Abstract

A novel design of a dynamic electromagnetically induced transparency (EIT) metamaterial is proposed. The metamaterial consists of two kinds of cut-wire metal resonators with a graphene strip placed between them. The destructive interference between the two resonators gives rise to a transparency window. By varying the Fermi energy of the graphene through external gating, the EIT effect can be manipulated dynamically and the maximum modulation depth can reach up to 81%. The efficient modulation is controlled only in the EIT window with slight changes in transmission dips, which may avert the additional noises at adjacent frequencies in the modulation process. Moreover, the actively controlled slow-light effect and sensing performances can also be realized as the corresponding EIT window is modulated. This work provides a strategy to achieve a tunable EIT effect in a metal-graphene hybrid structure and exhibits potential applications in designing terahertz modulators, environmental sensors and slow-light devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrically active manipulation of electromagnetic induced transparency in hybrid terahertz metamaterial

Xunjun He, Xingyu Yang, Shaopeng Li, Shuang Shi, Fengmin Wu, and Jiuxing Jiang
Opt. Mater. Express 6(10) 3075-3085 (2016)

Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials

Jiuxing Jiang, Qinfei Zhang, Qixiang Ma, Shitao Yan, Fengmin Wu, and Xunjun He
Opt. Mater. Express 5(9) 1962-1971 (2015)

Tunable multispectral plasmon induced transparency based on graphene metamaterials

Chen Sun, Jiangnan Si, Zhewei Dong, and Xiaoxu Deng
Opt. Express 24(11) 11466-11474 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46(1), R29–R32 (1992).
    [Crossref] [PubMed]
  2. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
    [Crossref] [PubMed]
  3. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
    [Crossref] [PubMed]
  4. S. Marcinkevičius, A. Gushterov, and J. P. Reithmaier, “Trannsient electromagnetically induced transparency in self-assembled quantum dots,” Appl. Phys. Lett. 92(4), 041113 (2008).
    [Crossref]
  5. X. R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
    [Crossref] [PubMed]
  6. T. H. Feng and H. P. Han, “Tunable transmission-line metamaterials mimicking electromagnetically induced transparency,” J. Electron. Mater. 45(11), 1–5 (2016).
    [Crossref]
  7. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18(16), 17187–17192 (2010).
    [Crossref] [PubMed]
  8. X. G. Yin, T. H. Feng, S. P. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
    [Crossref]
  9. Z. Vafapour and H. Alaei, “Achieving a high Q-Factor and tunable slow-light via classical electromagnetically induced transparency (Cl-EIT) in metamaterials,” Plasmonics 12(2), 479–488 (2017).
    [Crossref]
  10. H. N. Yang, E. Owiti, Y. B. Pei, S. R. Li, P. Liu, and X. D. Sun, “Polarization independent and tunable plasmon induced transparency for slow light,” Rsc Adv. 7(31), 19169–19173 (2017).
    [Crossref]
  11. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  12. Y. C. Fan, T. Qiao, F. L. Zhang, Q. Fu, J. J. Dong, B. T. Kong, and H. Q. Li, “A metamaterial modulator based on electrically controllable electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2016).
    [Crossref] [PubMed]
  13. J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99(16), 161113 (2011).
    [Crossref]
  14. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
    [Crossref] [PubMed]
  15. P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
    [Crossref]
  16. P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109(21), 211103 (2016).
    [Crossref]
  17. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  18. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref] [PubMed]
  19. A. K. Geim, “Graphene: Status and Prospects,” Science 324(5934), 1530–1534 (2009).
    [Crossref] [PubMed]
  20. G. Z. Liang, X. N. Hu, X. C. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
    [Crossref]
  21. W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
    [Crossref] [PubMed]
  22. F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
    [Crossref] [PubMed]
  23. X. Y. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
    [Crossref]
  24. S. Izadshenas, A. Zakery, and Z. Vafapour, “Tunable slow light in graphene metamaterial in a broad terahertz range,” Plasmonics 13, 63–70 (2018).
  25. G. W. Ding, S. B. Liu, H. F. Zhang, X. K. Kong, H. M. Li, B. X. Li, S. Y. Liu, and H. Li, “Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial,” Chin. Phys. B 24(11), 534–538 (2015).
    [Crossref]
  26. X. L. Zhao, C. Yuan, W. H. Lv, S. L. Xu, and J. Q. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic Tech. L. 27(12), 1321–1324 (2015).
    [Crossref]
  27. L. Zhu, L. Dong, J. Guo, F. Y. Meng, and Q. Wu, “Tunable electromagnetically induced transparency in hybrid grapheneall-dielectric metamaterial,” Appl. Phys., A Mater. Sci. Process. 123(3), 192 (2017).
    [Crossref]
  28. C. X. Liu, P. G. Liu, C. Yang, and L. A. Bian, “Terahertz metamaterial based on dual-band graphene ring resonator for modulating and sensing applications,” J. Opt. 19(11), 115102 (2017).
    [Crossref]
  29. J. X. Jiang, Q. F. Zhang, Q. X. Ma, S. T. Yan, F. M. Wu, and X. J. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5(9), 1962–1971 (2015).
    [Crossref]
  30. X. J. He, Y. M. Huang, X. Y. Yang, L. Zhu, F. M. Wu, and J. X. Jiang, “Tunable electromagnetically induced transparency based on terahertz graphene metamaterial,” RSC Advances 7(64), 40321–40326 (2017).
    [Crossref]
  31. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulationof electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
    [Crossref]
  32. B. Vasić, M. Jakovljević, G. Isić, and R. Gajić, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
    [Crossref]
  33. X. J. He, X. Y. Yang, S. P. Li, S. Shi, F. M. Wu, and J. X. Jiang, “Electrically active manipulation of electromagnetic induced transparency in hybrid terahertz metamaterial,” Opt. Mater. Express 6(10), 3075–3085 (2016).
    [Crossref]
  34. Y. Huang, E. Sutter, N. N. Shi, J. Zheng, T. Yang, D. Englund, H. J. Gao, and P. Sutter, “Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
    [Crossref] [PubMed]
  35. J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
    [Crossref] [PubMed]
  36. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
    [Crossref] [PubMed]
  37. N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
    [Crossref]
  38. X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
    [Crossref]
  39. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
    [Crossref] [PubMed]
  40. B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
    [Crossref]
  41. F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
    [Crossref]

