user guide,” Calphad 26(4), 539–553 (2002).

Astles, M. G.

P. J. Dean, A. M. White, E. W. Williams, and M. G. Astles, “The isoelectronic trap bismuth in indium phosphide,” Solid State Commun. 9(18), 1555–1558 (1971).

Azam, S.

S. A. Khan, S. Azam, and O. Sipr, “Interrelationship between structural, optical and transport properties of InP1-xBix: DFT approach,” Sci. Semi. Proce. 41, 45–53 (2016).

Badescu, S. C.

L. C. Bannow, O. Rubel, S. C. Badescu, P. Rosenow, J. Hader, J. V. Moloney, R. Tonner, and S. W. Koch, “Configuration dependence of band-gap narrowing and localization in dilute GaAs1-xBix alloys,” Phys. Rev. B 93(20), 205202 (2016).

Bannow, L. C.

L. C. Bannow, O. Rubel, S. C. Badescu, P. Rosenow, J. Hader, J. V. Moloney, R. Tonner, and S. W. Koch, “Configuration dependence of band-gap narrowing and localization in dilute GaAs1-xBix alloys,” Phys. Rev. B 93(20), 205202 (2016).

Barragán, F.

B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, “Covalent radii revisited,” Dalton. T. 21(21), 2832–2838 (2008).

Beaton, D. A.

X. F. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Y. Zhang, “Composition dependence of photoluminescence of GaAs1-xBix alloys,” Appl. Phys. Lett. 95(4), 041903 (2009).

Benz, K. W.

W. Ruhle, W. Schmid, R. Meck, N. Stath, J. U. Fischbach, I. Strottner, K. W. Benz, and M. Pilkuhn, “Isoelectronic impurity states in direct-gap III-V compounds: the case of InP:Bi,” Phys. Rev. B 18(12), 7022–7032 (1978).

Berding, M. A.

M. A. Berding, A. Sher, A. Chen, and W. E. Miller, “Structural properties of bismuth-bearing semiconductor alloys,” J. Appl. Phys. 63(1), 107–115 (1988).

Bernard, J. E.

A. Zunger, S. Wei, L. G. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Phys. Rev. Lett. 65(3), 353–356 (1990).

A. Zunger, S. Wei, L. G. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Phys. Rev. Lett. 65(3), 353–356 (1990).

Birkett, M.

J. Kopaczek, R. Kudrawiec, M. P. Polak, P. Scharoch, M. Birkett, T. D. Veal, K. Wang, Y. Gu, Q. Gong, and S. Wang, “Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x≤0.034,” Appl. Phys. Lett. 105(22), 222104 (2014).

Blaha, P.

F. Tran and P. Blaha, “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential,” Phys. Rev. Lett. 102(22), 226401 (2009).

Blöchl, P. E.

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).

Cao, C.

Y. Gu, K. Wang, H. Zhou, Y. Li, C. Cao, L. Zhang, Y. Zhang, Q. Gong, and S. Wang, “Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy,” Nanoscale Res. Lett. 9(1), 24 (2014).

Ceder, G.

A. V. D. Walle, M. Asta, and G. Ceder, “The alloy theoretic automated toolkit: A user guide,” Calphad 26(4), 539–553 (2002).

Chen, A.

M. A. Berding, A. Sher, A. Chen, and W. E. Miller, “Structural properties of bismuth-bearing semiconductor alloys,” J. Appl. Phys. 63(1), 107–115 (1988).

Chen, J.

X. L. Zhang, P. F. Lu, L. H. Han, Z. Y. Yu, J. Chen, and S. M. Wang, “Structural and electronic properties of InPBi alloys,” Mod. Phys. Lett. B 28(17), 1450140 (2014).

G. Ciatto, E. C. Young, F. Glas, J. Chen, R. Alonso Mori, and T. Tiedje, “Spatial correlation between Bi atoms in dilute GaAs1-xBix: From random distribution to Bi pairing and clustering,” Phys. Rev. B 78(3), 035325 (2008).

Chen, L. Q.

A. V. D. Walle, P. Tiwary, M. D. Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen, and Z. K. Liu, “Efficient stochastic generation of special quasirandom structures,” Calphad 42(46), 13–18 (2013).

Chen, X. R.

X. R. Chen, X. Y. Wu, L. Yue, L. Q. Zhu, W. W. Pan, Z. Qi, S. M. Wang, and J. Shao, “Negative thermal quenching of below-bandgap photoluminescence in InPBi,” Appl. Phys. Lett. 110(5), 051903 (2017).

Ciatto, G.

G. Ciatto, E. C. Young, F. Glas, J. Chen, R. Alonso Mori, and T. Tiedje, “Spatial correlation between Bi atoms in dilute GaAs1-xBix: From random distribution to Bi pairing and clustering,” Phys. Rev. B 78(3), 035325 (2008).

Cooke, D. G.

D. G. Cooke, E. C. Young, F. A. Hegmann, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89(12), 122103 (2006).

Cordero, B.

B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, “Covalent radii revisited,” Dalton. T. 21(21), 2832–2838 (2008).

Cremades, E.

B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, “Covalent radii revisited,” Dalton. T. 21(21), 2832–2838 (2008).

Das, T. D.

T. D. Das, “The effect of Bi composition on the properties of InP1-xBix grown by liquid phase epitaxy,” J. Appl. Phys. 115(17), 173107 (2014).

Dean, P. J.

P. J. Dean, A. M. White, E. W. Williams, and M. G. Astles, “The isoelectronic trap bismuth in indium phosphide,” Solid State Commun. 9(18), 1555–1558 (1971).

Dhar, S.

D. P. Samajdar and S. Dhar, “Influence of Bi-related impurity states on the bandgap and spin-orbit splitting energy of dilute III-V-Bi alloys: InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix,” Superlattices Microstruct. 89, 112–119 (2016).

Dick, A.

A. V. D. Walle, P. Tiwary, M. D. Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen, and Z. K. Liu, “Efficient stochastic generation of special quasirandom structures,” Calphad 42(46), 13–18 (2013).

Echeverría, J.

B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, “Covalent radii revisited,” Dalton. T. 21(21), 2832–2838 (2008).

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).

Ferreira, L. G.

A. Zunger, S. Wei, L. G. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Phys. Rev. Lett. 65(3), 353–356 (1990).

A. Zunger, S. Wei, L. G. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Phys. Rev. Lett. 65(3), 353–356 (1990).

Fischbach, J. U.

W. Ruhle, W. Schmid, R. Meck, N. Stath, J. U. Fischbach, I. Strottner, K. W. Benz, and M. Pilkuhn, “Isoelectronic impurity states in direct-gap III-V compounds: the case of InP:Bi,” Phys. Rev. B 18(12), 7022–7032 (1978).

