Abstract

Transition metal doped quantum dots (d-dots) have attracted much attention owing to the high emission efficiency of the dopant ions together with the large Stocks shifts which can overcome the self-absorption issues. To date, most works focus on improving the optical properties by developing new synthetic routes. However, the integration of these luminescent materials on stretchable substrates is rarely involved. Here, we report the synthesis of stretchable luminescent silica gel-ZnSe:Mn/ZnS films. The as-prepared ZnSe:Mn/ZnS quantum dots (QDs) show a Stocks shift as large as 180 nm and a photoluminescence (PL) quantum yield (QY) as high as 61%. The potential application of the stretchable silica gel-QD films is explored. The prominent properties of the proposed silica gel-QD materials, including their impressive flexibility and highly bright emission suggest that they are promising candidates for smart optoelectronic devices due to their ability of being stretched into arbitrary shapes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Development of nanophosphors for light emitting diodes

H. Menkara, R. A. Gilstrap, T. Morris, M. Minkara, B. K. Wagner, and C. J. Summers
Opt. Express 19(S4) A972-A981 (2011)

Quantum dot white light emitting diodes with high scotopic/photopic ratios

Feng Li, Lai You, Chao Nie, Qin Zhang, Xiao Jin, Haiyang Li, Xiaobing Gu, Yan Huang, and Qinghua Li
Opt. Express 25(18) 21901-21913 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
    [Crossref] [PubMed]
  2. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
    [Crossref]
  3. W. H. Evers, J. M. Schins, M. Aerts, A. Kulkarni, P. Capiod, M. Berthe, B. Grandidier, C. Delerue, H. S. J. van der Zant, C. van Overbeek, J. L. Peters, D. Vanmaekelbergh, and L. D. A. Siebbeles, “High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds,” Nat. Commun. 6(1), 8195 (2015).
    [Crossref] [PubMed]
  4. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
    [Crossref] [PubMed]
  5. K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
    [Crossref]
  6. J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
    [Crossref] [PubMed]
  7. Q. H. Li, X. Jin, Y. Yang, H. N. Wang, H. J. Xu, Y. Y. Cheng, T. H. Wei, Y. C. Qin, X. B. Luo, W. F. Sun, and S. L. Luo, “Nd2(S, Se, Te)3 colloidal quantum dots: synthesis, energy level alignment, charge transfer dynamics, and their applications to solar cells,” Adv. Funct. Mater. 26(2), 254–266 (2016).
    [Crossref]
  8. X. Jin, W. Sun, S. Luo, L. Shao, J. Zhang, X. Luo, T. Wei, Y. Qin, Y. Song, and Q. Li, “Energy gradient architectured praseodymium chalcogenide quantum dot solar cells: towards unidirectionally funneling energy transfer,” J. Mater. Chem. A Mater. Energy Sustain. 3(47), 23876–23887 (2015).
    [Crossref]
  9. D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
    [Crossref]
  10. R. Beaulac, P. I. Archer, S. T. Ochsenbein, and D. R. Gamelin, “Mn2+-doped CdSe quantum dots: new inorganic materials for spin-electronics and spin-photonics,” Adv. Funct. Mater. 18(24), 3873–3891 (2008).
    [Crossref]
  11. M. Wang, M. Zhang, J. Qian, F. Zhao, L. Shen, G. D. Scholes, and M. A. Winnik, “Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach,” Langmuir 25(19), 11732–11740 (2009).
    [Crossref] [PubMed]
  12. N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano Lett. 7(2), 312–317 (2007).
    [Crossref] [PubMed]
  13. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
    [Crossref] [PubMed]
  14. O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
    [Crossref] [PubMed]
  15. D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J. P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89(3), 035303 (2014).
    [Crossref]
  16. S. Sarkar, A. R. Maity, N. S. Karan, and N. Pradhan, “Fluorescence energy transfer from doped to undoped quantum dots,” J. Phys. Chem. C 117(42), 21988–21994 (2013).
    [Crossref]
  17. B. B. Srivastava, S. Jana, and N. Pradhan, “Doping Cu in Semiconductor nanocrystals: some old and some new physical insights,” J. Am. Chem. Soc. 133(4), 1007–1015 (2011).
    [Crossref] [PubMed]
  18. G. K. Grandhi, R. Tomar, and R. Viswanatha, “Study of surface and bulk electronic structure of II-VI semiconductor nanocrystals using Cu as a nanosensor,” ACS Nano 6(11), 9751–9763 (2012).
    [Crossref] [PubMed]
  19. A. M. Jawaid, S. Chattopadhyay, D. J. Wink, L. E. Page, and P. T. Snee, “Cluster-seeded synthesis of doped CdSe:Cu4 quantum dots,” ACS Nano 7(4), 3190–3197 (2013).
    [Crossref] [PubMed]
  20. N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129(11), 3339–3347 (2007).
    [Crossref] [PubMed]
  21. S. Jana, B. B. Srivastava, S. Jana, R. Bose, and N. Pradhan, “Multifunctional doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 3(18), 2535–2540 (2012).
    [Crossref] [PubMed]
  22. N. Pradhan and D. D. Sarma, “Advances in light-emitting doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 2(21), 2818–2826 (2011).
    [Crossref]
  23. R. Zeng, M. Rutherford, R. Xie, B. Zou, and X. Peng, “Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents,” Chem. Mater. 22(6), 2107–2113 (2010).
    [Crossref]
  24. W. Zhang, Y. Li, H. Zhang, X. Zhou, and X. Zhong, “Facile synthesis of highly luminescent Mn-doped ZnS nanocrystals,” Inorg. Chem. 50(20), 10432–10438 (2011).
    [Crossref] [PubMed]
  25. C. Pu, J. Ma, H. Qin, M. Yan, T. Fu, Y. Niu, X. Yang, Y. Huang, F. Zhao, and X. Peng, “Doped semiconductor-nanocrystal emitters with optimal photoluminescence decay dynamics in microsecond to millisecond range: synthesis and applications,” ACS Cent Sci 2(1), 32–39 (2016).
    [Crossref] [PubMed]
  26. F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27(17), 1700051 (2017).
    [Crossref]
  27. H. Zhang, C. Wang, M. Li, J. Zhang, G. Lu, and B. Yang, “Fluorescent nanocrystal–polymer complexes with flexible processability,” Adv. Mater. 17(7), 853–857 (2005).
    [Crossref]
  28. N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8(1), 44–53 (2014).
    [Crossref] [PubMed]
  29. G. Xu, Y. Li, Y. Qin, Z. Liu, J. Han, Y. Han, and K. Yao, “Fabrication and enhanced optical properties of ZnSe:Mn quantum dots/poly(LMA-co-EGDMA) composite thin film by alkylthiol modification,” Opt. Mater. Express 5(6), 1460–1468 (2015).
    [Crossref]
  30. R. Zeng, T. Zhang, G. Dai, and B. Zou, “Highly emissive, color-tunable, phosphine-free Mn:ZnSe/ZnS core/shell and Mn:ZnSeS shell-alloyed doped nanocrystals,” J. Phys. Chem. C 115(7), 3005–3010 (2011).
    [Crossref]
  31. J. R. Dethlefsen and A. Døssing, “Preparation of a ZnS shell on CdSe quantum dots using a single-molecular ZnS precursor,” Nano Lett. 11(5), 1964–1969 (2011).
    [Crossref] [PubMed]
  32. B. Dong, L. Cao, G. Su, and W. Liu, “Facile synthesis of highly luminescent water-soluble ZnSe:Mn/ZnS core/shell doped nanocrystals with pure dopant emission,” J. Phys. Chem. C 116(22), 12258–12264 (2012).
    [Crossref]
  33. I. Coropceanu and M. G. Bawendi, “Core/Shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency,” Nano Lett. 14(7), 4097–4101 (2014).
    [Crossref] [PubMed]
  34. H.-S. Chen, B. Lo, J.-Y. Hwang, G.-Y. Chang, C.-M. Chen, S.-J. Tasi, and S.-J. J. Wang, “Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO,” J. Phys. Chem. B 108(44), 17119–17123 (2004).
    [Crossref]
  35. Y. Zhang, C. Gan, J. Muhammad, D. Battaglia, X. Peng, and M. Xiao, “Enhanced fluorescence intermittency in Mn-doped single ZnSe quantum dots,” J. Phys. Chem. C 112(51), 20200–20205 (2008).
    [Crossref]
  36. D. Hiller, J. López-Vidrier, S. Gutsch, M. Zacharias, K. Nomoto, and D. König, “Defect-induced luminescence quenching vs. charge carrier generation of phosphorus incorporated in silicon nanocrystals as function of size,” Sci. Rep. 7(1), 863 (2017).
    [Crossref] [PubMed]
  37. R. Xie and X. Peng, “Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters,” J. Am. Chem. Soc. 131(30), 10645–10651 (2009).
    [Crossref] [PubMed]
  38. J. Zheng, W. Ji, X. Wang, M. Ikezawa, P. Jing, X. Liu, H. Li, J. Zhao, and Y. Masumoto, “Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell,” J. Phys. Chem. C 114(36), 15331–15336 (2010).
    [Crossref]
  39. S. Sarkar, B. K. Patra, A. K. Guria, and N. Pradhan, “The redox chemistry at the interface for retrieving and brightening the emission of doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 4(12), 2084–2090 (2013).
    [Crossref] [PubMed]
  40. S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
    [Crossref] [PubMed]
  41. X. Li, Y. Xie, B. Song, H.-L. Zhang, H. Chen, H. Cai, W. Liu, and Y. Tang, “A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption,” Angew. Chem. Int. Ed. Engl. 56(10), 2689–2693 (2017).
    [Crossref] [PubMed]