2018 (2)

S. Izadshenas, A. Zakery, and Z. Vafapour, “Tunable slow light in graphene metamaterial in a broad terahertz range,” Plasmonics 13, 63–70 (2018).

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulationof electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

2017 (6)

X. J. He, Y. M. Huang, X. Y. Yang, L. Zhu, F. M. Wu, and J. X. Jiang, “Tunable electromagnetically induced transparency based on terahertz graphene metamaterial,” RSC Advances 7(64), 40321–40326 (2017).
[Crossref]

L. Zhu, L. Dong, J. Guo, F. Y. Meng, and Q. Wu, “Tunable electromagnetically induced transparency in hybrid grapheneall-dielectric metamaterial,” Appl. Phys., A Mater. Sci. Process. 123(3), 192 (2017).
[Crossref]

C. X. Liu, P. G. Liu, C. Yang, and L. A. Bian, “Terahertz metamaterial based on dual-band graphene ring resonator for modulating and sensing applications,” J. Opt. 19(11), 115102 (2017).
[Crossref]

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Z. Vafapour and H. Alaei, “Achieving a high Q-Factor and tunable slow-light via classical electromagnetically induced transparency (Cl-EIT) in metamaterials,” Plasmonics 12(2), 479–488 (2017).
[Crossref]

H. N. Yang, E. Owiti, Y. B. Pei, S. R. Li, P. Liu, and X. D. Sun, “Polarization independent and tunable plasmon induced transparency for slow light,” Rsc Adv. 7(31), 19169–19173 (2017).
[Crossref]

2016 (6)

