Abstract

Metal/semiconductor nanocomposite systems with the ability of controllable holographic storage are fascinating for advancing information technology. Ag/TiO2 nanocomposite films present multicolor photochromism, which plays a key role in high-density optical memory. However, the film undergoes a reversible photo-redox reaction by the alternating action of visible and UV lights, which weakens the optical stability of stored information. To date, no effective method has been proposed to hinder the UV-erasure in the film. In this paper, the transferring behavior of electrons in a Schottky junction between Ag and TiO2 is inhibited effectively by introducing electron acceptors into the photochromic film. Plasmonic photo-dissolution is enhanced greatly, which is in accordance with the theoretical fitting based on the reversible photo-chemical reaction. Holograms can be written efficiently with high stability even under the destructive UV-irradiation, which are expected to be applied in an environmentally-stable photo-device.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonvolatile plasmonic holographic memory based on photo-driven ion migration

Shuangyan Liu, Shencheng Fu, Xiuxiu Han, Xinnong Wang, Ruiya Ji, Xintong Zhang, and Yichun Liu
Appl. Opt. 56(24) 6942-6948 (2017)

Visible laser-assisted reduction of plasmonic Ag nanoparticles with narrow-band optical absorption for colored holographic reconstruction

Xinnong Wang, Shencheng Fu, Xintong Zhang, Xiuxiu Han, Shuangyan Liu, Lihong Kang, Yang Zhang, and Yichun Liu
Opt. Express 25(25) 31253-31262 (2017)

Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films

Shencheng Fu, Xintong Zhang, Runyuan Han, Shiyu Sun, Lingling Wang, and Yichun Liu
Appl. Opt. 51(16) 3357-3363 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nat. Mater. 4(5), 366–377 (2005).
    [Crossref] [PubMed]
  2. A. Aadhi, N. Apurv Chaitanya, R. P. Singh, and G. K. Samanta, “High-power, continuous-wave, solid-state, single-frequency, tunable source for the ultraviolet,” Opt. Lett. 39(12), 3410–3413 (2014).
    [Crossref] [PubMed]
  3. T. Muroi, Y. Katano, N. Kinoshita, and N. Ishii, “Dual-page reproduction to increase the data transfer rate in holographic memory,” Opt. Lett. 42(12), 2287–2290 (2017).
    [Crossref] [PubMed]
  4. H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
    [Crossref]
  5. D. Psaltis, F. Mok, and H. Y. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett. 19(3), 210–212 (1994).
    [Crossref] [PubMed]
  6. S. T. Kochuveedu, Y. H. Jang, and D. H. Kim, “A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications,” Chem. Soc. Rev. 42(21), 8467–8493 (2013).
    [Crossref] [PubMed]
  7. T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
    [Crossref] [PubMed]
  8. Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
    [Crossref] [PubMed]
  9. K. Saito, K. Setoura, S. Ito, H. Miyasaka, Y. Mitsuda, and T. Tatsuma, “Plasmonic Control and Stabilization of Asymmetric Light Scattering from Ag Nanocubes on TiO2,” ACS Appl. Mater. Interfaces 9(12), 11064–11072 (2017).
    [Crossref] [PubMed]
  10. P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref] [PubMed]
  11. N. S. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H. Spahni, “Optimizing two-photon absorption for volumetric optical data storage,” J. Opt. Soc. Am. B 24(8), 1874–1885 (2007).
    [Crossref]
  12. S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
    [Crossref] [PubMed]
  13. G. Kawamura, S. Sato, H. Muto, M. Sakai, P. B. Lim, K. Watanabe, M. Inoue, and A. Matsuda, “AgBr nanocrystal-dispersed silsesquioxane—titania hybrid films for holographic materials,” Mater. Lett. 64(23), 2648–2651 (2010).
    [Crossref]
  14. Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
    [Crossref] [PubMed]
  15. E. Kazuma and T. Tatsuma, “Photoinduced reversible changes in morphology of plasmonic Ag nanorods on TiO2 and application to versatile photochromism,” Chem. Commun. (Camb.) 48(12), 1733–1735 (2012).
    [Crossref] [PubMed]
  16. K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
    [Crossref] [PubMed]
  17. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  18. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
    [Crossref] [PubMed]
  19. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [Crossref] [PubMed]
  20. S. Liu, S. Fu, X. Han, X. Wang, R. Ji, X. Zhang, and Y. Liu, “Nonvolatile plasmonic holographic memory based on photo-driven ion migration,” Appl. Opt. 56(24), 6942–6948 (2017).
    [Crossref] [PubMed]
  21. Q. Qiao, X. Zhang, Z. Lu, L. Wang, Y. Liu, X. Zhu, and J. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
    [Crossref]
  22. N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).
    [Crossref]
  23. R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
    [Crossref]
  24. K. Matsubara and T. Tatsuma, “Morphological Changes and Multicolor Photochromism of Ag Nanoparticles Deposited on Single-crystalline TiO2 Surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
    [Crossref]
  25. K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).
    [Crossref]
  26. N. Destouches, N. Crespo-monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
    [Crossref]
  27. A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
    [Crossref] [PubMed]
  28. A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-Modulation-Depth Surface Relief Gratings Using s−s Polarization Configuration in Supramolecular Polymer−Azobenzene Complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).
    [Crossref]
  29. S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
    [Crossref]
  30. Z. Sun, L. Xu, W. Guo, B. Xu, S. Liu, and F. Li, “Enhanced Photoelectrochemical Performance of Nanocomposite Film Fabricated by Self-Assembly of Titanium Dioxide and Polyoxometalates,” J. Phys. Chem. C 114(11), 5211–5216 (2010).
    [Crossref]