2017 (3)

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27(17), 1700051 (2017).
[Crossref]

D. Hiller, J. López-Vidrier, S. Gutsch, M. Zacharias, K. Nomoto, and D. König, “Defect-induced luminescence quenching vs. charge carrier generation of phosphorus incorporated in silicon nanocrystals as function of size,” Sci. Rep. 7(1), 863 (2017).
[Crossref] [PubMed]

X. Li, Y. Xie, B. Song, H.-L. Zhang, H. Chen, H. Cai, W. Liu, and Y. Tang, “A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption,” Angew. Chem. Int. Ed. Engl. 56(10), 2689–2693 (2017).
[Crossref] [PubMed]

2016 (2)

C. Pu, J. Ma, H. Qin, M. Yan, T. Fu, Y. Niu, X. Yang, Y. Huang, F. Zhao, and X. Peng, “Doped semiconductor-nanocrystal emitters with optimal photoluminescence decay dynamics in microsecond to millisecond range: synthesis and applications,” ACS Cent Sci 2(1), 32–39 (2016).
[Crossref] [PubMed]

Q. H. Li, X. Jin, Y. Yang, H. N. Wang, H. J. Xu, Y. Y. Cheng, T. H. Wei, Y. C. Qin, X. B. Luo, W. F. Sun, and S. L. Luo, “Nd2(S, Se, Te)3 colloidal quantum dots: synthesis, energy level alignment, charge transfer dynamics, and their applications to solar cells,” Adv. Funct. Mater. 26(2), 254–266 (2016).
[Crossref]

2015 (4)

X. Jin, W. Sun, S. Luo, L. Shao, J. Zhang, X. Luo, T. Wei, Y. Qin, Y. Song, and Q. Li, “Energy gradient architectured praseodymium chalcogenide quantum dot solar cells: towards unidirectionally funneling energy transfer,” J. Mater. Chem. A Mater. Energy Sustain. 3(47), 23876–23887 (2015).
[Crossref]

W. H. Evers, J. M. Schins, M. Aerts, A. Kulkarni, P. Capiod, M. Berthe, B. Grandidier, C. Delerue, H. S. J. van der Zant, C. van Overbeek, J. L. Peters, D. Vanmaekelbergh, and L. D. A. Siebbeles, “High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds,” Nat. Commun. 6(1), 8195 (2015).
[Crossref] [PubMed]

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref] [PubMed]

G. Xu, Y. Li, Y. Qin, Z. Liu, J. Han, Y. Han, and K. Yao, “Fabrication and enhanced optical properties of ZnSe:Mn quantum dots/poly(LMA-co-EGDMA) composite thin film by alkylthiol modification,” Opt. Mater. Express 5(6), 1460–1468 (2015).
[Crossref]

2014 (4)

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8(1), 44–53 (2014).
[Crossref] [PubMed]

I. Coropceanu and M. G. Bawendi, “Core/Shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency,” Nano Lett. 14(7), 4097–4101 (2014).
[Crossref] [PubMed]

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J. P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89(3), 035303 (2014).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

2013 (4)

S. Sarkar, A. R. Maity, N. S. Karan, and N. Pradhan, “Fluorescence energy transfer from doped to undoped quantum dots,” J. Phys. Chem. C 117(42), 21988–21994 (2013).
[Crossref]

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

A. M. Jawaid, S. Chattopadhyay, D. J. Wink, L. E. Page, and P. T. Snee, “Cluster-seeded synthesis of doped CdSe:Cu4 quantum dots,” ACS Nano 7(4), 3190–3197 (2013).
[Crossref] [PubMed]

S. Sarkar, B. K. Patra, A. K. Guria, and N. Pradhan, “The redox chemistry at the interface for retrieving and brightening the emission of doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 4(12), 2084–2090 (2013).
[Crossref] [PubMed]

2012 (3)

S. Jana, B. B. Srivastava, S. Jana, R. Bose, and N. Pradhan, “Multifunctional doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 3(18), 2535–2540 (2012).
[Crossref] [PubMed]

B. Dong, L. Cao, G. Su, and W. Liu, “Facile synthesis of highly luminescent water-soluble ZnSe:Mn/ZnS core/shell doped nanocrystals with pure dopant emission,” J. Phys. Chem. C 116(22), 12258–12264 (2012).
[Crossref]

G. K. Grandhi, R. Tomar, and R. Viswanatha, “Study of surface and bulk electronic structure of II-VI semiconductor nanocrystals using Cu as a nanosensor,” ACS Nano 6(11), 9751–9763 (2012).
[Crossref] [PubMed]

2011 (5)

B. B. Srivastava, S. Jana, and N. Pradhan, “Doping Cu in Semiconductor nanocrystals: some old and some new physical insights,” J. Am. Chem. Soc. 133(4), 1007–1015 (2011).
[Crossref] [PubMed]

R. Zeng, T. Zhang, G. Dai, and B. Zou, “Highly emissive, color-tunable, phosphine-free Mn:ZnSe/ZnS core/shell and Mn:ZnSeS shell-alloyed doped nanocrystals,” J. Phys. Chem. C 115(7), 3005–3010 (2011).
[Crossref]

J. R. Dethlefsen and A. Døssing, “Preparation of a ZnS shell on CdSe quantum dots using a single-molecular ZnS precursor,” Nano Lett. 11(5), 1964–1969 (2011).
[Crossref] [PubMed]

N. Pradhan and D. D. Sarma, “Advances in light-emitting doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 2(21), 2818–2826 (2011).
[Crossref]

W. Zhang, Y. Li, H. Zhang, X. Zhou, and X. Zhong, “Facile synthesis of highly luminescent Mn-doped ZnS nanocrystals,” Inorg. Chem. 50(20), 10432–10438 (2011).
[Crossref] [PubMed]

2010 (3)

R. Zeng, M. Rutherford, R. Xie, B. Zou, and X. Peng, “Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents,” Chem. Mater. 22(6), 2107–2113 (2010).
[Crossref]

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

J. Zheng, W. Ji, X. Wang, M. Ikezawa, P. Jing, X. Liu, H. Li, J. Zhao, and Y. Masumoto, “Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell,” J. Phys. Chem. C 114(36), 15331–15336 (2010).
[Crossref]

2009 (3)

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

M. Wang, M. Zhang, J. Qian, F. Zhao, L. Shen, G. D. Scholes, and M. A. Winnik, “Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach,” Langmuir 25(19), 11732–11740 (2009).
[Crossref] [PubMed]

R. Xie and X. Peng, “Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters,” J. Am. Chem. Soc. 131(30), 10645–10651 (2009).
[Crossref] [PubMed]

2008 (3)

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
[Crossref] [PubMed]

R. Beaulac, P. I. Archer, S. T. Ochsenbein, and D. R. Gamelin, “Mn2+-doped CdSe quantum dots: new inorganic materials for spin-electronics and spin-photonics,” Adv. Funct. Mater. 18(24), 3873–3891 (2008).
[Crossref]

Y. Zhang, C. Gan, J. Muhammad, D. Battaglia, X. Peng, and M. Xiao, “Enhanced fluorescence intermittency in Mn-doped single ZnSe quantum dots,” J. Phys. Chem. C 112(51), 20200–20205 (2008).
[Crossref]

2007 (2)

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano Lett. 7(2), 312–317 (2007).
[Crossref] [PubMed]

N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129(11), 3339–3347 (2007).
[Crossref] [PubMed]

2005 (2)

H. Zhang, C. Wang, M. Li, J. Zhang, G. Lu, and B. Yang, “Fluorescent nanocrystal–polymer complexes with flexible processability,” Adv. Mater. 17(7), 853–857 (2005).
[Crossref]

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[Crossref] [PubMed]

2004 (1)

H.-S. Chen, B. Lo, J.-Y. Hwang, G.-Y. Chang, C.-M. Chen, S.-J. Tasi, and S.-J. J. Wang, “Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO,” J. Phys. Chem. B 108(44), 17119–17123 (2004).
[Crossref]

2000 (1)

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

1996 (1)

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
[Crossref]

Aerts, M.

W. H. Evers, J. M. Schins, M. Aerts, A. Kulkarni, P. Capiod, M. Berthe, B. Grandidier, C. Delerue, H. S. J. van der Zant, C. van Overbeek, J. L. Peters, D. Vanmaekelbergh, and L. D. A. Siebbeles, “High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds,” Nat. Commun. 6(1), 8195 (2015).
[Crossref] [PubMed]

Alivisatos, A. P.

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8(1), 44–53 (2014).
[Crossref] [PubMed]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
[Crossref]

Archer, P. I.

R. Beaulac, P. I. Archer, S. T. Ochsenbein, and D. R. Gamelin, “Mn2+-doped CdSe quantum dots: new inorganic materials for spin-electronics and spin-photonics,” Adv. Funct. Mater. 18(24), 3873–3891 (2008).
[Crossref]

Bao, J.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref] [PubMed]

Battaglia, D.

Y. Zhang, C. Gan, J. Muhammad, D. Battaglia, X. Peng, and M. Xiao, “Enhanced fluorescence intermittency in Mn-doped single ZnSe quantum dots,” J. Phys. Chem. C 112(51), 20200–20205 (2008).
[Crossref]

Battaglia, D. M.

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano Lett. 7(2), 312–317 (2007).
[Crossref] [PubMed]

Bawendi, M. G.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref] [PubMed]

I. Coropceanu and M. G. Bawendi, “Core/Shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency,” Nano Lett. 14(7), 4097–4101 (2014).
[Crossref] [PubMed]

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Beaulac, R.