Y. C. Fan, T. Qiao, F. L. Zhang, Q. Fu, J. J. Dong, B. T. Kong, and H. Q. Li, “A metamaterial modulator based on electrically controllable electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2016).
[Crossref] [PubMed]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109(21), 211103 (2016).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref] [PubMed]

T. H. Feng and H. P. Han, “Tunable transmission-line metamaterials mimicking electromagnetically induced transparency,” J. Electron. Mater. 45(11), 1–5 (2016).
[Crossref]

X. J. He, X. Y. Yang, S. P. Li, S. Shi, F. M. Wu, and J. X. Jiang, “Electrically active manipulation of electromagnetic induced transparency in hybrid terahertz metamaterial,” Opt. Mater. Express 6(10), 3075–3085 (2016).
[Crossref]

2015 (8)

J. X. Jiang, Q. F. Zhang, Q. X. Ma, S. T. Yan, F. M. Wu, and X. J. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5(9), 1962–1971 (2015).
[Crossref]

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Y. Huang, E. Sutter, N. N. Shi, J. Zheng, T. Yang, D. Englund, H. J. Gao, and P. Sutter, “Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref] [PubMed]

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

G. W. Ding, S. B. Liu, H. F. Zhang, X. K. Kong, H. M. Li, B. X. Li, S. Y. Liu, and H. Li, “Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial,” Chin. Phys. B 24(11), 534–538 (2015).
[Crossref]

X. L. Zhao, C. Yuan, W. H. Lv, S. L. Xu, and J. Q. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic Tech. L. 27(12), 1321–1324 (2015).
[Crossref]

G. Z. Liang, X. N. Hu, X. C. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

X. Y. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

2013 (4)

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

X. G. Yin, T. H. Feng, S. P. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

B. Vasić, M. Jakovljević, G. Isić, and R. Gajić, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

2012 (3)

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

2011 (2)

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99(16), 161113 (2011).
[Crossref]

X. R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
[Crossref] [PubMed]

2010 (2)

J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18(16), 17187–17192 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

2009 (2)

A. K. Geim, “Graphene: Status and Prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

2008 (2)

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
[Crossref] [PubMed]

S. Marcinkevičius, A. Gushterov, and J. P. Reithmaier, “Trannsient electromagnetically induced transparency in self-assembled quantum dots,” Appl. Phys. Lett. 92(4), 041113 (2008).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2001 (2)

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

1992 (1)

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46(1), R29–R32 (1992).
[Crossref] [PubMed]

Adachi, J.

Ajayan, P. M.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Alaei, H.

Z. Vafapour and H. Alaei, “Achieving a high Q-Factor and tunable slow-light via classical electromagnetically induced transparency (Cl-EIT) in metamaterials,” Plasmonics 12(2), 479–488 (2017).
[Crossref]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Baba, T.

Beck, M.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Bian, L. A.

C. X. Liu, P. G. Liu, C. Yang, and L. A. Bian, “Terahertz metamaterial based on dual-band graphene ring resonator for modulating and sensing applications,” J. Opt. 19(11), 115102 (2017).
[Crossref]

Campbell, P. M.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Cao, C.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99(16), 161113 (2011).
[Crossref]

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Chen, J.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99(16), 161113 (2011).
[Crossref]

Chen, X.

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref] [PubMed]

Cheong, H. S.

Choi, J. W.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Dabidian, N.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Davies, A. G.

G. Z. Liang, X. N. Hu, X. C. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Ding, G. W.

G. W. Ding, S. B. Liu, H. F. Zhang, X. K. Kong, H. M. Li, B. X. Li, S. Y. Liu, and H. Li, “Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial,” Chin. Phys. B 24(11), 534–538 (2015).
[Crossref]

Dong, J. J.

Y. C. Fan, T. Qiao, F. L. Zhang, Q. Fu, J. J. Dong, B. T. Kong, and H. Q. Li, “A metamaterial modulator based on electrically controllable electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2016).
[Crossref] [PubMed]

Dong, L.