Fluegel, B.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant Spin-Orbit Bowing in GaAs1-xBix.,” Phys. Rev. Lett. 97(6), 067205 (2006).

Francoeur, S.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant Spin-Orbit Bowing in GaAs1-xBix.,” Phys. Rev. Lett. 97(6), 067205 (2006).

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1-xBix, 0<x<3.6%,” Appl. Phys. Lett. 82(22), 3874–3876 (2003).

Furthmüller, J.

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).

Glas, F.

G. Ciatto, E. C. Young, F. Glas, J. Chen, R. Alonso Mori, and T. Tiedje, “Spatial correlation between Bi atoms in dilute GaAs1-xBix: From random distribution to Bi pairing and clustering,” Phys. Rev. B 78(3), 035325 (2008).

Gómez, V.

B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, “Covalent radii revisited,” Dalton. T. 21(21), 2832–2838 (2008).

Gong, Q.

K. Wang, Y. Gu, H. F. Zhou, L. Y. Zhang, C. Z. Kang, M. J. Wu, W. W. Pan, P. F. Lu, Q. Gong, and S. M. Wang, “InPBi Single Crystals Grown by Molecular Beam Epitaxy,” Sci. Rep. 4(1), 5449 (2015).

Y. Gu, K. Wang, H. Zhou, Y. Li, C. Cao, L. Zhang, Y. Zhang, Q. Gong, and S. Wang, “Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy,” Nanoscale Res. Lett. 9(1), 24 (2014).

J. Kopaczek, R. Kudrawiec, M. P. Polak, P. Scharoch, M. Birkett, T. D. Veal, K. Wang, Y. Gu, Q. Gong, and S. Wang, “Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x≤0.034,” Appl. Phys. Lett. 105(22), 222104 (2014).

Gu, Y.

K. Wang, Y. Gu, H. F. Zhou, L. Y. Zhang, C. Z. Kang, M. J. Wu, W. W. Pan, P. F. Lu, Q. Gong, and S. M. Wang, “InPBi Single Crystals Grown by Molecular Beam Epitaxy,” Sci. Rep. 4(1), 5449 (2015).

X. Y. Wu, K. Wang, W. W. Pan, P. Wang, Y. Y. Li, Y. X. Song, Y. Gu, L. Yue, and S. M. Wang, “Effect of rapid thermal annealing on InP1-xBix grown by molecular beam epitaxy,” Semicond. Sci. Technol. 30(9), 094014 (2015).

Y. Gu, K. Wang, H. Zhou, Y. Li, C. Cao, L. Zhang, Y. Zhang, Q. Gong, and S. Wang, “Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy,” Nanoscale Res. Lett. 9(1), 24 (2014).

J. Kopaczek, R. Kudrawiec, M. P. Polak, P. Scharoch, M. Birkett, T. D. Veal, K. Wang, Y. Gu, Q. Gong, and S. Wang, “Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x≤0.034,” Appl. Phys. Lett. 105(22), 222104 (2014).

Hader, J.

L. C. Bannow, O. Rubel, S. C. Badescu, P. Rosenow, J. Hader, J. V. Moloney, R. Tonner, and S. W. Koch, “Configuration dependence of band-gap narrowing and localization in dilute GaAs1-xBix alloys,” Phys. Rev. B 93(20), 205202 (2016).

Haller, E. E.

D. D. Nolte, W. Walukiewicz, and E. E. Haller, “Band-edge hydrostatic deformation potentials in III-V semiconductors,” Phys. Rev. Lett. 59(4), 501–504 (1987).

Han, L. H.

X. L. Zhang, P. F. Lu, L. H. Han, Z. Y. Yu, J. Chen, and S. M. Wang, “Structural and electronic properties of InPBi alloys,” Mod. Phys. Lett. B 28(17), 1450140 (2014).

Havu, V.

V. Virkkala, V. Havu, F. Tuomisto, and M. J. Puska, “Origin of band gap bowing in dilute GaAs1-xNx and GaP1-xNx alloys: A real-space view,” Phys. Rev. B 88(3), 035204 (2013).

V. Virkkala, V. Havu, F. Tuomisto, and M. J. Puska, “Hybrid functional study of band structures of GaAs1-xNx and GaSb1-xNx alloys,” Phys. Rev. B 85(8), 085134 (2012).

Hegmann, F. A.

D. G. Cooke, E. C. Young, F. A. Hegmann, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89(12), 122103 (2006).

Jin, S. R.

S. J. Sweeney and S. R. Jin, “Bismide-nitride alloys: Promising for efficient light emitting devices in the near and mid-infrared,” J. Appl. Phys. 113(4), 043110 (2013).

Jong, M. D.

A. V. D. Walle, P. Tiwary, M. D. Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen, and Z. K. Liu, “Efficient stochastic generation of special quasirandom structures,” Calphad 42(46), 13–18 (2013).

Joubert, D.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).

Kang, C. Z.

K. Wang, Y. Gu, H. F. Zhou, L. Y. Zhang, C. Z. Kang, M. J. Wu, W. W. Pan, P. F. Lu, Q. Gong, and S. M. Wang, “InPBi Single Crystals Grown by Molecular Beam Epitaxy,” Sci. Rep. 4(1), 5449 (2015).

Khan, S. A.

S. A. Khan, S. Azam, and O. Sipr, “Interrelationship between structural, optical and transport properties of InP1-xBix: DFT approach,” Sci. Semi. Proce. 41, 45–53 (2016).

Koch, S. W.

L. C. Bannow, O. Rubel, S. C. Badescu, P. Rosenow, J. Hader, J. V. Moloney, R. Tonner, and S. W. Koch, “Configuration dependence of band-gap narrowing and localization in dilute GaAs1-xBix alloys,” Phys. Rev. B 93(20), 205202 (2016).

Kohn, W.

W. Kohn and L. J. Sham, “Self-Consitent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).

Kopaczek, J.

J. Kopaczek, R. Kudrawiec, M. P. Polak, P. Scharoch, M. Birkett, T. D. Veal, K. Wang, Y. Gu, Q. Gong, and S. Wang, “Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x≤0.034,” Appl. Phys. Lett. 105(22), 222104 (2014).

Kresse, G.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).

Kudrawiec, R.

M. P. Polak, P. Scharoch, and R. Kudrawiec, “First-principles calculations of bismuth induced changes in the band structure of dilute Ga-V-Bi and In-V-Bi alloys: chemical trends versus experimental data,” Semi. Sci. Tech. 30(9), 094001 (2015).

J. Kopaczek, R. Kudrawiec, M. P. Polak, P. Scharoch, M. Birkett, T. D. Veal, K. Wang, Y. Gu, Q. Gong, and S. Wang, “Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x≤0.034,” Appl. Phys. Lett. 105(22), 222104 (2014).

Kuzmin, M.