2017 (5)

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
[Crossref] [PubMed]

K. Saito, K. Setoura, S. Ito, H. Miyasaka, Y. Mitsuda, and T. Tatsuma, “Plasmonic Control and Stabilization of Asymmetric Light Scattering from Ag Nanocubes on TiO2,” ACS Appl. Mater. Interfaces 9(12), 11064–11072 (2017).
[Crossref] [PubMed]

T. Muroi, Y. Katano, N. Kinoshita, and N. Ishii, “Dual-page reproduction to increase the data transfer rate in holographic memory,” Opt. Lett. 42(12), 2287–2290 (2017).
[Crossref] [PubMed]

S. Liu, S. Fu, X. Han, X. Wang, R. Ji, X. Zhang, and Y. Liu, “Nonvolatile plasmonic holographic memory based on photo-driven ion migration,” Appl. Opt. 56(24), 6942–6948 (2017).
[Crossref] [PubMed]

2016 (1)

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

2015 (1)

S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

2014 (3)

A. Aadhi, N. Apurv Chaitanya, R. P. Singh, and G. K. Samanta, “High-power, continuous-wave, solid-state, single-frequency, tunable source for the ultraviolet,” Opt. Lett. 39(12), 3410–3413 (2014).
[Crossref] [PubMed]

N. Destouches, N. Crespo-monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-Modulation-Depth Surface Relief Gratings Using s−s Polarization Configuration in Supramolecular Polymer−Azobenzene Complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).
[Crossref]

2013 (1)

S. T. Kochuveedu, Y. H. Jang, and D. H. Kim, “A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications,” Chem. Soc. Rev. 42(21), 8467–8493 (2013).
[Crossref] [PubMed]

2012 (1)

E. Kazuma and T. Tatsuma, “Photoinduced reversible changes in morphology of plasmonic Ag nanorods on TiO2 and application to versatile photochromism,” Chem. Commun. (Camb.) 48(12), 1733–1735 (2012).
[Crossref] [PubMed]

2011 (2)

N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).
[Crossref]

R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
[Crossref]

2010 (3)

G. Kawamura, S. Sato, H. Muto, M. Sakai, P. B. Lim, K. Watanabe, M. Inoue, and A. Matsuda, “AgBr nanocrystal-dispersed silsesquioxane—titania hybrid films for holographic materials,” Mater. Lett. 64(23), 2648–2651 (2010).
[Crossref]

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

Z. Sun, L. Xu, W. Guo, B. Xu, S. Liu, and F. Li, “Enhanced Photoelectrochemical Performance of Nanocomposite Film Fabricated by Self-Assembly of Titanium Dioxide and Polyoxometalates,” J. Phys. Chem. C 114(11), 5211–5216 (2010).
[Crossref]

2009 (3)

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).
[Crossref]

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Q. Qiao, X. Zhang, Z. Lu, L. Wang, Y. Liu, X. Zhu, and J. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

2007 (2)

K. Matsubara and T. Tatsuma, “Morphological Changes and Multicolor Photochromism of Ag Nanoparticles Deposited on Single-crystalline TiO2 Surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
[Crossref]

N. S. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H. Spahni, “Optimizing two-photon absorption for volumetric optical data storage,” J. Opt. Soc. Am. B 24(8), 1874–1885 (2007).
[Crossref]

2005 (2)

A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nat. Mater. 4(5), 366–377 (2005).
[Crossref] [PubMed]

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[Crossref] [PubMed]

2004 (2)

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[Crossref] [PubMed]

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

1994 (1)

Aadhi, A.