R. Beaulac, P. I. Archer, S. T. Ochsenbein, and D. R. Gamelin, “Mn2+-doped CdSe quantum dots: new inorganic materials for spin-electronics and spin-photonics,” Adv. Funct. Mater. 18(24), 3873–3891 (2008).
[Crossref]

Berthe, M.

W. H. Evers, J. M. Schins, M. Aerts, A. Kulkarni, P. Capiod, M. Berthe, B. Grandidier, C. Delerue, H. S. J. van der Zant, C. van Overbeek, J. L. Peters, D. Vanmaekelbergh, and L. D. A. Siebbeles, “High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds,” Nat. Commun. 6(1), 8195 (2015).
[Crossref] [PubMed]

Biadala, L.

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J. P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89(3), 035303 (2014).
[Crossref]

Bose, R.

S. Jana, B. B. Srivastava, S. Jana, R. Bose, and N. Pradhan, “Multifunctional doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 3(18), 2535–2540 (2012).
[Crossref] [PubMed]

Bronstein, N. D.

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8(1), 44–53 (2014).
[Crossref] [PubMed]

Buil, S.

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J. P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89(3), 035303 (2014).
[Crossref]

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
[Crossref] [PubMed]

Cai, H.

X. Li, Y. Xie, B. Song, H.-L. Zhang, H. Chen, H. Cai, W. Liu, and Y. Tang, “A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption,” Angew. Chem. Int. Ed. Engl. 56(10), 2689–2693 (2017).
[Crossref] [PubMed]

Canneson, D.

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J. P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89(3), 035303 (2014).
[Crossref]

Cao, H.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Cao, L.

B. Dong, L. Cao, G. Su, and W. Liu, “Facile synthesis of highly luminescent water-soluble ZnSe:Mn/ZnS core/shell doped nanocrystals with pure dopant emission,” J. Phys. Chem. C 116(22), 12258–12264 (2012).
[Crossref]

Capiod, P.

W. H. Evers, J. M. Schins, M. Aerts, A. Kulkarni, P. Capiod, M. Berthe, B. Grandidier, C. Delerue, H. S. J. van der Zant, C. van Overbeek, J. L. Peters, D. Vanmaekelbergh, and L. D. A. Siebbeles, “High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds,” Nat. Commun. 6(1), 8195 (2015).
[Crossref] [PubMed]

Chang, G.-Y.

H.-S. Chen, B. Lo, J.-Y. Hwang, G.-Y. Chang, C.-M. Chen, S.-J. Tasi, and S.-J. J. Wang, “Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO,” J. Phys. Chem. B 108(44), 17119–17123 (2004).
[Crossref]

Chattopadhyay, S.

A. M. Jawaid, S. Chattopadhyay, D. J. Wink, L. E. Page, and P. T. Snee, “Cluster-seeded synthesis of doped CdSe:Cu4 quantum dots,” ACS Nano 7(4), 3190–3197 (2013).
[Crossref] [PubMed]

Chauhan, V. P.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Chen, C.-M.

H.-S. Chen, B. Lo, J.-Y. Hwang, G.-Y. Chang, C.-M. Chen, S.-J. Tasi, and S.-J. J. Wang, “Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO,” J. Phys. Chem. B 108(44), 17119–17123 (2004).
[Crossref]

Chen, D.

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

Chen, H.

X. Li, Y. Xie, B. Song, H.-L. Zhang, H. Chen, H. Cai, W. Liu, and Y. Tang, “A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption,” Angew. Chem. Int. Ed. Engl. 56(10), 2689–2693 (2017).
[Crossref] [PubMed]

Chen, H.-S.

H.-S. Chen, B. Lo, J.-Y. Hwang, G.-Y. Chang, C.-M. Chen, S.-J. Tasi, and S.-J. J. Wang, “Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO,” J. Phys. Chem. B 108(44), 17119–17123 (2004).
[Crossref]

Chen, L.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Chen, O.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Cheng, Y. Y.

Q. H. Li, X. Jin, Y. Yang, H. N. Wang, H. J. Xu, Y. Y. Cheng, T. H. Wei, Y. C. Qin, X. B. Luo, W. F. Sun, and S. L. Luo, “Nd2(S, Se, Te)3 colloidal quantum dots: synthesis, energy level alignment, charge transfer dynamics, and their applications to solar cells,” Adv. Funct. Mater. 26(2), 254–266 (2016).
[Crossref]

Cho, K.-S.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Choi, B. L.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Coropceanu, I.

I. Coropceanu and M. G. Bawendi, “Core/Shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency,” Nano Lett. 14(7), 4097–4101 (2014).
[Crossref] [PubMed]

Cui, J.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Dai, G.

R. Zeng, T. Zhang, G. Dai, and B. Zou, “Highly emissive, color-tunable, phosphine-free Mn:ZnSe/ZnS core/shell and Mn:ZnSeS shell-alloyed doped nanocrystals,” J. Phys. Chem. C 115(7), 3005–3010 (2011).
[Crossref]

Dai, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Delerue, C.

W. H. Evers, J. M. Schins, M. Aerts, A. Kulkarni, P. Capiod, M. Berthe, B. Grandidier, C. Delerue, H. S. J. van der Zant, C. van Overbeek, J. L. Peters, D. Vanmaekelbergh, and L. D. A. Siebbeles, “High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds,” Nat. Commun. 6(1), 8195 (2015).
[Crossref] [PubMed]

Dethlefsen, J. R.

J. R. Dethlefsen and A. Døssing, “Preparation of a ZnS shell on CdSe quantum dots using a single-molecular ZnS precursor,” Nano Lett. 11(5), 1964–1969 (2011).
[Crossref] [PubMed]

Dong, B.

B. Dong, L. Cao, G. Su, and W. Liu, “Facile synthesis of highly luminescent water-soluble ZnSe:Mn/ZnS core/shell doped nanocrystals with pure dopant emission,” J. Phys. Chem. C 116(22), 12258–12264 (2012).
[Crossref]

Døssing, A.

J. R. Dethlefsen and A. Døssing, “Preparation of a ZnS shell on CdSe quantum dots using a single-molecular ZnS precursor,” Nano Lett. 11(5), 1964–1969 (2011).
[Crossref] [PubMed]

Dubertret, B.

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J. P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89(3), 035303 (2014).
[Crossref]

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
[Crossref] [PubMed]

Efros, A. L.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[Crossref] [PubMed]

Erwin, S. C.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[Crossref] [PubMed]

Evers, W. H.

W. H. Evers, J. M. Schins, M. Aerts, A. Kulkarni, P. Capiod, M. Berthe, B. Grandidier, C. Delerue, H. S. J. van der Zant, C. van Overbeek, J. L. Peters, D. Vanmaekelbergh, and L. D. A. Siebbeles, “High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds,” Nat. Commun. 6(1), 8195 (2015).
[Crossref] [PubMed]

Ferry, V. E.

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8(1), 44–53 (2014).
[Crossref] [PubMed]

Fu, T.

C. Pu, J. Ma, H. Qin, M. Yan, T. Fu, Y. Niu, X. Yang, Y. Huang, F. Zhao, and X. Peng, “Doped semiconductor-nanocrystal emitters with optimal photoluminescence decay dynamics in microsecond to millisecond range: synthesis and applications,” ACS Cent Sci 2(1), 32–39 (2016).
[Crossref] [PubMed]

Fukumura, D.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Gamelin, D. R.

R. Beaulac, P. I. Archer, S. T. Ochsenbein, and D. R. Gamelin, “Mn2+-doped CdSe quantum dots: new inorganic materials for spin-electronics and spin-photonics,” Adv. Funct. Mater. 18(24), 3873–3891 (2008).
[Crossref]

Gan, C.

Y. Zhang, C. Gan, J. Muhammad, D. Battaglia, X. Peng, and M. Xiao, “Enhanced fluorescence intermittency in Mn-doped single ZnSe quantum dots,” J. Phys. Chem. C 112(51), 20200–20205 (2008).
[Crossref]

Grandhi, G. K.

G. K. Grandhi, R. Tomar, and R. Viswanatha, “Study of surface and bulk electronic structure of II-VI semiconductor nanocrystals using Cu as a nanosensor,” ACS Nano 6(11), 9751–9763 (2012).
[Crossref] [PubMed]

Grandidier, B.

W. H. Evers, J. M. Schins, M. Aerts, A. Kulkarni, P. Capiod, M. Berthe, B. Grandidier, C. Delerue, H. S. J. van der Zant, C. van Overbeek, J. L. Peters, D. Vanmaekelbergh, and L. D. A. Siebbeles, “High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds,” Nat. Commun. 6(1), 8195 (2015).
[Crossref] [PubMed]

Guria, A. K.

S. Sarkar, B. K. Patra, A. K. Guria, and N. Pradhan, “The redox chemistry at the interface for retrieving and brightening the emission of doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 4(12), 2084–2090 (2013).
[Crossref] [PubMed]

Gutsch, S.

D. Hiller, J. López-Vidrier, S. Gutsch, M. Zacharias, K. Nomoto, and D. König, “Defect-induced luminescence quenching vs. charge carrier generation of phosphorus incorporated in silicon nanocrystals as function of size,” Sci. Rep. 7(1), 863 (2017).
[Crossref] [PubMed]

Haftel, M. I.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[Crossref] [PubMed]

Han, H.-S.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Han, J.

Han, J. Y.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Han, Y.

Harris, D. K.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Hermier, J. P.

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J. P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89(3), 035303 (2014).
[Crossref]

Hermier, J.-P.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
[Crossref] [PubMed]

Hiller, D.