M. Ahola-Tuomi, P. Laukkanen, M. P. J. Punkkinen, R. E. Perälä, I. J. Väyrynen, M. Kuzmin, K. Schulte, and M. Pessa, “Formation of an ordered pattern of Bi nanolines on InAs (100) by self-assembly,” Appl. Phys. Lett. 92(1), 011926 (2008).

P. Laukkanen, J. Pakarinen, M. Ahola-Tuomi, M. Kuzmin, R. E. Perälä, and M. Pessa, “Structural and electronic properties of Bi-adsorbate-stabilized reconstructions on the InP(100) and GaAsxN1-x (100) surfaces,” Phys. Rev. B 74(15), 155302 (2006).

Laukkanen, P.

M. Ahola-Tuomi, P. Laukkanen, M. P. J. Punkkinen, R. E. Perälä, I. J. Väyrynen, M. Kuzmin, K. Schulte, and M. Pessa, “Formation of an ordered pattern of Bi nanolines on InAs (100) by self-assembly,” Appl. Phys. Lett. 92(1), 011926 (2008).

P. Laukkanen, J. Pakarinen, M. Ahola-Tuomi, M. Kuzmin, R. E. Perälä, and M. Pessa, “Structural and electronic properties of Bi-adsorbate-stabilized reconstructions on the InP(100) and GaAsxN1-x (100) surfaces,” Phys. Rev. B 74(15), 155302 (2006).

Lewis, R. B.

X. F. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Y. Zhang, “Composition dependence of photoluminescence of GaAs1-xBix alloys,” Appl. Phys. Lett. 95(4), 041903 (2009).

Li, D.

X. Ma, D. Li, S. Zhao, G. Li, and K. Yang, “The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study,” Nanoscale Res. Lett. 9(1), 580 (2014).

Li, G.

X. Ma, D. Li, S. Zhao, G. Li, and K. Yang, “The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study,” Nanoscale Res. Lett. 9(1), 580 (2014).

Li, Y.

Y. Gu, K. Wang, H. Zhou, Y. Li, C. Cao, L. Zhang, Y. Zhang, Q. Gong, and S. Wang, “Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy,” Nanoscale Res. Lett. 9(1), 24 (2014).

Li, Y. Y.

X. Y. Wu, K. Wang, W. W. Pan, P. Wang, Y. Y. Li, Y. X. Song, Y. Gu, L. Yue, and S. M. Wang, “Effect of rapid thermal annealing on InP1-xBix grown by molecular beam epitaxy,” Semicond. Sci. Technol. 30(9), 094014 (2015).

Liang, D.

L. Y. Wu, P. F. Lu, C. H. Yang, D. Liang, C. F. Zhang, and S. M. Wang, “The effect of BiIn hetero-antisite defects in In1-xPBix,” J. Alloys Compd. 674, 21–25 (2016).

Liu, Z. K.

A. V. D. Walle, P. Tiwary, M. D. Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen, and Z. K. Liu, “Efficient stochastic generation of special quasirandom structures,” Calphad 42(46), 13–18 (2013).

Lu, P. F.

L. Y. Wu, P. F. Lu, C. H. Yang, D. Liang, C. F. Zhang, and S. M. Wang, “The effect of BiIn hetero-antisite defects in In1-xPBix,” J. Alloys Compd. 674, 21–25 (2016).

K. Wang, Y. Gu, H. F. Zhou, L. Y. Zhang, C. Z. Kang, M. J. Wu, W. W. Pan, P. F. Lu, Q. Gong, and S. M. Wang, “InPBi Single Crystals Grown by Molecular Beam Epitaxy,” Sci. Rep. 4(1), 5449 (2015).

X. L. Zhang, P. F. Lu, L. H. Han, Z. Y. Yu, J. Chen, and S. M. Wang, “Structural and electronic properties of InPBi alloys,” Mod. Phys. Lett. B 28(17), 1450140 (2014).

Lu, X. F.

X. F. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Y. Zhang, “Composition dependence of photoluminescence of GaAs1-xBix alloys,” Appl. Phys. Lett. 95(4), 041903 (2009).

Ma, X.

X. Ma, D. Li, S. Zhao, G. Li, and K. Yang, “The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study,” Nanoscale Res. Lett. 9(1), 580 (2014).

Mascarenhas, A.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant Spin-Orbit Bowing in GaAs1-xBix.,” Phys. Rev. Lett. 97(6), 067205 (2006).

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1-xBix, 0<x<3.6%,” Appl. Phys. Lett. 82(22), 3874–3876 (2003).

Meck, R.

W. Ruhle, W. Schmid, R. Meck, N. Stath, J. U. Fischbach, I. Strottner, K. W. Benz, and M. Pilkuhn, “Isoelectronic impurity states in direct-gap III-V compounds: the case of InP:Bi,” Phys. Rev. B 18(12), 7022–7032 (1978).

Miller, W. E.

M. A. Berding, A. Sher, A. Chen, and W. E. Miller, “Structural properties of bismuth-bearing semiconductor alloys,” J. Appl. Phys. 63(1), 107–115 (1988).

Moloney, J. V.

L. C. Bannow, O. Rubel, S. C. Badescu, P. Rosenow, J. Hader, J. V. Moloney, R. Tonner, and S. W. Koch, “Configuration dependence of band-gap narrowing and localization in dilute GaAs1-xBix alloys,” Phys. Rev. B 93(20), 205202 (2016).

Nolte, D. D.

D. D. Nolte, W. Walukiewicz, and E. E. Haller, “Band-edge hydrostatic deformation potentials in III-V semiconductors,” Phys. Rev. Lett. 59(4), 501–504 (1987).

Olmsted, D. L.

A. V. D. Walle, P. Tiwary, M. D. Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen, and Z. K. Liu, “Efficient stochastic generation of special quasirandom structures,” Calphad 42(46), 13–18 (2013).

Pakarinen, J.

P. Laukkanen, J. Pakarinen, M. Ahola-Tuomi, M. Kuzmin, R. E. Perälä, and M. Pessa, “Structural and electronic properties of Bi-adsorbate-stabilized reconstructions on the InP(100) and GaAsxN1-x (100) surfaces,” Phys. Rev. B 74(15), 155302 (2006).

Pan, W. W.

X. R. Chen, X. Y. Wu, L. Yue, L. Q. Zhu, W. W. Pan, Z. Qi, S. M. Wang, and J. Shao, “Negative thermal quenching of below-bandgap photoluminescence in InPBi,” Appl. Phys. Lett. 110(5), 051903 (2017).

K. Wang, Y. Gu, H. F. Zhou, L. Y. Zhang, C. Z. Kang, M. J. Wu, W. W. Pan, P. F. Lu, Q. Gong, and S. M. Wang, “InPBi Single Crystals Grown by Molecular Beam Epitaxy,” Sci. Rep. 4(1), 5449 (2015).