Apurv Chaitanya, N.

Aricò, A. S.

A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nat. Mater. 4(5), 366–377 (2005).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bartkiewicz, S.

A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-Modulation-Depth Surface Relief Gratings Using s−s Polarization Configuration in Supramolecular Polymer−Azobenzene Complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).
[Crossref]

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Bruce, P.

A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nat. Mater. 4(5), 366–377 (2005).
[Crossref] [PubMed]

Chen, Z.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Chon, J. W.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Crespo-monteiro, N.

N. Destouches, N. Crespo-monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).
[Crossref]

Dai, R.

R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
[Crossref]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Destouches, N.

N. Destouches, N. Crespo-monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).
[Crossref]

Drobizhev, M.

Du, X.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Epicier, T.

N. Destouches, N. Crespo-monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Fu, S.

S. Liu, S. Fu, X. Han, X. Wang, R. Ji, X. Zhang, and Y. Liu, “Nonvolatile plasmonic holographic memory based on photo-driven ion migration,” Appl. Opt. 56(24), 6942–6948 (2017).
[Crossref] [PubMed]

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

Fujii, T.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Fujishima, A.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Gu, M.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Guo, W.

Z. Sun, L. Xu, W. Guo, B. Xu, S. Liu, and F. Li, “Enhanced Photoelectrochemical Performance of Nanocomposite Film Fabricated by Self-Assembly of Titanium Dioxide and Polyoxometalates,” J. Phys. Chem. C 114(11), 5211–5216 (2010).
[Crossref]

Han, Q.

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

Han, R.

R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
[Crossref]

Han, X.

S. Liu, S. Fu, X. Han, X. Wang, R. Ji, X. Zhang, and Y. Liu, “Nonvolatile plasmonic holographic memory based on photo-driven ion migration,” Appl. Opt. 56(24), 6942–6948 (2017).
[Crossref] [PubMed]

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

Hebard, A. F.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Inoue, M.

G. Kawamura, S. Sato, H. Muto, M. Sakai, P. B. Lim, K. Watanabe, M. Inoue, and A. Matsuda, “AgBr nanocrystal-dispersed silsesquioxane—titania hybrid films for holographic materials,” Mater. Lett. 64(23), 2648–2651 (2010).
[Crossref]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Ishida, T.

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
[Crossref] [PubMed]

Ishii, N.

Ito, S.

K. Saito, K. Setoura, S. Ito, H. Miyasaka, Y. Mitsuda, and T. Tatsuma, “Plasmonic Control and Stabilization of Asymmetric Light Scattering from Ag Nanocubes on TiO2,” ACS Appl. Mater. Interfaces 9(12), 11064–11072 (2017).
[Crossref] [PubMed]

Jang, Y. H.

S. T. Kochuveedu, Y. H. Jang, and D. H. Kim, “A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications,” Chem. Soc. Rev. 42(21), 8467–8493 (2013).
[Crossref] [PubMed]

Ji, R.

Kamaras, K.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Katano, Y.

Kawamura, G.

G. Kawamura, S. Sato, H. Muto, M. Sakai, P. B. Lim, K. Watanabe, M. Inoue, and A. Matsuda, “AgBr nanocrystal-dispersed silsesquioxane—titania hybrid films for holographic materials,” Mater. Lett. 64(23), 2648–2651 (2010).
[Crossref]

Kazuma, E.

E. Kazuma and T. Tatsuma, “Photoinduced reversible changes in morphology of plasmonic Ag nanorods on TiO2 and application to versatile photochromism,” Chem. Commun. (Camb.) 48(12), 1733–1735 (2012).
[Crossref] [PubMed]

Kelly, K. L.

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).
[Crossref]

Kim, D. H.

S. T. Kochuveedu, Y. H. Jang, and D. H. Kim, “A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications,” Chem. Soc. Rev. 42(21), 8467–8493 (2013).
[Crossref] [PubMed]

Kinoshita, N.