D. Hiller, J. López-Vidrier, S. Gutsch, M. Zacharias, K. Nomoto, and D. König, “Defect-induced luminescence quenching vs. charge carrier generation of phosphorus incorporated in silicon nanocrystals as function of size,” Sci. Rep. 7(1), 863 (2017).
[Crossref] [PubMed]

Huang, Y.

C. Pu, J. Ma, H. Qin, M. Yan, T. Fu, Y. Niu, X. Yang, Y. Huang, F. Zhao, and X. Peng, “Doped semiconductor-nanocrystal emitters with optimal photoluminescence decay dynamics in microsecond to millisecond range: synthesis and applications,” ACS Cent Sci 2(1), 32–39 (2016).
[Crossref] [PubMed]

Hwang, J.-Y.

H.-S. Chen, B. Lo, J.-Y. Hwang, G.-Y. Chang, C.-M. Chen, S.-J. Tasi, and S.-J. J. Wang, “Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO,” J. Phys. Chem. B 108(44), 17119–17123 (2004).
[Crossref]

Ikezawa, M.

J. Zheng, W. Ji, X. Wang, M. Ikezawa, P. Jing, X. Liu, H. Li, J. Zhao, and Y. Masumoto, “Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell,” J. Phys. Chem. C 114(36), 15331–15336 (2010).
[Crossref]

Jain, R. K.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Jana, S.

S. Jana, B. B. Srivastava, S. Jana, R. Bose, and N. Pradhan, “Multifunctional doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 3(18), 2535–2540 (2012).
[Crossref] [PubMed]

S. Jana, B. B. Srivastava, S. Jana, R. Bose, and N. Pradhan, “Multifunctional doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 3(18), 2535–2540 (2012).
[Crossref] [PubMed]

B. B. Srivastava, S. Jana, and N. Pradhan, “Doping Cu in Semiconductor nanocrystals: some old and some new physical insights,” J. Am. Chem. Soc. 133(4), 1007–1015 (2011).
[Crossref] [PubMed]

Jang, E.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Javaux, C.

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J. P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89(3), 035303 (2014).
[Crossref]

Jawaid, A. M.

A. M. Jawaid, S. Chattopadhyay, D. J. Wink, L. E. Page, and P. T. Snee, “Cluster-seeded synthesis of doped CdSe:Cu4 quantum dots,” ACS Nano 7(4), 3190–3197 (2013).
[Crossref] [PubMed]

Ji, W.

J. Zheng, W. Ji, X. Wang, M. Ikezawa, P. Jing, X. Liu, H. Li, J. Zhao, and Y. Masumoto, “Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell,” J. Phys. Chem. C 114(36), 15331–15336 (2010).
[Crossref]

Jin, X.

Q. H. Li, X. Jin, Y. Yang, H. N. Wang, H. J. Xu, Y. Y. Cheng, T. H. Wei, Y. C. Qin, X. B. Luo, W. F. Sun, and S. L. Luo, “Nd2(S, Se, Te)3 colloidal quantum dots: synthesis, energy level alignment, charge transfer dynamics, and their applications to solar cells,” Adv. Funct. Mater. 26(2), 254–266 (2016).
[Crossref]

X. Jin, W. Sun, S. Luo, L. Shao, J. Zhang, X. Luo, T. Wei, Y. Qin, Y. Song, and Q. Li, “Energy gradient architectured praseodymium chalcogenide quantum dot solar cells: towards unidirectionally funneling energy transfer,” J. Mater. Chem. A Mater. Energy Sustain. 3(47), 23876–23887 (2015).
[Crossref]

Jin, Y.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Jing, P.

J. Zheng, W. Ji, X. Wang, M. Ikezawa, P. Jing, X. Liu, H. Li, J. Zhao, and Y. Masumoto, “Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell,” J. Phys. Chem. C 114(36), 15331–15336 (2010).
[Crossref]

Joo, W.-J.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Kadavanich, A.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

Karan, N. S.

S. Sarkar, A. R. Maity, N. S. Karan, and N. Pradhan, “Fluorescence energy transfer from doped to undoped quantum dots,” J. Phys. Chem. C 117(42), 21988–21994 (2013).
[Crossref]

Kennedy, T. A.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[Crossref] [PubMed]

Kim, B.-K.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Kim, J. M.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Kim, T.-H.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

König, D.

D. Hiller, J. López-Vidrier, S. Gutsch, M. Zacharias, K. Nomoto, and D. König, “Defect-induced luminescence quenching vs. charge carrier generation of phosphorus incorporated in silicon nanocrystals as function of size,” Sci. Rep. 7(1), 863 (2017).
[Crossref] [PubMed]

Kulkarni, A.

W. H. Evers, J. M. Schins, M. Aerts, A. Kulkarni, P. Capiod, M. Berthe, B. Grandidier, C. Delerue, H. S. J. van der Zant, C. van Overbeek, J. L. Peters, D. Vanmaekelbergh, and L. D. A. Siebbeles, “High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds,” Nat. Commun. 6(1), 8195 (2015).
[Crossref] [PubMed]

Kwon, S.-J.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Lee, E. K.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Lee, S. J.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Li, F.

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27(17), 1700051 (2017).
[Crossref]

Li, H.

J. Zheng, W. Ji, X. Wang, M. Ikezawa, P. Jing, X. Liu, H. Li, J. Zhao, and Y. Masumoto, “Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell,” J. Phys. Chem. C 114(36), 15331–15336 (2010).
[Crossref]

Li, L.

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8(1), 44–53 (2014).
[Crossref] [PubMed]

Li, M.

H. Zhang, C. Wang, M. Li, J. Zhang, G. Lu, and B. Yang, “Fluorescent nanocrystal–polymer complexes with flexible processability,” Adv. Mater. 17(7), 853–857 (2005).
[Crossref]

Li, Q.

X. Jin, W. Sun, S. Luo, L. Shao, J. Zhang, X. Luo, T. Wei, Y. Qin, Y. Song, and Q. Li, “Energy gradient architectured praseodymium chalcogenide quantum dot solar cells: towards unidirectionally funneling energy transfer,” J. Mater. Chem. A Mater. Energy Sustain. 3(47), 23876–23887 (2015).
[Crossref]

Li, Q. H.

Q. H. Li, X. Jin, Y. Yang, H. N. Wang, H. J. Xu, Y. Y. Cheng, T. H. Wei, Y. C. Qin, X. B. Luo, W. F. Sun, and S. L. Luo, “Nd2(S, Se, Te)3 colloidal quantum dots: synthesis, energy level alignment, charge transfer dynamics, and their applications to solar cells,” Adv. Funct. Mater. 26(2), 254–266 (2016).
[Crossref]

Li, X.

X. Li, Y. Xie, B. Song, H.-L. Zhang, H. Chen, H. Cai, W. Liu, and Y. Tang, “A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption,” Angew. Chem. Int. Ed. Engl. 56(10), 2689–2693 (2017).
[Crossref] [PubMed]

Li, Y.

Liang, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Liu, Q.

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27(17), 1700051 (2017).
[Crossref]

Liu, W.

X. Li, Y. Xie, B. Song, H.-L. Zhang, H. Chen, H. Cai, W. Liu, and Y. Tang, “A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption,” Angew. Chem. Int. Ed. Engl. 56(10), 2689–2693 (2017).
[Crossref] [PubMed]

B. Dong, L. Cao, G. Su, and W. Liu, “Facile synthesis of highly luminescent water-soluble ZnSe:Mn/ZnS core/shell doped nanocrystals with pure dopant emission,” J. Phys. Chem. C 116(22), 12258–12264 (2012).
[Crossref]

Liu, X.

J. Zheng, W. Ji, X. Wang, M. Ikezawa, P. Jing, X. Liu, H. Li, J. Zhao, and Y. Masumoto, “Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell,” J. Phys. Chem. C 114(36), 15331–15336 (2010).
[Crossref]

Liu, Y.

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano Lett. 7(2), 312–317 (2007).
[Crossref] [PubMed]

Liu, Z.

Lo, B.

H.-S. Chen, B. Lo, J.-Y. Hwang, G.-Y. Chang, C.-M. Chen, S.-J. Tasi, and S.-J. J. Wang, “Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO,” J. Phys. Chem. B 108(44), 17119–17123 (2004).
[Crossref]

López-Vidrier, J.

D. Hiller, J. López-Vidrier, S. Gutsch, M. Zacharias, K. Nomoto, and D. König, “Defect-induced luminescence quenching vs. charge carrier generation of phosphorus incorporated in silicon nanocrystals as function of size,” Sci. Rep. 7(1), 863 (2017).
[Crossref] [PubMed]

Lu, G.

H. Zhang, C. Wang, M. Li, J. Zhang, G. Lu, and B. Yang, “Fluorescent nanocrystal–polymer complexes with flexible processability,” Adv. Mater. 17(7), 853–857 (2005).
[Crossref]

Luo, S.

X. Jin, W. Sun, S. Luo, L. Shao, J. Zhang, X. Luo, T. Wei, Y. Qin, Y. Song, and Q. Li, “Energy gradient architectured praseodymium chalcogenide quantum dot solar cells: towards unidirectionally funneling energy transfer,” J. Mater. Chem. A Mater. Energy Sustain. 3(47), 23876–23887 (2015).
[Crossref]

Luo, S. L.

Q. H. Li, X. Jin, Y. Yang, H. N. Wang, H. J. Xu, Y. Y. Cheng, T. H. Wei, Y. C. Qin, X. B. Luo, W. F. Sun, and S. L. Luo, “Nd2(S, Se, Te)3 colloidal quantum dots: synthesis, energy level alignment, charge transfer dynamics, and their applications to solar cells,” Adv. Funct. Mater. 26(2), 254–266 (2016).
[Crossref]

Luo, X.