X. Y. Wu, K. Wang, W. W. Pan, P. Wang, Y. Y. Li, Y. X. Song, Y. Gu, L. Yue, and S. M. Wang, “Effect of rapid thermal annealing on InP1-xBix grown by molecular beam epitaxy,” Semicond. Sci. Technol. 30(9), 094014 (2015).

Perälä, R. E.

M. Ahola-Tuomi, P. Laukkanen, M. P. J. Punkkinen, R. E. Perälä, I. J. Väyrynen, M. Kuzmin, K. Schulte, and M. Pessa, “Formation of an ordered pattern of Bi nanolines on InAs (100) by self-assembly,” Appl. Phys. Lett. 92(1), 011926 (2008).

P. Laukkanen, J. Pakarinen, M. Ahola-Tuomi, M. Kuzmin, R. E. Perälä, and M. Pessa, “Structural and electronic properties of Bi-adsorbate-stabilized reconstructions on the InP(100) and GaAsxN1-x (100) surfaces,” Phys. Rev. B 74(15), 155302 (2006).

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).

Pessa, M.

M. Ahola-Tuomi, P. Laukkanen, M. P. J. Punkkinen, R. E. Perälä, I. J. Väyrynen, M. Kuzmin, K. Schulte, and M. Pessa, “Formation of an ordered pattern of Bi nanolines on InAs (100) by self-assembly,” Appl. Phys. Lett. 92(1), 011926 (2008).

P. Laukkanen, J. Pakarinen, M. Ahola-Tuomi, M. Kuzmin, R. E. Perälä, and M. Pessa, “Structural and electronic properties of Bi-adsorbate-stabilized reconstructions on the InP(100) and GaAsxN1-x (100) surfaces,” Phys. Rev. B 74(15), 155302 (2006).

Pilkuhn, M.

W. Ruhle, W. Schmid, R. Meck, N. Stath, J. U. Fischbach, I. Strottner, K. W. Benz, and M. Pilkuhn, “Isoelectronic impurity states in direct-gap III-V compounds: the case of InP:Bi,” Phys. Rev. B 18(12), 7022–7032 (1978).

Platero-Prats, A. E.

B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, “Covalent radii revisited,” Dalton. T. 21(21), 2832–2838 (2008).

Polak, M. P.

M. P. Polak, P. Scharoch, and R. Kudrawiec, “First-principles calculations of bismuth induced changes in the band structure of dilute Ga-V-Bi and In-V-Bi alloys: chemical trends versus experimental data,” Semi. Sci. Tech. 30(9), 094001 (2015).

J. Kopaczek, R. Kudrawiec, M. P. Polak, P. Scharoch, M. Birkett, T. D. Veal, K. Wang, Y. Gu, Q. Gong, and S. Wang, “Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x≤0.034,” Appl. Phys. Lett. 105(22), 222104 (2014).

Punkkinen, M. P. J.

M. Ahola-Tuomi, P. Laukkanen, M. P. J. Punkkinen, R. E. Perälä, I. J. Väyrynen, M. Kuzmin, K. Schulte, and M. Pessa, “Formation of an ordered pattern of Bi nanolines on InAs (100) by self-assembly,” Appl. Phys. Lett. 92(1), 011926 (2008).

Puska, M. J.

V. Virkkala, V. Havu, F. Tuomisto, and M. J. Puska, “Origin of band gap bowing in dilute GaAs1-xNx and GaP1-xNx alloys: A real-space view,” Phys. Rev. B 88(3), 035204 (2013).

V. Virkkala, V. Havu, F. Tuomisto, and M. J. Puska, “Hybrid functional study of band structures of GaAs1-xNx and GaSb1-xNx alloys,” Phys. Rev. B 85(8), 085134 (2012).

Qi, Z.

X. R. Chen, X. Y. Wu, L. Yue, L. Q. Zhu, W. W. Pan, Z. Qi, S. M. Wang, and J. Shao, “Negative thermal quenching of below-bandgap photoluminescence in InPBi,” Appl. Phys. Lett. 110(5), 051903 (2017).

Revés, M.

B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, “Covalent radii revisited,” Dalton. T. 21(21), 2832–2838 (2008).

Rosenow, P.

L. C. Bannow, O. Rubel, S. C. Badescu, P. Rosenow, J. Hader, J. V. Moloney, R. Tonner, and S. W. Koch, “Configuration dependence of band-gap narrowing and localization in dilute GaAs1-xBix alloys,” Phys. Rev. B 93(20), 205202 (2016).

Rubel, O.

L. C. Bannow, O. Rubel, S. C. Badescu, P. Rosenow, J. Hader, J. V. Moloney, R. Tonner, and S. W. Koch, “Configuration dependence of band-gap narrowing and localization in dilute GaAs1-xBix alloys,” Phys. Rev. B 93(20), 205202 (2016).

Ruhle, W.

W. Ruhle, W. Schmid, R. Meck, N. Stath, J. U. Fischbach, I. Strottner, K. W. Benz, and M. Pilkuhn, “Isoelectronic impurity states in direct-gap III-V compounds: the case of InP:Bi,” Phys. Rev. B 18(12), 7022–7032 (1978).

Samajdar, D. P.

D. P. Samajdar and S. Dhar, “Influence of Bi-related impurity states on the bandgap and spin-orbit splitting energy of dilute III-V-Bi alloys: InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix,” Superlattices Microstruct. 89, 112–119 (2016).

Scharoch, P.

M. P. Polak, P. Scharoch, and R. Kudrawiec, “First-principles calculations of bismuth induced changes in the band structure of dilute Ga-V-Bi and In-V-Bi alloys: chemical trends versus experimental data,” Semi. Sci. Tech. 30(9), 094001 (2015).

J. Kopaczek, R. Kudrawiec, M. P. Polak, P. Scharoch, M. Birkett, T. D. Veal, K. Wang, Y. Gu, Q. Gong, and S. Wang, “Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x≤0.034,” Appl. Phys. Lett. 105(22), 222104 (2014).

Schmid, W.

W. Ruhle, W. Schmid, R. Meck, N. Stath, J. U. Fischbach, I. Strottner, K. W. Benz, and M. Pilkuhn, “Isoelectronic impurity states in direct-gap III-V compounds: the case of InP:Bi,” Phys. Rev. B 18(12), 7022–7032 (1978).

Schulte, K.

M. Ahola-Tuomi, P. Laukkanen, M. P. J. Punkkinen, R. E. Perälä, I. J. Väyrynen, M. Kuzmin, K. Schulte, and M. Pessa, “Formation of an ordered pattern of Bi nanolines on InAs (100) by self-assembly,” Appl. Phys. Lett. 92(1), 011926 (2008).

Seong, M. J.