Kochuveedu, S. T.

S. T. Kochuveedu, Y. H. Jang, and D. H. Kim, “A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications,” Chem. Soc. Rev. 42(21), 8467–8493 (2013).
[Crossref] [PubMed]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Kubota, Y.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Lee, K.

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Lefkir, Y.

N. Destouches, N. Crespo-monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Li, F.

Z. Sun, L. Xu, W. Guo, B. Xu, S. Liu, and F. Li, “Enhanced Photoelectrochemical Performance of Nanocomposite Film Fabricated by Self-Assembly of Titanium Dioxide and Polyoxometalates,” J. Phys. Chem. C 114(11), 5211–5216 (2010).
[Crossref]

Li, H. Y.

Li, J.

Q. Qiao, X. Zhang, Z. Lu, L. Wang, Y. Liu, X. Zhu, and J. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Lim, P. B.

G. Kawamura, S. Sato, H. Muto, M. Sakai, P. B. Lim, K. Watanabe, M. Inoue, and A. Matsuda, “AgBr nanocrystal-dispersed silsesquioxane—titania hybrid films for holographic materials,” Mater. Lett. 64(23), 2648–2651 (2010).
[Crossref]

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Liu, S.

S. Liu, S. Fu, X. Han, X. Wang, R. Ji, X. Zhang, and Y. Liu, “Nonvolatile plasmonic holographic memory based on photo-driven ion migration,” Appl. Opt. 56(24), 6942–6948 (2017).
[Crossref] [PubMed]

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

Z. Sun, L. Xu, W. Guo, B. Xu, S. Liu, and F. Li, “Enhanced Photoelectrochemical Performance of Nanocomposite Film Fabricated by Self-Assembly of Titanium Dioxide and Polyoxometalates,” J. Phys. Chem. C 114(11), 5211–5216 (2010).
[Crossref]

Liu, Y.

S. Liu, S. Fu, X. Han, X. Wang, R. Ji, X. Zhang, and Y. Liu, “Nonvolatile plasmonic holographic memory based on photo-driven ion migration,” Appl. Opt. 56(24), 6942–6948 (2017).
[Crossref] [PubMed]

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

N. Destouches, N. Crespo-monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
[Crossref]

Q. Qiao, X. Zhang, Z. Lu, L. Wang, Y. Liu, X. Zhu, and J. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Logan, J. M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Lu, S.

S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

Lu, Z.

Q. Qiao, X. Zhang, Z. Lu, L. Wang, Y. Liu, X. Zhu, and J. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Makarov, N. S.

Matsubara, K.

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).
[Crossref]

K. Matsubara and T. Tatsuma, “Morphological Changes and Multicolor Photochromism of Ag Nanoparticles Deposited on Single-crystalline TiO2 Surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
[Crossref]

Matsuda, A.

G. Kawamura, S. Sato, H. Muto, M. Sakai, P. B. Lim, K. Watanabe, M. Inoue, and A. Matsuda, “AgBr nanocrystal-dispersed silsesquioxane—titania hybrid films for holographic materials,” Mater. Lett. 64(23), 2648–2651 (2010).
[Crossref]

Michalon, J. Y.

N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).
[Crossref]

Miniewicz, A.

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

Mitsuda, Y.

K. Saito, K. Setoura, S. Ito, H. Miyasaka, Y. Mitsuda, and T. Tatsuma, “Plasmonic Control and Stabilization of Asymmetric Light Scattering from Ag Nanocubes on TiO2,” ACS Appl. Mater. Interfaces 9(12), 11064–11072 (2017).
[Crossref] [PubMed]

Miyasaka, H.

K. Saito, K. Setoura, S. Ito, H. Miyasaka, Y. Mitsuda, and T. Tatsuma, “Plasmonic Control and Stabilization of Asymmetric Light Scattering from Ag Nanocubes on TiO2,” ACS Appl. Mater. Interfaces 9(12), 11064–11072 (2017).
[Crossref] [PubMed]

Mok, F.

Muroi, T.

Muto, H.

G. Kawamura, S. Sato, H. Muto, M. Sakai, P. B. Lim, K. Watanabe, M. Inoue, and A. Matsuda, “AgBr nanocrystal-dispersed silsesquioxane—titania hybrid films for holographic materials,” Mater. Lett. 64(23), 2648–2651 (2010).
[Crossref]

Nadar, L.

N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).
[Crossref]

Naoi, K.