L. Zhu, L. Dong, J. Guo, F. Y. Meng, and Q. Wu, “Tunable electromagnetically induced transparency in hybrid grapheneall-dielectric metamaterial,” Appl. Phys., A Mater. Sci. Process. 123(3), 192 (2017).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Eddy, C. R.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Englund, D.

Y. Huang, E. Sutter, N. N. Shi, J. Zheng, T. Yang, D. Englund, H. J. Gao, and P. Sutter, “Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref] [PubMed]

Erni, D.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Faist, J.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Fan, Y. C.

Y. C. Fan, T. Qiao, F. L. Zhang, Q. Fu, J. J. Dong, B. T. Kong, and H. Q. Li, “A metamaterial modulator based on electrically controllable electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2016).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Fanton, M. A.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Feng, T. H.

T. H. Feng and H. P. Han, “Tunable transmission-line metamaterials mimicking electromagnetically induced transparency,” J. Electron. Mater. 45(11), 1–5 (2016).
[Crossref]

X. G. Yin, T. H. Feng, S. P. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Field, J. E.

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46(1), R29–R32 (1992).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Frantz, E.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Fu, Q.

Y. C. Fan, T. Qiao, F. L. Zhang, Q. Fu, J. J. Dong, B. T. Kong, and H. Q. Li, “A metamaterial modulator based on electrically controllable electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2016).
[Crossref] [PubMed]

Fu, W.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Gajic, R.

B. Vasić, M. Jakovljević, G. Isić, and R. Gajić, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

Gao, H. J.

Y. Huang, E. Sutter, N. N. Shi, J. Zheng, T. Yang, D. Englund, H. J. Gao, and P. Sutter, “Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref] [PubMed]

García de Abajo, F. J.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Gaskill, D. K.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Geim, A. K.

A. K. Geim, “Graphene: Status and Prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Guo, J.

L. Zhu, L. Dong, J. Guo, F. Y. Meng, and Q. Wu, “Tunable electromagnetically induced transparency in hybrid grapheneall-dielectric metamaterial,” Appl. Phys., A Mater. Sci. Process. 123(3), 192 (2017).
[Crossref]

Gushterov, A.

S. Marcinkevičius, A. Gushterov, and J. P. Reithmaier, “Trannsient electromagnetically induced transparency in self-assembled quantum dots,” Appl. Phys. Lett. 92(4), 041113 (2008).
[Crossref]

Halas, N. J.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Han, H. P.

T. H. Feng and H. P. Han, “Tunable transmission-line metamaterials mimicking electromagnetically induced transparency,” J. Electron. Mater. 45(11), 1–5 (2016).
[Crossref]

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Harris, S. E.

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46(1), R29–R32 (1992).
[Crossref] [PubMed]

He, X. J.

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

X. J. He, Y. M. Huang, X. Y. Yang, L. Zhu, F. M. Wu, and J. X. Jiang, “Tunable electromagnetically induced transparency based on terahertz graphene metamaterial,” RSC Advances 7(64), 40321–40326 (2017).
[Crossref]

X. J. He, X. Y. Yang, S. P. Li, S. Shi, F. M. Wu, and J. X. Jiang, “Electrically active manipulation of electromagnetic induced transparency in hybrid terahertz metamaterial,” Opt. Mater. Express 6(10), 3075–3085 (2016).
[Crossref]

J. X. Jiang, Q. F. Zhang, Q. X. Ma, S. T. Yan, F. M. Wu, and X. J. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5(9), 1962–1971 (2015).
[Crossref]

He, X. Y.

X. Y. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Ho, C. P.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109(21), 211103 (2016).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Ho, J. C.

X. G. Yin, T. H. Feng, S. P. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Hu, X. N.

G. Z. Liang, X. N. Hu, X. C. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Huang, W. Q.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Huang, Y.

Y. Huang, E. Sutter, N. N. Shi, J. Zheng, T. Yang, D. Englund, H. J. Gao, and P. Sutter, “Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref] [PubMed]

Huang, Y. M.

X. J. He, Y. M. Huang, X. Y. Yang, L. Zhu, F. M. Wu, and J. X. Jiang, “Tunable electromagnetically induced transparency based on terahertz graphene metamaterial,” RSC Advances 7(64), 40321–40326 (2017).
[Crossref]

Hui, A.