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1-xBix, 0<x<3.6%,” Appl. Phys. Lett. 82(22), 3874–3876 (2003).

Sham, L. J.

W. Kohn and L. J. Sham, “Self-Consitent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).

Shao, J.

X. R. Chen, X. Y. Wu, L. Yue, L. Q. Zhu, W. W. Pan, Z. Qi, S. M. Wang, and J. Shao, “Negative thermal quenching of below-bandgap photoluminescence in InPBi,” Appl. Phys. Lett. 110(5), 051903 (2017).

Sher, A.

M. A. Berding, A. Sher, A. Chen, and W. E. Miller, “Structural properties of bismuth-bearing semiconductor alloys,” J. Appl. Phys. 63(1), 107–115 (1988).

Shin, D.

A. V. D. Walle, P. Tiwary, M. D. Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen, and Z. K. Liu, “Efficient stochastic generation of special quasirandom structures,” Calphad 42(46), 13–18 (2013).

Sipr, O.

S. A. Khan, S. Azam, and O. Sipr, “Interrelationship between structural, optical and transport properties of InP1-xBix: DFT approach,” Sci. Semi. Proce. 41, 45–53 (2016).

Song, Y. X.

X. Y. Wu, K. Wang, W. W. Pan, P. Wang, Y. Y. Li, Y. X. Song, Y. Gu, L. Yue, and S. M. Wang, “Effect of rapid thermal annealing on InP1-xBix grown by molecular beam epitaxy,” Semicond. Sci. Technol. 30(9), 094014 (2015).

Stath, N.

W. Ruhle, W. Schmid, R. Meck, N. Stath, J. U. Fischbach, I. Strottner, K. W. Benz, and M. Pilkuhn, “Isoelectronic impurity states in direct-gap III-V compounds: the case of InP:Bi,” Phys. Rev. B 18(12), 7022–7032 (1978).

Strottner, I.

W. Ruhle, W. Schmid, R. Meck, N. Stath, J. U. Fischbach, I. Strottner, K. W. Benz, and M. Pilkuhn, “Isoelectronic impurity states in direct-gap III-V compounds: the case of InP:Bi,” Phys. Rev. B 18(12), 7022–7032 (1978).

Sweeney, S. J.

S. J. Sweeney and S. R. Jin, “Bismide-nitride alloys: Promising for efficient light emitting devices in the near and mid-infrared,” J. Appl. Phys. 113(4), 043110 (2013).

Tiedje, T.

X. F. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Y. Zhang, “Composition dependence of photoluminescence of GaAs1-xBix alloys,” Appl. Phys. Lett. 95(4), 041903 (2009).

G. Ciatto, E. C. Young, F. Glas, J. Chen, R. Alonso Mori, and T. Tiedje, “Spatial correlation between Bi atoms in dilute GaAs1-xBix: From random distribution to Bi pairing and clustering,” Phys. Rev. B 78(3), 035325 (2008).

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant Spin-Orbit Bowing in GaAs1-xBix.,” Phys. Rev. Lett. 97(6), 067205 (2006).

D. G. Cooke, E. C. Young, F. A. Hegmann, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89(12), 122103 (2006).

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1-xBix, 0<x<3.6%,” Appl. Phys. Lett. 82(22), 3874–3876 (2003).

Tiwary, P.

A. V. D. Walle, P. Tiwary, M. D. Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen, and Z. K. Liu, “Efficient stochastic generation of special quasirandom structures,” Calphad 42(46), 13–18 (2013).

Tixier, S.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant Spin-Orbit Bowing in GaAs1-xBix.,” Phys. Rev. Lett. 97(6), 067205 (2006).

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1-xBix, 0<x<3.6%,” Appl. Phys. Lett. 82(22), 3874–3876 (2003).

Tonner, R.

L. C. Bannow, O. Rubel, S. C. Badescu, P. Rosenow, J. Hader, J. V. Moloney, R. Tonner, and S. W. Koch, “Configuration dependence of band-gap narrowing and localization in dilute GaAs1-xBix alloys,” Phys. Rev. B 93(20), 205202 (2016).

Tran, F.

F. Tran and P. Blaha, “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential,” Phys. Rev. Lett. 102(22), 226401 (2009).

Truhlar, D. G.

Y. Zhao and D. G. Truhlar, “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements,” Theor. Chem. Acc. 120(1–3), 215–241 (2008).

Tuomisto, F.

V. Virkkala, V. Havu, F. Tuomisto, and M. J. Puska, “Origin of band gap bowing in dilute GaAs1-xNx and GaP1-xNx alloys: A real-space view,” Phys. Rev. B 88(3), 035204 (2013).

V. Virkkala, V. Havu, F. Tuomisto, and M. J. Puska, “Hybrid functional study of band structures of GaAs1-xNx and GaSb1-xNx alloys,” Phys. Rev. B 85(8), 085134 (2012).

van de Walle, A.

A. van de Walle, “Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit,” Calphad 33(2), 266–278 (2009).

Väyrynen, I. J.

M. Ahola-Tuomi, P. Laukkanen, M. P. J. Punkkinen, R. E. Perälä, I. J. Väyrynen, M. Kuzmin, K. Schulte, and M. Pessa, “Formation of an ordered pattern of Bi nanolines on InAs (100) by self-assembly,” Appl. Phys. Lett. 92(1), 011926 (2008).

Veal, T. D.

J. Kopaczek, R. Kudrawiec, M. P. Polak, P. Scharoch, M. Birkett, T. D. Veal, K. Wang, Y. Gu, Q. Gong, and S. Wang, “Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x≤0.034,” Appl. Phys. Lett. 105(22), 222104 (2014).

Virkkala, V.

V. Virkkala, V. Havu, F. Tuomisto, and M. J. Puska, “Origin of band gap bowing in dilute GaAs1-xNx and GaP1-xNx alloys: A real-space view,” Phys. Rev. B 88(3), 035204 (2013).

V. Virkkala, V. Havu, F. Tuomisto, and M. J. Puska, “Hybrid functional study of band structures of GaAs1-xNx and GaSb1-xNx alloys,” Phys. Rev. B 85(8), 085134 (2012).

Walle, A. V. D.

A. V. D. Walle, P. Tiwary, M. D. Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen, and Z. K. Liu, “Efficient stochastic generation of special quasirandom structures,” Calphad 42(46), 13–18 (2013).

A. V. D. Walle, M. Asta, and G. Ceder, “The alloy theoretic automated toolkit: A user guide,” Calphad 26(4), 539–553 (2002).

Walukiewicz, W.

D. D. Nolte, W. Walukiewicz, and E. E. Haller, “Band-edge hydrostatic deformation potentials in III-V semiconductors,” Phys. Rev. Lett. 59(4), 501–504 (1987).

Wang, K.