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[Crossref] [PubMed]

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Nikolou, M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Nishi, H.

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
[Crossref] [PubMed]

Niwa, C.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Ohko, Y.

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[Crossref] [PubMed]

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Park, J.

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Park, Y.

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Pigeon, F.

N. Destouches, N. Crespo-monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Priimagi, A.

A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-Modulation-Depth Surface Relief Gratings Using s−s Polarization Configuration in Supramolecular Polymer−Azobenzene Complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).
[Crossref]

Psaltis, D.

Qiao, Q.

Q. Qiao, X. Zhang, Z. Lu, L. Wang, Y. Liu, X. Zhu, and J. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Rebane, A.

Reynaud, S.

N. Destouches, N. Crespo-monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).
[Crossref]

Reynolds, J. R.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Rinzler, A. G.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Saito, K.

K. Saito, K. Setoura, S. Ito, H. Miyasaka, Y. Mitsuda, and T. Tatsuma, “Plasmonic Control and Stabilization of Asymmetric Light Scattering from Ag Nanocubes on TiO2,” ACS Appl. Mater. Interfaces 9(12), 11064–11072 (2017).
[Crossref] [PubMed]

Sakai, M.

G. Kawamura, S. Sato, H. Muto, M. Sakai, P. B. Lim, K. Watanabe, M. Inoue, and A. Matsuda, “AgBr nanocrystal-dispersed silsesquioxane—titania hybrid films for holographic materials,” Mater. Lett. 64(23), 2648–2651 (2010).
[Crossref]

Sakai, N.

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).
[Crossref]

Samanta, G. K.

Sato, S.

G. Kawamura, S. Sato, H. Muto, M. Sakai, P. B. Lim, K. Watanabe, M. Inoue, and A. Matsuda, “AgBr nanocrystal-dispersed silsesquioxane—titania hybrid films for holographic materials,” Mater. Lett. 64(23), 2648–2651 (2010).
[Crossref]

Schab-Balcerzak, E.

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

Scrosati, B.

A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nat. Mater. 4(5), 366–377 (2005).
[Crossref] [PubMed]

Setoura, K.

K. Saito, K. Setoura, S. Ito, H. Miyasaka, Y. Mitsuda, and T. Tatsuma, “Plasmonic Control and Stabilization of Asymmetric Light Scattering from Ag Nanocubes on TiO2,” ACS Appl. Mater. Interfaces 9(12), 11064–11072 (2017).
[Crossref] [PubMed]

Singh, R. P.

Sippel, J.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Sobolewska, A.

A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-Modulation-Depth Surface Relief Gratings Using s−s Polarization Configuration in Supramolecular Polymer−Azobenzene Complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).
[Crossref]

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

Spahni, H.

Sun, Z.

Z. Sun, L. Xu, W. Guo, B. Xu, S. Liu, and F. Li, “Enhanced Photoelectrochemical Performance of Nanocomposite Film Fabricated by Self-Assembly of Titanium Dioxide and Polyoxometalates,” J. Phys. Chem. C 114(11), 5211–5216 (2010).
[Crossref]

Tanner, D. B.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Tarascon, J. M.

A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nat. Mater. 4(5), 366–377 (2005).
[Crossref] [PubMed]

Tatsuma, T.

K. Saito, K. Setoura, S. Ito, H. Miyasaka, Y. Mitsuda, and T. Tatsuma, “Plasmonic Control and Stabilization of Asymmetric Light Scattering from Ag Nanocubes on TiO2,” ACS Appl. Mater. Interfaces 9(12), 11064–11072 (2017).
[Crossref] [PubMed]

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
[Crossref] [PubMed]

E. Kazuma and T. Tatsuma, “Photoinduced reversible changes in morphology of plasmonic Ag nanorods on TiO2 and application to versatile photochromism,” Chem. Commun. (Camb.) 48(12), 1733–1735 (2012).
[Crossref] [PubMed]

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).
[Crossref]

K. Matsubara and T. Tatsuma, “Morphological Changes and Multicolor Photochromism of Ag Nanoparticles Deposited on Single-crystalline TiO2 Surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
[Crossref]

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[Crossref] [PubMed]

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[Crossref] [PubMed]

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Tian, Y.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[Crossref] [PubMed]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

van Schalkwijk, W.

A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nat. Mater. 4(5), 366–377 (2005).
[Crossref] [PubMed]

Vitrant, G.