X. G. Yin, T. H. Feng, S. P. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Imamoglu, A.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

Isic, G.

B. Vasić, M. Jakovljević, G. Isić, and R. Gajić, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

Izadshenas, S.

S. Izadshenas, A. Zakery, and Z. Vafapour, “Tunable slow light in graphene metamaterial in a broad terahertz range,” Plasmonics 13, 63–70 (2018).

Jakovljevic, M.

B. Vasić, M. Jakovljević, G. Isić, and R. Gajić, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

Jang, W. H.

Jeppesen, C.

Jernigan, G. G.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Jia, T.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99(16), 161113 (2011).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, J. X.

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

X. J. He, Y. M. Huang, X. Y. Yang, L. Zhu, F. M. Wu, and J. X. Jiang, “Tunable electromagnetically induced transparency based on terahertz graphene metamaterial,” RSC Advances 7(64), 40321–40326 (2017).
[Crossref]

X. J. He, X. Y. Yang, S. P. Li, S. Shi, F. M. Wu, and J. X. Jiang, “Electrically active manipulation of electromagnetic induced transparency in hybrid terahertz metamaterial,” Opt. Mater. Express 6(10), 3075–3085 (2016).
[Crossref]

J. X. Jiang, Q. F. Zhang, Q. X. Ma, S. T. Yan, F. M. Wu, and X. J. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5(9), 1962–1971 (2015).
[Crossref]

Jin, B.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99(16), 161113 (2011).
[Crossref]

Jin, X. R.

Kang, L.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99(16), 161113 (2011).
[Crossref]

Kasapi, A.

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46(1), R29–R32 (1992).
[Crossref] [PubMed]

Kawaaski, T.

Khanikaev, A. B.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Kholmanov, I.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Kim, K. W.

Kong, B. T.

Y. C. Fan, T. Qiao, F. L. Zhang, Q. Fu, J. J. Dong, B. T. Kong, and H. Q. Li, “A metamaterial modulator based on electrically controllable electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2016).
[Crossref] [PubMed]

Kong, X. K.

G. W. Ding, S. B. Liu, H. F. Zhang, X. K. Kong, H. M. Li, B. X. Li, S. Y. Liu, and H. Li, “Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial,” Chin. Phys. B 24(11), 534–538 (2015).
[Crossref]

Kristensen, A.

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Lee, C. K.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109(21), 211103 (2016).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Lee, J. C.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Lee, S.

Lee, Y.

Li, B. X.

G. W. Ding, S. B. Liu, H. F. Zhang, X. K. Kong, H. M. Li, B. X. Li, S. Y. Liu, and H. Li, “Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial,” Chin. Phys. B 24(11), 534–538 (2015).
[Crossref]

Li, H.

G. W. Ding, S. B. Liu, H. F. Zhang, X. K. Kong, H. M. Li, B. X. Li, S. Y. Liu, and H. Li, “Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial,” Chin. Phys. B 24(11), 534–538 (2015).
[Crossref]

Li, H. M.

G. W. Ding, S. B. Liu, H. F. Zhang, X. K. Kong, H. M. Li, B. X. Li, S. Y. Liu, and H. Li, “Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial,” Chin. Phys. B 24(11), 534–538 (2015).
[Crossref]

Li, H. Q.

Y. C. Fan, T. Qiao, F. L. Zhang, Q. Fu, J. J. Dong, B. T. Kong, and H. Q. Li, “A metamaterial modulator based on electrically controllable electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2016).
[Crossref] [PubMed]

Li, J.

X. G. Yin, T. H. Feng, S. P. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Li, L. H.

G. Z. Liang, X. N. Hu, X. C. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Li, S. P.

Li, S. R.

H. N. Yang, E. Owiti, Y. B. Pei, S. R. Li, P. Liu, and X. D. Sun, “Polarization independent and tunable plasmon induced transparency for slow light,” Rsc Adv. 7(31), 19169–19173 (2017).
[Crossref]

Li, Z.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulationof electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liang, G. Z.