K. Wang, Y. Gu, H. F. Zhou, L. Y. Zhang, C. Z. Kang, M. J. Wu, W. W. Pan, P. F. Lu, Q. Gong, and S. M. Wang, “InPBi Single Crystals Grown by Molecular Beam Epitaxy,” Sci. Rep. 4(1), 5449 (2015).

X. Y. Wu, K. Wang, W. W. Pan, P. Wang, Y. Y. Li, Y. X. Song, Y. Gu, L. Yue, and S. M. Wang, “Effect of rapid thermal annealing on InP1-xBix grown by molecular beam epitaxy,” Semicond. Sci. Technol. 30(9), 094014 (2015).

Y. Gu, K. Wang, H. Zhou, Y. Li, C. Cao, L. Zhang, Y. Zhang, Q. Gong, and S. Wang, “Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy,” Nanoscale Res. Lett. 9(1), 24 (2014).

J. Kopaczek, R. Kudrawiec, M. P. Polak, P. Scharoch, M. Birkett, T. D. Veal, K. Wang, Y. Gu, Q. Gong, and S. Wang, “Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x≤0.034,” Appl. Phys. Lett. 105(22), 222104 (2014).

Wang, P.

X. Y. Wu, K. Wang, W. W. Pan, P. Wang, Y. Y. Li, Y. X. Song, Y. Gu, L. Yue, and S. M. Wang, “Effect of rapid thermal annealing on InP1-xBix grown by molecular beam epitaxy,” Semicond. Sci. Technol. 30(9), 094014 (2015).

Wang, S.

Y. Gu, K. Wang, H. Zhou, Y. Li, C. Cao, L. Zhang, Y. Zhang, Q. Gong, and S. Wang, “Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy,” Nanoscale Res. Lett. 9(1), 24 (2014).

J. Kopaczek, R. Kudrawiec, M. P. Polak, P. Scharoch, M. Birkett, T. D. Veal, K. Wang, Y. Gu, Q. Gong, and S. Wang, “Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x≤0.034,” Appl. Phys. Lett. 105(22), 222104 (2014).

Wang, S. M.

X. R. Chen, X. Y. Wu, L. Yue, L. Q. Zhu, W. W. Pan, Z. Qi, S. M. Wang, and J. Shao, “Negative thermal quenching of below-bandgap photoluminescence in InPBi,” Appl. Phys. Lett. 110(5), 051903 (2017).

L. Y. Wu, P. F. Lu, C. H. Yang, D. Liang, C. F. Zhang, and S. M. Wang, “The effect of BiIn hetero-antisite defects in In1-xPBix,” J. Alloys Compd. 674, 21–25 (2016).

X. Y. Wu, K. Wang, W. W. Pan, P. Wang, Y. Y. Li, Y. X. Song, Y. Gu, L. Yue, and S. M. Wang, “Effect of rapid thermal annealing on InP1-xBix grown by molecular beam epitaxy,” Semicond. Sci. Technol. 30(9), 094014 (2015).

K. Wang, Y. Gu, H. F. Zhou, L. Y. Zhang, C. Z. Kang, M. J. Wu, W. W. Pan, P. F. Lu, Q. Gong, and S. M. Wang, “InPBi Single Crystals Grown by Molecular Beam Epitaxy,” Sci. Rep. 4(1), 5449 (2015).

X. L. Zhang, P. F. Lu, L. H. Han, Z. Y. Yu, J. Chen, and S. M. Wang, “Structural and electronic properties of InPBi alloys,” Mod. Phys. Lett. B 28(17), 1450140 (2014).

Wang, Y.

A. V. D. Walle, P. Tiwary, M. D. Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen, and Z. K. Liu, “Efficient stochastic generation of special quasirandom structures,” Calphad 42(46), 13–18 (2013).

Wei, S.

A. Zunger, S. Wei, L. G. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Phys. Rev. Lett. 65(3), 353–356 (1990).

A. Zunger, S. Wei, L. G. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Phys. Rev. Lett. 65(3), 353–356 (1990).

White, A. M.

P. J. Dean, A. M. White, E. W. Williams, and M. G. Astles, “The isoelectronic trap bismuth in indium phosphide,” Solid State Commun. 9(18), 1555–1558 (1971).

Williams, E. W.

P. J. Dean, A. M. White, E. W. Williams, and M. G. Astles, “The isoelectronic trap bismuth in indium phosphide,” Solid State Commun. 9(18), 1555–1558 (1971).

Wu, L. Y.

L. Y. Wu, P. F. Lu, C. H. Yang, D. Liang, C. F. Zhang, and S. M. Wang, “The effect of BiIn hetero-antisite defects in In1-xPBix,” J. Alloys Compd. 674, 21–25 (2016).

Wu, M. J.

K. Wang, Y. Gu, H. F. Zhou, L. Y. Zhang, C. Z. Kang, M. J. Wu, W. W. Pan, P. F. Lu, Q. Gong, and S. M. Wang, “InPBi Single Crystals Grown by Molecular Beam Epitaxy,” Sci. Rep. 4(1), 5449 (2015).

Wu, X. Y.

X. R. Chen, X. Y. Wu, L. Yue, L. Q. Zhu, W. W. Pan, Z. Qi, S. M. Wang, and J. Shao, “Negative thermal quenching of below-bandgap photoluminescence in InPBi,” Appl. Phys. Lett. 110(5), 051903 (2017).

X. Y. Wu, K. Wang, W. W. Pan, P. Wang, Y. Y. Li, Y. X. Song, Y. Gu, L. Yue, and S. M. Wang, “Effect of rapid thermal annealing on InP1-xBix grown by molecular beam epitaxy,” Semicond. Sci. Technol. 30(9), 094014 (2015).

Yang, C. H.

L. Y. Wu, P. F. Lu, C. H. Yang, D. Liang, C. F. Zhang, and S. M. Wang, “The effect of BiIn hetero-antisite defects in In1-xPBix,” J. Alloys Compd. 674, 21–25 (2016).

Yang, K.

X. Ma, D. Li, S. Zhao, G. Li, and K. Yang, “The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study,” Nanoscale Res. Lett. 9(1), 580 (2014).

Young, E. C.

G. Ciatto, E. C. Young, F. Glas, J. Chen, R. Alonso Mori, and T. Tiedje, “Spatial correlation between Bi atoms in dilute GaAs1-xBix: From random distribution to Bi pairing and clustering,” Phys. Rev. B 78(3), 035325 (2008).

D. G. Cooke, E. C. Young, F. A. Hegmann, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89(12), 122103 (2006).

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant Spin-Orbit Bowing in GaAs1-xBix.,” Phys. Rev. Lett. 97(6), 067205 (2006).

Yu, Z. Y.