X. Jin, W. Sun, S. Luo, L. Shao, J. Zhang, X. Luo, T. Wei, Y. Qin, Y. Song, and Q. Li, “Energy gradient architectured praseodymium chalcogenide quantum dot solar cells: towards unidirectionally funneling energy transfer,” J. Mater. Chem. A Mater. Energy Sustain. 3(47), 23876–23887 (2015).
[Crossref]

Luo, X. B.

Q. H. Li, X. Jin, Y. Yang, H. N. Wang, H. J. Xu, Y. Y. Cheng, T. H. Wei, Y. C. Qin, X. B. Luo, W. F. Sun, and S. L. Luo, “Nd2(S, Se, Te)3 colloidal quantum dots: synthesis, energy level alignment, charge transfer dynamics, and their applications to solar cells,” Adv. Funct. Mater. 26(2), 254–266 (2016).
[Crossref]

Ma, J.

C. Pu, J. Ma, H. Qin, M. Yan, T. Fu, Y. Niu, X. Yang, Y. Huang, F. Zhao, and X. Peng, “Doped semiconductor-nanocrystal emitters with optimal photoluminescence decay dynamics in microsecond to millisecond range: synthesis and applications,” ACS Cent Sci 2(1), 32–39 (2016).
[Crossref] [PubMed]

Mahler, B.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
[Crossref] [PubMed]

Maity, A. R.

S. Sarkar, A. R. Maity, N. S. Karan, and N. Pradhan, “Fluorescence energy transfer from doped to undoped quantum dots,” J. Phys. Chem. C 117(42), 21988–21994 (2013).
[Crossref]

Manna, L.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

Masumoto, Y.

J. Zheng, W. Ji, X. Wang, M. Ikezawa, P. Jing, X. Liu, H. Li, J. Zhao, and Y. Masumoto, “Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell,” J. Phys. Chem. C 114(36), 15331–15336 (2010).
[Crossref]

Muhammad, J.

Y. Zhang, C. Gan, J. Muhammad, D. Battaglia, X. Peng, and M. Xiao, “Enhanced fluorescence intermittency in Mn-doped single ZnSe quantum dots,” J. Phys. Chem. C 112(51), 20200–20205 (2008).
[Crossref]

Niu, Y.

C. Pu, J. Ma, H. Qin, M. Yan, T. Fu, Y. Niu, X. Yang, Y. Huang, F. Zhao, and X. Peng, “Doped semiconductor-nanocrystal emitters with optimal photoluminescence decay dynamics in microsecond to millisecond range: synthesis and applications,” ACS Cent Sci 2(1), 32–39 (2016).
[Crossref] [PubMed]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Nomoto, K.

D. Hiller, J. López-Vidrier, S. Gutsch, M. Zacharias, K. Nomoto, and D. König, “Defect-induced luminescence quenching vs. charge carrier generation of phosphorus incorporated in silicon nanocrystals as function of size,” Sci. Rep. 7(1), 863 (2017).
[Crossref] [PubMed]

Norris, D. J.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[Crossref] [PubMed]

Nuzzo, R. G.

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8(1), 44–53 (2014).
[Crossref] [PubMed]

Ochsenbein, S. T.

R. Beaulac, P. I. Archer, S. T. Ochsenbein, and D. R. Gamelin, “Mn2+-doped CdSe quantum dots: new inorganic materials for spin-electronics and spin-photonics,” Adv. Funct. Mater. 18(24), 3873–3891 (2008).
[Crossref]

Page, L. E.

A. M. Jawaid, S. Chattopadhyay, D. J. Wink, L. E. Page, and P. T. Snee, “Cluster-seeded synthesis of doped CdSe:Cu4 quantum dots,” ACS Nano 7(4), 3190–3197 (2013).
[Crossref] [PubMed]

Pan, C.

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27(17), 1700051 (2017).
[Crossref]

Patra, B. K.

S. Sarkar, B. K. Patra, A. K. Guria, and N. Pradhan, “The redox chemistry at the interface for retrieving and brightening the emission of doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 4(12), 2084–2090 (2013).
[Crossref] [PubMed]

Peng, X.

C. Pu, J. Ma, H. Qin, M. Yan, T. Fu, Y. Niu, X. Yang, Y. Huang, F. Zhao, and X. Peng, “Doped semiconductor-nanocrystal emitters with optimal photoluminescence decay dynamics in microsecond to millisecond range: synthesis and applications,” ACS Cent Sci 2(1), 32–39 (2016).
[Crossref] [PubMed]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

R. Zeng, M. Rutherford, R. Xie, B. Zou, and X. Peng, “Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents,” Chem. Mater. 22(6), 2107–2113 (2010).
[Crossref]

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

R. Xie and X. Peng, “Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters,” J. Am. Chem. Soc. 131(30), 10645–10651 (2009).
[Crossref] [PubMed]

Y. Zhang, C. Gan, J. Muhammad, D. Battaglia, X. Peng, and M. Xiao, “Enhanced fluorescence intermittency in Mn-doped single ZnSe quantum dots,” J. Phys. Chem. C 112(51), 20200–20205 (2008).
[Crossref]

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano Lett. 7(2), 312–317 (2007).
[Crossref] [PubMed]

N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129(11), 3339–3347 (2007).
[Crossref] [PubMed]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

Peters, J. L.

W. H. Evers, J. M. Schins, M. Aerts, A. Kulkarni, P. Capiod, M. Berthe, B. Grandidier, C. Delerue, H. S. J. van der Zant, C. van Overbeek, J. L. Peters, D. Vanmaekelbergh, and L. D. A. Siebbeles, “High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds,” Nat. Commun. 6(1), 8195 (2015).
[Crossref] [PubMed]

Pradhan, N.

S. Sarkar, A. R. Maity, N. S. Karan, and N. Pradhan, “Fluorescence energy transfer from doped to undoped quantum dots,” J. Phys. Chem. C 117(42), 21988–21994 (2013).
[Crossref]

S. Sarkar, B. K. Patra, A. K. Guria, and N. Pradhan, “The redox chemistry at the interface for retrieving and brightening the emission of doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 4(12), 2084–2090 (2013).
[Crossref] [PubMed]

S. Jana, B. B. Srivastava, S. Jana, R. Bose, and N. Pradhan, “Multifunctional doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 3(18), 2535–2540 (2012).
[Crossref] [PubMed]

N. Pradhan and D. D. Sarma, “Advances in light-emitting doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 2(21), 2818–2826 (2011).
[Crossref]

B. B. Srivastava, S. Jana, and N. Pradhan, “Doping Cu in Semiconductor nanocrystals: some old and some new physical insights,” J. Am. Chem. Soc. 133(4), 1007–1015 (2011).
[Crossref] [PubMed]

N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129(11), 3339–3347 (2007).
[Crossref] [PubMed]

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano Lett. 7(2), 312–317 (2007).
[Crossref] [PubMed]

Pu, C.

C. Pu, J. Ma, H. Qin, M. Yan, T. Fu, Y. Niu, X. Yang, Y. Huang, F. Zhao, and X. Peng, “Doped semiconductor-nanocrystal emitters with optimal photoluminescence decay dynamics in microsecond to millisecond range: synthesis and applications,” ACS Cent Sci 2(1), 32–39 (2016).
[Crossref] [PubMed]

Qi, H.

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

Qian, J.

M. Wang, M. Zhang, J. Qian, F. Zhao, L. Shen, G. D. Scholes, and M. A. Winnik, “Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach,” Langmuir 25(19), 11732–11740 (2009).
[Crossref] [PubMed]

Qin, H.

C. Pu, J. Ma, H. Qin, M. Yan, T. Fu, Y. Niu, X. Yang, Y. Huang, F. Zhao, and X. Peng, “Doped semiconductor-nanocrystal emitters with optimal photoluminescence decay dynamics in microsecond to millisecond range: synthesis and applications,” ACS Cent Sci 2(1), 32–39 (2016).
[Crossref] [PubMed]

Qin, Y.

G. Xu, Y. Li, Y. Qin, Z. Liu, J. Han, Y. Han, and K. Yao, “Fabrication and enhanced optical properties of ZnSe:Mn quantum dots/poly(LMA-co-EGDMA) composite thin film by alkylthiol modification,” Opt. Mater. Express 5(6), 1460–1468 (2015).
[Crossref]

X. Jin, W. Sun, S. Luo, L. Shao, J. Zhang, X. Luo, T. Wei, Y. Qin, Y. Song, and Q. Li, “Energy gradient architectured praseodymium chalcogenide quantum dot solar cells: towards unidirectionally funneling energy transfer,” J. Mater. Chem. A Mater. Energy Sustain. 3(47), 23876–23887 (2015).
[Crossref]

Qin, Y. C.

Q. H. Li, X. Jin, Y. Yang, H. N. Wang, H. J. Xu, Y. Y. Cheng, T. H. Wei, Y. C. Qin, X. B. Luo, W. F. Sun, and S. L. Luo, “Nd2(S, Se, Te)3 colloidal quantum dots: synthesis, energy level alignment, charge transfer dynamics, and their applications to solar cells,” Adv. Funct. Mater. 26(2), 254–266 (2016).
[Crossref]

Quelin, X.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
[Crossref] [PubMed]

Quélin, X.

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J. P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89(3), 035303 (2014).
[Crossref]

Rutherford, M.

R. Zeng, M. Rutherford, R. Xie, B. Zou, and X. Peng, “Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents,” Chem. Mater. 22(6), 2107–2113 (2010).
[Crossref]

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

Sarkar, S.