G. Z. Liang, X. N. Hu, X. C. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Liang, H. K.

G. Z. Liang, X. N. Hu, X. C. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Liang, L.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99(16), 161113 (2011).
[Crossref]

Liang, Z. X.

X. G. Yin, T. H. Feng, S. P. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Linfield, E. H.

G. Z. Liang, X. N. Hu, X. C. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Liu, C.

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref] [PubMed]

Liu, C. X.

C. X. Liu, P. G. Liu, C. Yang, and L. A. Bian, “Terahertz metamaterial based on dual-band graphene ring resonator for modulating and sensing applications,” J. Opt. 19(11), 115102 (2017).
[Crossref]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Liu, P.

H. N. Yang, E. Owiti, Y. B. Pei, S. R. Li, P. Liu, and X. D. Sun, “Polarization independent and tunable plasmon induced transparency for slow light,” Rsc Adv. 7(31), 19169–19173 (2017).
[Crossref]

Liu, P. G.

C. X. Liu, P. G. Liu, C. Yang, and L. A. Bian, “Terahertz metamaterial based on dual-band graphene ring resonator for modulating and sensing applications,” J. Opt. 19(11), 115102 (2017).
[Crossref]

Liu, S. B.

G. W. Ding, S. B. Liu, H. F. Zhang, X. K. Kong, H. M. Li, B. X. Li, S. Y. Liu, and H. Li, “Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial,” Chin. Phys. B 24(11), 534–538 (2015).
[Crossref]

Liu, S. Y.

G. W. Ding, S. B. Liu, H. F. Zhang, X. K. Kong, H. M. Li, B. X. Li, S. Y. Liu, and H. Li, “Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial,” Chin. Phys. B 24(11), 534–538 (2015).
[Crossref]

Liu, T.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulationof electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Liu, Z.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Lu, G. J.

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Lu, W.

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref] [PubMed]

Lukin, M. D.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Lv, W. H.

X. L. Zhao, C. Yuan, W. H. Lv, S. L. Xu, and J. Q. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic Tech. L. 27(12), 1321–1324 (2015).
[Crossref]

Ma, L.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Ma, Q. X.

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Magnuson, C.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Maissen, C.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Manjappa, M.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109(21), 211103 (2016).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Marcinkevicius, S.

S. Marcinkevičius, A. Gushterov, and J. P. Reithmaier, “Trannsient electromagnetically induced transparency in self-assembled quantum dots,” Appl. Phys. Lett. 92(4), 041113 (2008).
[Crossref]

Meng, F. Y.

L. Zhu, L. Dong, J. Guo, F. Y. Meng, and Q. Wu, “Tunable electromagnetically induced transparency in hybrid grapheneall-dielectric metamaterial,” Appl. Phys., A Mater. Sci. Process. 123(3), 192 (2017).
[Crossref]

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Mori, D.

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Mortensen, N. A.

Mousavi, S. H.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Myers-Ward, R. L.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Nordlander, P.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Novoselov, K. S.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Owiti, E.

H. N. Yang, E. Owiti, Y. B. Pei, S. R. Li, P. Liu, and X. D. Sun, “Polarization independent and tunable plasmon induced transparency for slow light,” Rsc Adv. 7(31), 19169–19173 (2017).
[Crossref]

Park, H. G.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Park, J.

Pei, Y. B.

H. N. Yang, E. Owiti, Y. B. Pei, S. R. Li, P. Liu, and X. D. Sun, “Polarization independent and tunable plasmon induced transparency for slow light,” Rsc Adv. 7(31), 19169–19173 (2017).
[Crossref]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Pitchappa, P.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109(21), 211103 (2016).
[Crossref]

Qiao, T.

Y. C. Fan, T. Qiao, F. L. Zhang, Q. Fu, J. J. Dong, B. T. Kong, and H. Q. Li, “A metamaterial modulator based on electrically controllable electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2016).
[Crossref] [PubMed]

Reithmaier, J. P.