X. L. Zhang, P. F. Lu, L. H. Han, Z. Y. Yu, J. Chen, and S. M. Wang, “Structural and electronic properties of InPBi alloys,” Mod. Phys. Lett. B 28(17), 1450140 (2014).

Yue, L.

X. R. Chen, X. Y. Wu, L. Yue, L. Q. Zhu, W. W. Pan, Z. Qi, S. M. Wang, and J. Shao, “Negative thermal quenching of below-bandgap photoluminescence in InPBi,” Appl. Phys. Lett. 110(5), 051903 (2017).

X. Y. Wu, K. Wang, W. W. Pan, P. Wang, Y. Y. Li, Y. X. Song, Y. Gu, L. Yue, and S. M. Wang, “Effect of rapid thermal annealing on InP1-xBix grown by molecular beam epitaxy,” Semicond. Sci. Technol. 30(9), 094014 (2015).

Zhang, C. F.

L. Y. Wu, P. F. Lu, C. H. Yang, D. Liang, C. F. Zhang, and S. M. Wang, “The effect of BiIn hetero-antisite defects in In1-xPBix,” J. Alloys Compd. 674, 21–25 (2016).

Zhang, L.

Y. Gu, K. Wang, H. Zhou, Y. Li, C. Cao, L. Zhang, Y. Zhang, Q. Gong, and S. Wang, “Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy,” Nanoscale Res. Lett. 9(1), 24 (2014).

Zhang, L. Y.

K. Wang, Y. Gu, H. F. Zhou, L. Y. Zhang, C. Z. Kang, M. J. Wu, W. W. Pan, P. F. Lu, Q. Gong, and S. M. Wang, “InPBi Single Crystals Grown by Molecular Beam Epitaxy,” Sci. Rep. 4(1), 5449 (2015).

Zhang, X. L.

X. L. Zhang, P. F. Lu, L. H. Han, Z. Y. Yu, J. Chen, and S. M. Wang, “Structural and electronic properties of InPBi alloys,” Mod. Phys. Lett. B 28(17), 1450140 (2014).

Zhang, Y.

Y. Gu, K. Wang, H. Zhou, Y. Li, C. Cao, L. Zhang, Y. Zhang, Q. Gong, and S. Wang, “Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy,” Nanoscale Res. Lett. 9(1), 24 (2014).

X. F. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Y. Zhang, “Composition dependence of photoluminescence of GaAs1-xBix alloys,” Appl. Phys. Lett. 95(4), 041903 (2009).

Zhao, S.

X. Ma, D. Li, S. Zhao, G. Li, and K. Yang, “The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study,” Nanoscale Res. Lett. 9(1), 580 (2014).

Zhao, Y.

Y. Zhao and D. G. Truhlar, “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements,” Theor. Chem. Acc. 120(1–3), 215–241 (2008).

Zhou, H.

Y. Gu, K. Wang, H. Zhou, Y. Li, C. Cao, L. Zhang, Y. Zhang, Q. Gong, and S. Wang, “Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy,” Nanoscale Res. Lett. 9(1), 24 (2014).

Zhou, H. F.

K. Wang, Y. Gu, H. F. Zhou, L. Y. Zhang, C. Z. Kang, M. J. Wu, W. W. Pan, P. F. Lu, Q. Gong, and S. M. Wang, “InPBi Single Crystals Grown by Molecular Beam Epitaxy,” Sci. Rep. 4(1), 5449 (2015).

Zhu, L. Q.

X. R. Chen, X. Y. Wu, L. Yue, L. Q. Zhu, W. W. Pan, Z. Qi, S. M. Wang, and J. Shao, “Negative thermal quenching of below-bandgap photoluminescence in InPBi,” Appl. Phys. Lett. 110(5), 051903 (2017).

Zunger, A.

A. Zunger, S. Wei, L. G. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Phys. Rev. Lett. 65(3), 353–356 (1990).

A. Zunger, S. Wei, L. G. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Phys. Rev. Lett. 65(3), 353–356 (1990).

Appl. Phys. Lett. (6)

X. F. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Y. Zhang, “Composition dependence of photoluminescence of GaAs1-xBix alloys,” Appl. Phys. Lett. 95(4), 041903 (2009).

M. Ahola-Tuomi, P. Laukkanen, M. P. J. Punkkinen, R. E. Perälä, I. J. Väyrynen, M. Kuzmin, K. Schulte, and M. Pessa, “Formation of an ordered pattern of Bi nanolines on InAs (100) by self-assembly,” Appl. Phys. Lett. 92(1), 011926 (2008).

D. G. Cooke, E. C. Young, F. A. Hegmann, and T. Tiedje, “Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 89(12), 122103 (2006).

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1-xBix, 0<x<3.6%,” Appl. Phys. Lett. 82(22), 3874–3876 (2003).

X. R. Chen, X. Y. Wu, L. Yue, L. Q. Zhu, W. W. Pan, Z. Qi, S. M. Wang, and J. Shao, “Negative thermal quenching of below-bandgap photoluminescence in InPBi,” Appl. Phys. Lett. 110(5), 051903 (2017).

J. Kopaczek, R. Kudrawiec, M. P. Polak, P. Scharoch, M. Birkett, T. D. Veal, K. Wang, Y. Gu, Q. Gong, and S. Wang, “Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x≤0.034,” Appl. Phys. Lett. 105(22), 222104 (2014).

Calphad (3)

A. V. D. Walle, P. Tiwary, M. D. Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen, and Z. K. Liu, “Efficient stochastic generation of special quasirandom structures,” Calphad 42(46), 13–18 (2013).

A. V. D. Walle, M. Asta, and G. Ceder, “The alloy theoretic automated toolkit: A user guide,” Calphad 26(4), 539–553 (2002).

A. van de Walle, “Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit,” Calphad 33(2), 266–278 (2009).

Comput. Mater. Sci. (1)

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).

Dalton. T. (1)

B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, “Covalent radii revisited,” Dalton. T. 21(21), 2832–2838 (2008).

J. Alloys Compd. (1)

L. Y. Wu, P. F. Lu, C. H. Yang, D. Liang, C. F. Zhang, and S. M. Wang, “The effect of BiIn hetero-antisite defects in In1-xPBix,” J. Alloys Compd. 674, 21–25 (2016).

J. Appl. Phys. (3)

S. J. Sweeney and S. R. Jin, “Bismide-nitride alloys: Promising for efficient light emitting devices in the near and mid-infrared,” J. Appl. Phys. 113(4), 043110 (2013).

M. A. Berding, A. Sher, A. Chen, and W. E. Miller, “Structural properties of bismuth-bearing semiconductor alloys,” J. Appl. Phys. 63(1), 107–115 (1988).

T. D. Das, “The effect of Bi composition on the properties of InP1-xBix grown by liquid phase epitaxy,” J. Appl. Phys. 115(17), 173107 (2014).