S. Sarkar, A. R. Maity, N. S. Karan, and N. Pradhan, “Fluorescence energy transfer from doped to undoped quantum dots,” J. Phys. Chem. C 117(42), 21988–21994 (2013).
[Crossref]

S. Sarkar, B. K. Patra, A. K. Guria, and N. Pradhan, “The redox chemistry at the interface for retrieving and brightening the emission of doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 4(12), 2084–2090 (2013).
[Crossref] [PubMed]

Sarma, D. D.

N. Pradhan and D. D. Sarma, “Advances in light-emitting doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 2(21), 2818–2826 (2011).
[Crossref]

Scher, E.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

Schins, J. M.

W. H. Evers, J. M. Schins, M. Aerts, A. Kulkarni, P. Capiod, M. Berthe, B. Grandidier, C. Delerue, H. S. J. van der Zant, C. van Overbeek, J. L. Peters, D. Vanmaekelbergh, and L. D. A. Siebbeles, “High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds,” Nat. Commun. 6(1), 8195 (2015).
[Crossref] [PubMed]

Scholes, G. D.

M. Wang, M. Zhang, J. Qian, F. Zhao, L. Shen, G. D. Scholes, and M. A. Winnik, “Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach,” Langmuir 25(19), 11732–11740 (2009).
[Crossref] [PubMed]

Shao, L.

X. Jin, W. Sun, S. Luo, L. Shao, J. Zhang, X. Luo, T. Wei, Y. Qin, Y. Song, and Q. Li, “Energy gradient architectured praseodymium chalcogenide quantum dot solar cells: towards unidirectionally funneling energy transfer,” J. Mater. Chem. A Mater. Energy Sustain. 3(47), 23876–23887 (2015).
[Crossref]

Shen, L.

M. Wang, M. Zhang, J. Qian, F. Zhao, L. Shen, G. D. Scholes, and M. A. Winnik, “Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach,” Langmuir 25(19), 11732–11740 (2009).
[Crossref] [PubMed]

Siebbeles, L. D. A.

W. H. Evers, J. M. Schins, M. Aerts, A. Kulkarni, P. Capiod, M. Berthe, B. Grandidier, C. Delerue, H. S. J. van der Zant, C. van Overbeek, J. L. Peters, D. Vanmaekelbergh, and L. D. A. Siebbeles, “High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds,” Nat. Commun. 6(1), 8195 (2015).
[Crossref] [PubMed]

Snee, P. T.

A. M. Jawaid, S. Chattopadhyay, D. J. Wink, L. E. Page, and P. T. Snee, “Cluster-seeded synthesis of doped CdSe:Cu4 quantum dots,” ACS Nano 7(4), 3190–3197 (2013).
[Crossref] [PubMed]

Song, B.

X. Li, Y. Xie, B. Song, H.-L. Zhang, H. Chen, H. Cai, W. Liu, and Y. Tang, “A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption,” Angew. Chem. Int. Ed. Engl. 56(10), 2689–2693 (2017).
[Crossref] [PubMed]

Song, Y.

X. Jin, W. Sun, S. Luo, L. Shao, J. Zhang, X. Luo, T. Wei, Y. Qin, Y. Song, and Q. Li, “Energy gradient architectured praseodymium chalcogenide quantum dot solar cells: towards unidirectionally funneling energy transfer,” J. Mater. Chem. A Mater. Energy Sustain. 3(47), 23876–23887 (2015).
[Crossref]

Spinicelli, P.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
[Crossref] [PubMed]

Srivastava, B. B.

S. Jana, B. B. Srivastava, S. Jana, R. Bose, and N. Pradhan, “Multifunctional doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 3(18), 2535–2540 (2012).
[Crossref] [PubMed]

B. B. Srivastava, S. Jana, and N. Pradhan, “Doping Cu in Semiconductor nanocrystals: some old and some new physical insights,” J. Am. Chem. Soc. 133(4), 1007–1015 (2011).
[Crossref] [PubMed]

Su, G.

B. Dong, L. Cao, G. Su, and W. Liu, “Facile synthesis of highly luminescent water-soluble ZnSe:Mn/ZnS core/shell doped nanocrystals with pure dopant emission,” J. Phys. Chem. C 116(22), 12258–12264 (2012).
[Crossref]

Sun, W.

X. Jin, W. Sun, S. Luo, L. Shao, J. Zhang, X. Luo, T. Wei, Y. Qin, Y. Song, and Q. Li, “Energy gradient architectured praseodymium chalcogenide quantum dot solar cells: towards unidirectionally funneling energy transfer,” J. Mater. Chem. A Mater. Energy Sustain. 3(47), 23876–23887 (2015).
[Crossref]

Sun, W. F.

Q. H. Li, X. Jin, Y. Yang, H. N. Wang, H. J. Xu, Y. Y. Cheng, T. H. Wei, Y. C. Qin, X. B. Luo, W. F. Sun, and S. L. Luo, “Nd2(S, Se, Te)3 colloidal quantum dots: synthesis, energy level alignment, charge transfer dynamics, and their applications to solar cells,” Adv. Funct. Mater. 26(2), 254–266 (2016).
[Crossref]

Tang, Y.

X. Li, Y. Xie, B. Song, H.-L. Zhang, H. Chen, H. Cai, W. Liu, and Y. Tang, “A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption,” Angew. Chem. Int. Ed. Engl. 56(10), 2689–2693 (2017).
[Crossref] [PubMed]

Tasi, S.-J.

H.-S. Chen, B. Lo, J.-Y. Hwang, G.-Y. Chang, C.-M. Chen, S.-J. Tasi, and S.-J. J. Wang, “Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO,” J. Phys. Chem. B 108(44), 17119–17123 (2004).
[Crossref]

Tomar, R.

G. K. Grandhi, R. Tomar, and R. Viswanatha, “Study of surface and bulk electronic structure of II-VI semiconductor nanocrystals using Cu as a nanosensor,” ACS Nano 6(11), 9751–9763 (2012).
[Crossref] [PubMed]

van der Zant, H. S. J.

W. H. Evers, J. M. Schins, M. Aerts, A. Kulkarni, P. Capiod, M. Berthe, B. Grandidier, C. Delerue, H. S. J. van der Zant, C. van Overbeek, J. L. Peters, D. Vanmaekelbergh, and L. D. A. Siebbeles, “High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds,” Nat. Commun. 6(1), 8195 (2015).
[Crossref] [PubMed]

van Overbeek, C.

W. H. Evers, J. M. Schins, M. Aerts, A. Kulkarni, P. Capiod, M. Berthe, B. Grandidier, C. Delerue, H. S. J. van der Zant, C. van Overbeek, J. L. Peters, D. Vanmaekelbergh, and L. D. A. Siebbeles, “High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds,” Nat. Commun. 6(1), 8195 (2015).
[Crossref] [PubMed]

Vanmaekelbergh, D.

W. H. Evers, J. M. Schins, M. Aerts, A. Kulkarni, P. Capiod, M. Berthe, B. Grandidier, C. Delerue, H. S. J. van der Zant, C. van Overbeek, J. L. Peters, D. Vanmaekelbergh, and L. D. A. Siebbeles, “High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds,” Nat. Commun. 6(1), 8195 (2015).
[Crossref] [PubMed]

Viswanatha, R.

G. K. Grandhi, R. Tomar, and R. Viswanatha, “Study of surface and bulk electronic structure of II-VI semiconductor nanocrystals using Cu as a nanosensor,” ACS Nano 6(11), 9751–9763 (2012).
[Crossref] [PubMed]

Wang, C.

H. Zhang, C. Wang, M. Li, J. Zhang, G. Lu, and B. Yang, “Fluorescent nanocrystal–polymer complexes with flexible processability,” Adv. Mater. 17(7), 853–857 (2005).
[Crossref]

Wang, H. N.

Q. H. Li, X. Jin, Y. Yang, H. N. Wang, H. J. Xu, Y. Y. Cheng, T. H. Wei, Y. C. Qin, X. B. Luo, W. F. Sun, and S. L. Luo, “Nd2(S, Se, Te)3 colloidal quantum dots: synthesis, energy level alignment, charge transfer dynamics, and their applications to solar cells,” Adv. Funct. Mater. 26(2), 254–266 (2016).
[Crossref]

Wang, J.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Wang, M.

M. Wang, M. Zhang, J. Qian, F. Zhao, L. Shen, G. D. Scholes, and M. A. Winnik, “Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach,” Langmuir 25(19), 11732–11740 (2009).
[Crossref] [PubMed]

Wang, S.-J. J.

H.-S. Chen, B. Lo, J.-Y. Hwang, G.-Y. Chang, C.-M. Chen, S.-J. Tasi, and S.-J. J. Wang, “Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO,” J. Phys. Chem. B 108(44), 17119–17123 (2004).
[Crossref]

Wang, X.

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27(17), 1700051 (2017).
[Crossref]

J. Zheng, W. Ji, X. Wang, M. Ikezawa, P. Jing, X. Liu, H. Li, J. Zhao, and Y. Masumoto, “Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell,” J. Phys. Chem. C 114(36), 15331–15336 (2010).
[Crossref]

Wei, H.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Wei, T.

X. Jin, W. Sun, S. Luo, L. Shao, J. Zhang, X. Luo, T. Wei, Y. Qin, Y. Song, and Q. Li, “Energy gradient architectured praseodymium chalcogenide quantum dot solar cells: towards unidirectionally funneling energy transfer,” J. Mater. Chem. A Mater. Energy Sustain. 3(47), 23876–23887 (2015).
[Crossref]

Wei, T. H.