N. Destouches, N. Crespo-monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

Vocanson, F.

N. Destouches, N. Crespo-monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).
[Crossref]

Wang, L.

R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
[Crossref]

Q. Qiao, X. Zhang, Z. Lu, L. Wang, Y. Liu, X. Zhu, and J. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Wang, X.

S. Liu, S. Fu, X. Han, X. Wang, R. Ji, X. Zhang, and Y. Liu, “Nonvolatile plasmonic holographic memory based on photo-driven ion migration,” Appl. Opt. 56(24), 6942–6948 (2017).
[Crossref] [PubMed]

S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

Watanabe, K.

G. Kawamura, S. Sato, H. Muto, M. Sakai, P. B. Lim, K. Watanabe, M. Inoue, and A. Matsuda, “AgBr nanocrystal-dispersed silsesquioxane—titania hybrid films for holographic materials,” Mater. Lett. 64(23), 2648–2651 (2010).
[Crossref]

Wolleb, H.

Wu, Z.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Xu, B.

Z. Sun, L. Xu, W. Guo, B. Xu, S. Liu, and F. Li, “Enhanced Photoelectrochemical Performance of Nanocomposite Film Fabricated by Self-Assembly of Titanium Dioxide and Polyoxometalates,” J. Phys. Chem. C 114(11), 5211–5216 (2010).
[Crossref]

Xu, L.

Z. Sun, L. Xu, W. Guo, B. Xu, S. Liu, and F. Li, “Enhanced Photoelectrochemical Performance of Nanocomposite Film Fabricated by Self-Assembly of Titanium Dioxide and Polyoxometalates,” J. Phys. Chem. C 114(11), 5211–5216 (2010).
[Crossref]

Yu, H.

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Zhang, X.

S. Liu, S. Fu, X. Han, X. Wang, R. Ji, X. Zhang, and Y. Liu, “Nonvolatile plasmonic holographic memory based on photo-driven ion migration,” Appl. Opt. 56(24), 6942–6948 (2017).
[Crossref] [PubMed]

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
[Crossref]

Q. Qiao, X. Zhang, Z. Lu, L. Wang, Y. Liu, X. Zhu, and J. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Zhu, X.

Q. Qiao, X. Zhang, Z. Lu, L. Wang, Y. Liu, X. Zhu, and J. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Zijlstra, P.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

K. Saito, K. Setoura, S. Ito, H. Miyasaka, Y. Mitsuda, and T. Tatsuma, “Plasmonic Control and Stabilization of Asymmetric Light Scattering from Ag Nanocubes on TiO2,” ACS Appl. Mater. Interfaces 9(12), 11064–11072 (2017).
[Crossref] [PubMed]

Adv. Mater. (1)

K. Matsubara and T. Tatsuma, “Morphological Changes and Multicolor Photochromism of Ag Nanoparticles Deposited on Single-crystalline TiO2 Surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Q. Qiao, X. Zhang, Z. Lu, L. Wang, Y. Liu, X. Zhu, and J. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).
[Crossref]

R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
[Crossref]

Chem. Commun. (Camb.) (1)

E. Kazuma and T. Tatsuma, “Photoinduced reversible changes in morphology of plasmonic Ag nanorods on TiO2 and application to versatile photochromism,” Chem. Commun. (Camb.) 48(12), 1733–1735 (2012).
[Crossref] [PubMed]

Chem. Sci. (Camb.) (1)

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

S. T. Kochuveedu, Y. H. Jang, and D. H. Kim, “A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications,” Chem. Soc. Rev. 42(21), 8467–8493 (2013).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[Crossref] [PubMed]

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[Crossref] [PubMed]

J. Mater. Chem. (1)

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

N. Destouches, N. Crespo-monteiro, G. Vitrant, Y. Lefkir, S. Reynaud, T. Epicier, Y. Liu, F. Vocanson, and F. Pigeon, “Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(31), 6256–6263 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

J. Phys. Chem. C (3)

A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-Modulation-Depth Surface Relief Gratings Using s−s Polarization Configuration in Supramolecular Polymer−Azobenzene Complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).
[Crossref]

S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

Z. Sun, L. Xu, W. Guo, B. Xu, S. Liu, and F. Li, “Enhanced Photoelectrochemical Performance of Nanocomposite Film Fabricated by Self-Assembly of Titanium Dioxide and Polyoxometalates,” J. Phys. Chem. C 114(11), 5211–5216 (2010).
[Crossref]