Mod. Phys. Lett. B (1)

X. L. Zhang, P. F. Lu, L. H. Han, Z. Y. Yu, J. Chen, and S. M. Wang, “Structural and electronic properties of InPBi alloys,” Mod. Phys. Lett. B 28(17), 1450140 (2014).

Nanoscale Res. Lett. (2)

Y. Gu, K. Wang, H. Zhou, Y. Li, C. Cao, L. Zhang, Y. Zhang, Q. Gong, and S. Wang, “Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy,” Nanoscale Res. Lett. 9(1), 24 (2014).

X. Ma, D. Li, S. Zhao, G. Li, and K. Yang, “The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study,” Nanoscale Res. Lett. 9(1), 580 (2014).

Phys. Rev. (1)

W. Kohn and L. J. Sham, “Self-Consitent Equations Including Exchange and Correlation Effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).

Phys. Rev. B (8)

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).

W. Ruhle, W. Schmid, R. Meck, N. Stath, J. U. Fischbach, I. Strottner, K. W. Benz, and M. Pilkuhn, “Isoelectronic impurity states in direct-gap III-V compounds: the case of InP:Bi,” Phys. Rev. B 18(12), 7022–7032 (1978).

G. Ciatto, E. C. Young, F. Glas, J. Chen, R. Alonso Mori, and T. Tiedje, “Spatial correlation between Bi atoms in dilute GaAs1-xBix: From random distribution to Bi pairing and clustering,” Phys. Rev. B 78(3), 035325 (2008).

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).

V. Virkkala, V. Havu, F. Tuomisto, and M. J. Puska, “Hybrid functional study of band structures of GaAs1-xNx and GaSb1-xNx alloys,” Phys. Rev. B 85(8), 085134 (2012).

V. Virkkala, V. Havu, F. Tuomisto, and M. J. Puska, “Origin of band gap bowing in dilute GaAs1-xNx and GaP1-xNx alloys: A real-space view,” Phys. Rev. B 88(3), 035204 (2013).

P. Laukkanen, J. Pakarinen, M. Ahola-Tuomi, M. Kuzmin, R. E. Perälä, and M. Pessa, “Structural and electronic properties of Bi-adsorbate-stabilized reconstructions on the InP(100) and GaAsxN1-x (100) surfaces,” Phys. Rev. B 74(15), 155302 (2006).

L. C. Bannow, O. Rubel, S. C. Badescu, P. Rosenow, J. Hader, J. V. Moloney, R. Tonner, and S. W. Koch, “Configuration dependence of band-gap narrowing and localization in dilute GaAs1-xBix alloys,” Phys. Rev. B 93(20), 205202 (2016).

Phys. Rev. B Condens. Matter (1)

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).

Phys. Rev. Lett. (6)

D. D. Nolte, W. Walukiewicz, and E. E. Haller, “Band-edge hydrostatic deformation potentials in III-V semiconductors,” Phys. Rev. Lett. 59(4), 501–504 (1987).

A. Zunger, S. Wei, L. G. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Phys. Rev. Lett. 65(3), 353–356 (1990).

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant Spin-Orbit Bowing in GaAs1-xBix.,” Phys. Rev. Lett. 97(6), 067205 (2006).

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).

F. Tran and P. Blaha, “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential,” Phys. Rev. Lett. 102(22), 226401 (2009).

A. Zunger, S. Wei, L. G. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Phys. Rev. Lett. 65(3), 353–356 (1990).

Sci. Rep. (1)

K. Wang, Y. Gu, H. F. Zhou, L. Y. Zhang, C. Z. Kang, M. J. Wu, W. W. Pan, P. F. Lu, Q. Gong, and S. M. Wang, “InPBi Single Crystals Grown by Molecular Beam Epitaxy,” Sci. Rep. 4(1), 5449 (2015).

Sci. Semi. Proce. (1)

S. A. Khan, S. Azam, and O. Sipr, “Interrelationship between structural, optical and transport properties of InP1-xBix: DFT approach,” Sci. Semi. Proce. 41, 45–53 (2016).

Semi. Sci. Tech. (1)

M. P. Polak, P. Scharoch, and R. Kudrawiec, “First-principles calculations of bismuth induced changes in the band structure of dilute Ga-V-Bi and In-V-Bi alloys: chemical trends versus experimental data,” Semi. Sci. Tech. 30(9), 094001 (2015).

Semicond. Sci. Technol. (1)

X. Y. Wu, K. Wang, W. W. Pan, P. Wang, Y. Y. Li, Y. X. Song, Y. Gu, L. Yue, and S. M. Wang, “Effect of rapid thermal annealing on InP1-xBix grown by molecular beam epitaxy,” Semicond. Sci. Technol. 30(9), 094014 (2015).

Solid State Commun. (1)

P. J. Dean, A. M. White, E. W. Williams, and M. G. Astles, “The isoelectronic trap bismuth in indium phosphide,” Solid State Commun. 9(18), 1555–1558 (1971).

Superlattices Microstruct. (1)

D. P. Samajdar and S. Dhar, “Influence of Bi-related impurity states on the bandgap and spin-orbit splitting energy of dilute III-V-Bi alloys: InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix,” Superlattices Microstruct. 89, 112–119 (2016).

Theor. Chem. Acc. (1)

Y. Zhao and D. G. Truhlar, “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements,” Theor. Chem. Acc. 120(1–3), 215–241 (2008).

Other (1)

S. Wang, K. Wang, and Y. Gu, “Novel dilute InPBi for IR emitters,” 16th ICTON, JUL 06–10 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Variation of the band gap as a function of Bi composition, which originate from stain effect, chemical effect, and total-effect (namely relaxed Bi) respectively. Δ E g = E g InP E g In(PBi) .
Fig. 2
Fig. 2 Band structures and PDOS for bulk supercell (a) In64P63Bi, (b) In27P26Bi, and (c) In8P7Bi. The red lines represent the contribution of Bi in band structures.
Fig. 3
Fig. 3 The band gap Eg, spin-orbit split energy Δso, and Eg + Δso in InP1-xBix as functions of Bi concentration.
Fig. 4
Fig. 4 Four kinds of Bi complexes models in In64P60Bi4 are shown, namely [111] chain, [100] chain, clustered and SQS structures.
Fig. 5
Fig. 5 Variation of the band gap in InP1−xBix alloys for different types of arrangements. Including isolated atom arrangement from Fig. 3 (black squares), [111] chain, [100] chain, clustered, and SQS data from Table1.

Tables (1)

Tables Icon

Table 1 Effects of different Bi arrangements in a 128-atom supercell on the band gap Eg (eV) for two, three and four Bi atoms. ΔETOT (eV) is the total energy difference between those supercells with corresponding to the lowest total energy of [111] chain arrangement.

Metrics