Q. H. Li, X. Jin, Y. Yang, H. N. Wang, H. J. Xu, Y. Y. Cheng, T. H. Wei, Y. C. Qin, X. B. Luo, W. F. Sun, and S. L. Luo, “Nd2(S, Se, Te)3 colloidal quantum dots: synthesis, energy level alignment, charge transfer dynamics, and their applications to solar cells,” Adv. Funct. Mater. 26(2), 254–266 (2016).
[Crossref]

Wickham, J.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

Wink, D. J.

A. M. Jawaid, S. Chattopadhyay, D. J. Wink, L. E. Page, and P. T. Snee, “Cluster-seeded synthesis of doped CdSe:Cu4 quantum dots,” ACS Nano 7(4), 3190–3197 (2013).
[Crossref] [PubMed]

Winnik, M. A.

M. Wang, M. Zhang, J. Qian, F. Zhao, L. Shen, G. D. Scholes, and M. A. Winnik, “Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach,” Langmuir 25(19), 11732–11740 (2009).
[Crossref] [PubMed]

Wong, C.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Xia, Z.

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27(17), 1700051 (2017).
[Crossref]

Xiao, M.

Y. Zhang, C. Gan, J. Muhammad, D. Battaglia, X. Peng, and M. Xiao, “Enhanced fluorescence intermittency in Mn-doped single ZnSe quantum dots,” J. Phys. Chem. C 112(51), 20200–20205 (2008).
[Crossref]

Xie, R.

R. Zeng, M. Rutherford, R. Xie, B. Zou, and X. Peng, “Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents,” Chem. Mater. 22(6), 2107–2113 (2010).
[Crossref]

R. Xie and X. Peng, “Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters,” J. Am. Chem. Soc. 131(30), 10645–10651 (2009).
[Crossref] [PubMed]

Xie, Y.

X. Li, Y. Xie, B. Song, H.-L. Zhang, H. Chen, H. Cai, W. Liu, and Y. Tang, “A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption,” Angew. Chem. Int. Ed. Engl. 56(10), 2689–2693 (2017).
[Crossref] [PubMed]

Xu, G.

Xu, H. J.

Q. H. Li, X. Jin, Y. Yang, H. N. Wang, H. J. Xu, Y. Y. Cheng, T. H. Wei, Y. C. Qin, X. B. Luo, W. F. Sun, and S. L. Luo, “Nd2(S, Se, Te)3 colloidal quantum dots: synthesis, energy level alignment, charge transfer dynamics, and their applications to solar cells,” Adv. Funct. Mater. 26(2), 254–266 (2016).
[Crossref]

Xu, L.

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8(1), 44–53 (2014).
[Crossref] [PubMed]

Yan, M.

C. Pu, J. Ma, H. Qin, M. Yan, T. Fu, Y. Niu, X. Yang, Y. Huang, F. Zhao, and X. Peng, “Doped semiconductor-nanocrystal emitters with optimal photoluminescence decay dynamics in microsecond to millisecond range: synthesis and applications,” ACS Cent Sci 2(1), 32–39 (2016).
[Crossref] [PubMed]

Yang, B.

H. Zhang, C. Wang, M. Li, J. Zhang, G. Lu, and B. Yang, “Fluorescent nanocrystal–polymer complexes with flexible processability,” Adv. Mater. 17(7), 853–857 (2005).
[Crossref]

Yang, W.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

Yang, X.

C. Pu, J. Ma, H. Qin, M. Yan, T. Fu, Y. Niu, X. Yang, Y. Huang, F. Zhao, and X. Peng, “Doped semiconductor-nanocrystal emitters with optimal photoluminescence decay dynamics in microsecond to millisecond range: synthesis and applications,” ACS Cent Sci 2(1), 32–39 (2016).
[Crossref] [PubMed]

Yang, Y.

Q. H. Li, X. Jin, Y. Yang, H. N. Wang, H. J. Xu, Y. Y. Cheng, T. H. Wei, Y. C. Qin, X. B. Luo, W. F. Sun, and S. L. Luo, “Nd2(S, Se, Te)3 colloidal quantum dots: synthesis, energy level alignment, charge transfer dynamics, and their applications to solar cells,” Adv. Funct. Mater. 26(2), 254–266 (2016).
[Crossref]

Yao, K.

Yao, Y.

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8(1), 44–53 (2014).
[Crossref] [PubMed]

Zacharias, M.

D. Hiller, J. López-Vidrier, S. Gutsch, M. Zacharias, K. Nomoto, and D. König, “Defect-induced luminescence quenching vs. charge carrier generation of phosphorus incorporated in silicon nanocrystals as function of size,” Sci. Rep. 7(1), 863 (2017).
[Crossref] [PubMed]

Zeng, R.

R. Zeng, T. Zhang, G. Dai, and B. Zou, “Highly emissive, color-tunable, phosphine-free Mn:ZnSe/ZnS core/shell and Mn:ZnSeS shell-alloyed doped nanocrystals,” J. Phys. Chem. C 115(7), 3005–3010 (2011).
[Crossref]

R. Zeng, M. Rutherford, R. Xie, B. Zou, and X. Peng, “Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents,” Chem. Mater. 22(6), 2107–2113 (2010).
[Crossref]

Zhang, H.

W. Zhang, Y. Li, H. Zhang, X. Zhou, and X. Zhong, “Facile synthesis of highly luminescent Mn-doped ZnS nanocrystals,” Inorg. Chem. 50(20), 10432–10438 (2011).
[Crossref] [PubMed]

H. Zhang, C. Wang, M. Li, J. Zhang, G. Lu, and B. Yang, “Fluorescent nanocrystal–polymer complexes with flexible processability,” Adv. Mater. 17(7), 853–857 (2005).
[Crossref]

Zhang, H.-L.

X. Li, Y. Xie, B. Song, H.-L. Zhang, H. Chen, H. Cai, W. Liu, and Y. Tang, “A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption,” Angew. Chem. Int. Ed. Engl. 56(10), 2689–2693 (2017).
[Crossref] [PubMed]

Zhang, J.

X. Jin, W. Sun, S. Luo, L. Shao, J. Zhang, X. Luo, T. Wei, Y. Qin, Y. Song, and Q. Li, “Energy gradient architectured praseodymium chalcogenide quantum dot solar cells: towards unidirectionally funneling energy transfer,” J. Mater. Chem. A Mater. Energy Sustain. 3(47), 23876–23887 (2015).
[Crossref]

H. Zhang, C. Wang, M. Li, J. Zhang, G. Lu, and B. Yang, “Fluorescent nanocrystal–polymer complexes with flexible processability,” Adv. Mater. 17(7), 853–857 (2005).
[Crossref]

Zhang, M.

M. Wang, M. Zhang, J. Qian, F. Zhao, L. Shen, G. D. Scholes, and M. A. Winnik, “Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach,” Langmuir 25(19), 11732–11740 (2009).
[Crossref] [PubMed]

Zhang, T.

R. Zeng, T. Zhang, G. Dai, and B. Zou, “Highly emissive, color-tunable, phosphine-free Mn:ZnSe/ZnS core/shell and Mn:ZnSeS shell-alloyed doped nanocrystals,” J. Phys. Chem. C 115(7), 3005–3010 (2011).
[Crossref]

Zhang, W.

W. Zhang, Y. Li, H. Zhang, X. Zhou, and X. Zhong, “Facile synthesis of highly luminescent Mn-doped ZnS nanocrystals,” Inorg. Chem. 50(20), 10432–10438 (2011).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, C. Gan, J. Muhammad, D. Battaglia, X. Peng, and M. Xiao, “Enhanced fluorescence intermittency in Mn-doped single ZnSe quantum dots,” J. Phys. Chem. C 112(51), 20200–20205 (2008).
[Crossref]

Zhang, Z.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Zhao, F.

C. Pu, J. Ma, H. Qin, M. Yan, T. Fu, Y. Niu, X. Yang, Y. Huang, F. Zhao, and X. Peng, “Doped semiconductor-nanocrystal emitters with optimal photoluminescence decay dynamics in microsecond to millisecond range: synthesis and applications,” ACS Cent Sci 2(1), 32–39 (2016).
[Crossref] [PubMed]

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

M. Wang, M. Zhang, J. Qian, F. Zhao, L. Shen, G. D. Scholes, and M. A. Winnik, “Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach,” Langmuir 25(19), 11732–11740 (2009).
[Crossref] [PubMed]

Zhao, J.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

J. Zheng, W. Ji, X. Wang, M. Ikezawa, P. Jing, X. Liu, H. Li, J. Zhao, and Y. Masumoto, “Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell,” J. Phys. Chem. C 114(36), 15331–15336 (2010).
[Crossref]

Zheng, J.

J. Zheng, W. Ji, X. Wang, M. Ikezawa, P. Jing, X. Liu, H. Li, J. Zhao, and Y. Masumoto, “Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell,” J. Phys. Chem. C 114(36), 15331–15336 (2010).
[Crossref]

Zhong, X.

W. Zhang, Y. Li, H. Zhang, X. Zhou, and X. Zhong, “Facile synthesis of highly luminescent Mn-doped ZnS nanocrystals,” Inorg. Chem. 50(20), 10432–10438 (2011).
[Crossref] [PubMed]

Zhou, X.

W. Zhang, Y. Li, H. Zhang, X. Zhou, and X. Zhong, “Facile synthesis of highly luminescent Mn-doped ZnS nanocrystals,” Inorg. Chem. 50(20), 10432–10438 (2011).
[Crossref] [PubMed]

Zou, B.