S. Marcinkevičius, A. Gushterov, and J. P. Reithmaier, “Trannsient electromagnetically induced transparency in self-assembled quantum dots,” Appl. Phys. Lett. 92(4), 041113 (2008).
[Crossref]

Rhee, J. Y.

Robinson, J. A.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Ruoff, R. S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Sasaki, H.

Scalari, G.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Schlather, A.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Schönenberger, C.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Shen, Y.

G. Z. Liang, X. N. Hu, X. C. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Shi, N. N.

Y. Huang, E. Sutter, N. N. Shi, J. Zheng, T. Yang, D. Englund, H. J. Gao, and P. Sutter, “Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref] [PubMed]

Shi, S.

Shvets, G.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Singh, N.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109(21), 211103 (2016).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Singh, R.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109(21), 211103 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Snyder, D.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Stitt, J.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Sun, X. D.

H. N. Yang, E. Owiti, Y. B. Pei, S. R. Li, P. Liu, and X. D. Sun, “Polarization independent and tunable plasmon induced transparency for slow light,” Rsc Adv. 7(31), 19169–19173 (2017).
[Crossref]

Sutter, E.

Y. Huang, E. Sutter, N. N. Shi, J. Zheng, T. Yang, D. Englund, H. J. Gao, and P. Sutter, “Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref] [PubMed]

Sutter, P.

Y. Huang, E. Sutter, N. N. Shi, J. Zheng, T. Yang, D. Englund, H. J. Gao, and P. Sutter, “Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref] [PubMed]

Tang, W.

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref] [PubMed]

Tatar, K.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Tedesco, J. L.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Thongrattanasiri, S.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Trendafilov, S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Vafapour, Z.

S. Izadshenas, A. Zakery, and Z. Vafapour, “Tunable slow light in graphene metamaterial in a broad terahertz range,” Plasmonics 13, 63–70 (2018).

Z. Vafapour and H. Alaei, “Achieving a high Q-Factor and tunable slow-light via classical electromagnetically induced transparency (Cl-EIT) in metamaterials,” Plasmonics 12(2), 479–488 (2017).
[Crossref]

Valmorra, F.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

VanMil, B. L.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Vasic, B.

B. Vasić, M. Jakovljević, G. Isić, and R. Gajić, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Wan, J.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99(16), 161113 (2011).
[Crossref]

Wang, B. X.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Wang, G. Z.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Wang, L.

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref] [PubMed]

Wang, L. L.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Wang, Q. J.

G. Z. Liang, X. N. Hu, X. C. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Wang, T.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulationof electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Wang, Y.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Weng, X.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Wetherington, M.

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

Wu, F. M.

X. J. He, Y. M. Huang, X. Y. Yang, L. Zhu, F. M. Wu, and J. X. Jiang, “Tunable electromagnetically induced transparency based on terahertz graphene metamaterial,” RSC Advances 7(64), 40321–40326 (2017).
[Crossref]

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

X. J. He, X. Y. Yang, S. P. Li, S. Shi, F. M. Wu, and J. X. Jiang, “Electrically active manipulation of electromagnetic induced transparency in hybrid terahertz metamaterial,” Opt. Mater. Express 6(10), 3075–3085 (2016).
[Crossref]

J. X. Jiang, Q. F. Zhang, Q. X. Ma, S. T. Yan, F. M. Wu, and X. J. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5(9), 1962–1971 (2015).
[Crossref]

Wu, J.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99(16), 161113 (2011).
[Crossref]

Wu, K.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Wu, P.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99(16), 161113 (2011).
[Crossref]

Wu, Q.

L. Zhu, L. Dong, J. Guo, F. Y. Meng, and Q. Wu, “Tunable electromagnetically induced transparency in hybrid grapheneall-dielectric metamaterial,” Appl. Phys., A Mater. Sci. Process. 123(3), 192 (2017).
[Crossref]

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Xiao, S.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulationof electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18(16), 17187–17192 (2010).
[Crossref] [PubMed]

Xu, C.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulationof electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xu, S. L.