Mater. Lett. (1)

G. Kawamura, S. Sato, H. Muto, M. Sakai, P. B. Lim, K. Watanabe, M. Inoue, and A. Matsuda, “AgBr nanocrystal-dispersed silsesquioxane—titania hybrid films for holographic materials,” Mater. Lett. 64(23), 2648–2651 (2010).
[Crossref]

Nat. Mater. (2)

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nat. Mater. 4(5), 366–377 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Nature (3)

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Opt. Lett. (3)

Sci. Rep. (1)

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

Science (1)

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Fabrication of Ag/PW12/TiO2 nanocomposite films. (a) TiO2 nanoporous film prepared on glass slides by the dip-coating method. (b) Heat treatment to remove the polymer. (c) TiO2 nanoporous films adsorbed with PW12. (d) Deposited Ag NPs in PW12/TiO2 nanoporous films by UV-reduction.
Fig. 2
Fig. 2 Experimental setup for anti-UV holographic recording. (M, mirror; BS, beam splitter; F, lens; BE, beam expander; PD, photodiode).
Fig. 3
Fig. 3 Surface and cross-sectional SEM images of Ag/PW12/TiO2 (a and c) and Ag/TiO2 (b and d) nanocompositite films. The size distribution histograms and cumulative percentage of volume fraction of Ag NPs for (e) Ag/PW12/TiO2 film and (f) the Ag/TiO2 film.
Fig. 4
Fig. 4 (a) Mechanism diagram for UV reduction of Ag NPs in nanoporous PW12/TiO2 and TiO2 films. (b) UV-Vis absorption spectrum of the Ag/PW12/TiO2 film, and the Ag/TiO2 film on the glass substrate.
Fig. 5
Fig. 5 (a) Linear sweep voltammograms of the PW12/TiO2 and TiO2 electrodes (scanning at the rate of 10 mV/s). The inset shows the results of the test in the dark state. (b) Electron transferring process in the Ag/PW12/TiO2 film under the UV excitation.
Fig. 6
Fig. 6 Differential absorbance of Ag/PW12/TiO2 (a) and Ag/TiO2 film (b) alternately irradiated by green light (532 nm, 57 mW/cm2) and subsequent UV light (360, 71 mW/cm2). Absorption changes of Ag/PW12/TiO2 (c) and Ag/TiO2 film (d) at 544 nm induced by alternating green and UV irradiation in air. Open triangle, no irradiation; Open circles and square, irradiated by green light (532 nm, 57 mW/cm2, 3 min); filled circles and square, irradiated by UV light (360 nm, 71 mW/cm2, 3 min). The cyclic index is the number of a set of alternating irradiations with green and UV lights, responsible for the color change of the sample.
Fig. 7
Fig. 7 First-order diffraction efficiency of holographic gratings in the Ag/PW12/TiO2 (a), and in the Ag/TiO2 film (b) under the alternate actions of (s + s) green light recording and UV erasing for four cycles.
Fig. 8
Fig. 8 Reconstruction of the stored holograms in the Ag/PW12/TiO2 (a), and the Ag/TiO2 film (b) under the alternate actions of the recording with two coherent green lights and the erasing with UV at different times. (c) First-order diffraction efficiencies of the holographic gratings versus time under the co-irradiation of two coherent s-polarized green lights (s + s) and additional UV light with s-polarization for Ag/PW12/TiO2 and Ag/TiO2 films. The inserts are the UV-resistant reconstructed holograms in Ag/PW12/TiO2 film.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Ag ( N A ) R B (UV) R A (Vis) Ag 2 O ( N B )
η=D E Δα +D E Δn
D E Δα = sin 2 ( Δαd 2 )
D E Δn = J 1 2 ( 2πΔnd λ ) 2
Δα d 2 =ε N B (t)
Δn 2πd λ =γ N B ( t )
η(t)= sin 2 ( Δαd 2 )+ J 1 2 ( 2πΔnd λ ) 2 = sin 2 [ε N B (t)]+ J 1 2 [ γ N B (t) ]
d N B (t) dt = R A N A R B N B = R B ( N B N A R A R B ),
N B (t)= R A R B N A (1 e R B t )
η(t) [ε N B (t)] 2 + [ γ N B (t) ] 2 =[ ε 2 + γ 2 ] [ R A R B N A (1 e R B t ) ] 2

Metrics