R. Zeng, T. Zhang, G. Dai, and B. Zou, “Highly emissive, color-tunable, phosphine-free Mn:ZnSe/ZnS core/shell and Mn:ZnSeS shell-alloyed doped nanocrystals,” J. Phys. Chem. C 115(7), 3005–3010 (2011).
[Crossref]

R. Zeng, M. Rutherford, R. Xie, B. Zou, and X. Peng, “Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents,” Chem. Mater. 22(6), 2107–2113 (2010).
[Crossref]

Zu, L.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[Crossref] [PubMed]

ACS Cent Sci (1)

C. Pu, J. Ma, H. Qin, M. Yan, T. Fu, Y. Niu, X. Yang, Y. Huang, F. Zhao, and X. Peng, “Doped semiconductor-nanocrystal emitters with optimal photoluminescence decay dynamics in microsecond to millisecond range: synthesis and applications,” ACS Cent Sci 2(1), 32–39 (2016).
[Crossref] [PubMed]

ACS Nano (3)

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8(1), 44–53 (2014).
[Crossref] [PubMed]

G. K. Grandhi, R. Tomar, and R. Viswanatha, “Study of surface and bulk electronic structure of II-VI semiconductor nanocrystals using Cu as a nanosensor,” ACS Nano 6(11), 9751–9763 (2012).
[Crossref] [PubMed]

A. M. Jawaid, S. Chattopadhyay, D. J. Wink, L. E. Page, and P. T. Snee, “Cluster-seeded synthesis of doped CdSe:Cu4 quantum dots,” ACS Nano 7(4), 3190–3197 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (3)

R. Beaulac, P. I. Archer, S. T. Ochsenbein, and D. R. Gamelin, “Mn2+-doped CdSe quantum dots: new inorganic materials for spin-electronics and spin-photonics,” Adv. Funct. Mater. 18(24), 3873–3891 (2008).
[Crossref]

Q. H. Li, X. Jin, Y. Yang, H. N. Wang, H. J. Xu, Y. Y. Cheng, T. H. Wei, Y. C. Qin, X. B. Luo, W. F. Sun, and S. L. Luo, “Nd2(S, Se, Te)3 colloidal quantum dots: synthesis, energy level alignment, charge transfer dynamics, and their applications to solar cells,” Adv. Funct. Mater. 26(2), 254–266 (2016).
[Crossref]

F. Li, X. Wang, Z. Xia, C. Pan, and Q. Liu, “Photoluminescence tuning in stretchable PDMS film grafted doped core/multishell quantum dots for anticounterfeiting,” Adv. Funct. Mater. 27(17), 1700051 (2017).
[Crossref]

Adv. Mater. (1)

H. Zhang, C. Wang, M. Li, J. Zhang, G. Lu, and B. Yang, “Fluorescent nanocrystal–polymer complexes with flexible processability,” Adv. Mater. 17(7), 853–857 (2005).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

X. Li, Y. Xie, B. Song, H.-L. Zhang, H. Chen, H. Cai, W. Liu, and Y. Tang, “A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption,” Angew. Chem. Int. Ed. Engl. 56(10), 2689–2693 (2017).
[Crossref] [PubMed]

Chem. Mater. (2)

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

R. Zeng, M. Rutherford, R. Xie, B. Zou, and X. Peng, “Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents,” Chem. Mater. 22(6), 2107–2113 (2010).
[Crossref]

Inorg. Chem. (1)

W. Zhang, Y. Li, H. Zhang, X. Zhou, and X. Zhong, “Facile synthesis of highly luminescent Mn-doped ZnS nanocrystals,” Inorg. Chem. 50(20), 10432–10438 (2011).
[Crossref] [PubMed]

J. Am. Chem. Soc. (3)

R. Xie and X. Peng, “Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters,” J. Am. Chem. Soc. 131(30), 10645–10651 (2009).
[Crossref] [PubMed]

N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129(11), 3339–3347 (2007).
[Crossref] [PubMed]

B. B. Srivastava, S. Jana, and N. Pradhan, “Doping Cu in Semiconductor nanocrystals: some old and some new physical insights,” J. Am. Chem. Soc. 133(4), 1007–1015 (2011).
[Crossref] [PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (1)

X. Jin, W. Sun, S. Luo, L. Shao, J. Zhang, X. Luo, T. Wei, Y. Qin, Y. Song, and Q. Li, “Energy gradient architectured praseodymium chalcogenide quantum dot solar cells: towards unidirectionally funneling energy transfer,” J. Mater. Chem. A Mater. Energy Sustain. 3(47), 23876–23887 (2015).
[Crossref]

J. Phys. Chem. B (1)

H.-S. Chen, B. Lo, J.-Y. Hwang, G.-Y. Chang, C.-M. Chen, S.-J. Tasi, and S.-J. J. Wang, “Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO,” J. Phys. Chem. B 108(44), 17119–17123 (2004).
[Crossref]

J. Phys. Chem. C (5)

Y. Zhang, C. Gan, J. Muhammad, D. Battaglia, X. Peng, and M. Xiao, “Enhanced fluorescence intermittency in Mn-doped single ZnSe quantum dots,” J. Phys. Chem. C 112(51), 20200–20205 (2008).
[Crossref]

J. Zheng, W. Ji, X. Wang, M. Ikezawa, P. Jing, X. Liu, H. Li, J. Zhao, and Y. Masumoto, “Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell,” J. Phys. Chem. C 114(36), 15331–15336 (2010).
[Crossref]

R. Zeng, T. Zhang, G. Dai, and B. Zou, “Highly emissive, color-tunable, phosphine-free Mn:ZnSe/ZnS core/shell and Mn:ZnSeS shell-alloyed doped nanocrystals,” J. Phys. Chem. C 115(7), 3005–3010 (2011).
[Crossref]

B. Dong, L. Cao, G. Su, and W. Liu, “Facile synthesis of highly luminescent water-soluble ZnSe:Mn/ZnS core/shell doped nanocrystals with pure dopant emission,” J. Phys. Chem. C 116(22), 12258–12264 (2012).
[Crossref]

S. Sarkar, A. R. Maity, N. S. Karan, and N. Pradhan, “Fluorescence energy transfer from doped to undoped quantum dots,” J. Phys. Chem. C 117(42), 21988–21994 (2013).
[Crossref]

J. Phys. Chem. Lett. (3)

S. Sarkar, B. K. Patra, A. K. Guria, and N. Pradhan, “The redox chemistry at the interface for retrieving and brightening the emission of doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 4(12), 2084–2090 (2013).
[Crossref] [PubMed]

S. Jana, B. B. Srivastava, S. Jana, R. Bose, and N. Pradhan, “Multifunctional doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 3(18), 2535–2540 (2012).
[Crossref] [PubMed]

N. Pradhan and D. D. Sarma, “Advances in light-emitting doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 2(21), 2818–2826 (2011).
[Crossref]

Langmuir (1)

M. Wang, M. Zhang, J. Qian, F. Zhao, L. Shen, G. D. Scholes, and M. A. Winnik, “Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach,” Langmuir 25(19), 11732–11740 (2009).
[Crossref] [PubMed]

Nano Lett. (3)

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano Lett. 7(2), 312–317 (2007).
[Crossref] [PubMed]

I. Coropceanu and M. G. Bawendi, “Core/Shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency,” Nano Lett. 14(7), 4097–4101 (2014).
[Crossref] [PubMed]

J. R. Dethlefsen and A. Døssing, “Preparation of a ZnS shell on CdSe quantum dots using a single-molecular ZnS precursor,” Nano Lett. 11(5), 1964–1969 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

W. H. Evers, J. M. Schins, M. Aerts, A. Kulkarni, P. Capiod, M. Berthe, B. Grandidier, C. Delerue, H. S. J. van der Zant, C. van Overbeek, J. L. Peters, D. Vanmaekelbergh, and L. D. A. Siebbeles, “High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds,” Nat. Commun. 6(1), 8195 (2015).
[Crossref] [PubMed]

Nat. Mater. (2)

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
[Crossref] [PubMed]

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Nature (4)

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref] [PubMed]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404(6773), 59–61 (2000).
[Crossref] [PubMed]

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. B (1)

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J. P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89(3), 035303 (2014).
[Crossref]

Sci. Rep. (1)

D. Hiller, J. López-Vidrier, S. Gutsch, M. Zacharias, K. Nomoto, and D. König, “Defect-induced luminescence quenching vs. charge carrier generation of phosphorus incorporated in silicon nanocrystals as function of size,” Sci. Rep. 7(1), 863 (2017).
[Crossref] [PubMed]

Science (1)

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the synthesis of the ZnSe:Mn/ZnS QDs.
Fig. 2
Fig. 2 (a) XRD patterns of as-prepared ZnSe:Mn, ZnSe:Mn/ZnS QDs. TEM (b) and HR-TEM (c) images of ZnSe:Mn/ZnS QDs. (d) SAED pattern of ZnSe:Mn/ZnS QDs.
Fig. 3
Fig. 3 (a) PL and absorption of the ZnSe:Mn and ZnSe:Mn/ZnS QDs. (b) Stability of the QDs. (c) PL and absorption spectra of ZnSe:Mn/ZnS QD solutions at different concentrations. (d) Schematic illustration of energy levels and the energy transfer processes of the QDs.
Fig. 4
Fig. 4 (a) Schematic of fabricating silica gel-ZnSe:Mn/ZnS films. (b) Photographs of the twisted silica gel-QD films under the sunlight and an UV lamp. (c) PL spectra of the silica gel-QD films (0.5 mm) with different QD concentrations, excited at 405 nm. (d) PL peak intensity of the silica gel-QD films with different QD concentrations. (e) PL peak intensity of the silica gel-QD films with different thicknesses (QD concentration ratio 5%).
Fig. 5
Fig. 5 (a) Digital photograph of our experiment. (b) Schematic illustration of the information coding and decoding process.

Metrics