X. L. Zhao, C. Yuan, W. H. Lv, S. L. Xu, and J. Q. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic Tech. L. 27(12), 1321–1324 (2015).
[Crossref]

Xu, W.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99(16), 161113 (2011).
[Crossref]

Yan, S. T.

Yan, X.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulationof electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Yang, C.

C. X. Liu, P. G. Liu, C. Yang, and L. A. Bian, “Terahertz metamaterial based on dual-band graphene ring resonator for modulating and sensing applications,” J. Opt. 19(11), 115102 (2017).
[Crossref]

Yang, H. N.

H. N. Yang, E. Owiti, Y. B. Pei, S. R. Li, P. Liu, and X. D. Sun, “Polarization independent and tunable plasmon induced transparency for slow light,” Rsc Adv. 7(31), 19169–19173 (2017).
[Crossref]

Yang, T.

Y. Huang, E. Sutter, N. N. Shi, J. Zheng, T. Yang, D. Englund, H. J. Gao, and P. Sutter, “Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref] [PubMed]

Yang, W. L.

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Yang, X. Y.

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

X. J. He, Y. M. Huang, X. Y. Yang, L. Zhu, F. M. Wu, and J. X. Jiang, “Tunable electromagnetically induced transparency based on terahertz graphene metamaterial,” RSC Advances 7(64), 40321–40326 (2017).
[Crossref]

X. J. He, X. Y. Yang, S. P. Li, S. Shi, F. M. Wu, and J. X. Jiang, “Electrically active manipulation of electromagnetic induced transparency in hybrid terahertz metamaterial,” Opt. Mater. Express 6(10), 3075–3085 (2016).
[Crossref]

Yao, J. Q.

X. L. Zhao, C. Yuan, W. H. Lv, S. L. Xu, and J. Q. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic Tech. L. 27(12), 1321–1324 (2015).
[Crossref]

Yin, X. G.

X. G. Yin, T. H. Feng, S. P. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Yip, S. P.

X. G. Yin, T. H. Feng, S. P. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Yu, A.

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref] [PubMed]

Yu, S. F.

G. Z. Liang, X. N. Hu, X. C. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Yu, X. C.

G. Z. Liang, X. N. Hu, X. C. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Yu, Z. G.

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Yuan, C.

X. L. Zhao, C. Yuan, W. H. Lv, S. L. Xu, and J. Q. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic Tech. L. 27(12), 1321–1324 (2015).
[Crossref]

Zakery, A.

S. Izadshenas, A. Zakery, and Z. Vafapour, “Tunable slow light in graphene metamaterial in a broad terahertz range,” Plasmonics 13, 63–70 (2018).

Zhai, X.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Zhang, F. L.

Y. C. Fan, T. Qiao, F. L. Zhang, Q. Fu, J. J. Dong, B. T. Kong, and H. Q. Li, “A metamaterial modulator based on electrically controllable electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2016).
[Crossref] [PubMed]

Zhang, H. F.

G. W. Ding, S. B. Liu, H. F. Zhang, X. K. Kong, H. M. Li, B. X. Li, S. Y. Liu, and H. Li, “Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial,” Chin. Phys. B 24(11), 534–538 (2015).
[Crossref]

Zhang, J.

Zhang, Q. F.

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Zhang, W.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Zhang, Y.

G. Z. Liang, X. N. Hu, X. C. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99(16), 161113 (2011).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhao, X. L.

X. L. Zhao, C. Yuan, W. H. Lv, S. L. Xu, and J. Q. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic Tech. L. 27(12), 1321–1324 (2015).
[Crossref]

Zheng, H.

Zheng, J.

Y. Huang, E. Sutter, N. N. Shi, J. Zheng, T. Yang, D. Englund, H. J. Gao, and P. Sutter, “Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref] [PubMed]

Zhu, L.

X. J. He, Y. M. Huang, X. Y. Yang, L. Zhu, F. M. Wu, and J. X. Jiang, “Tunable electromagnetically induced transparency based on terahertz graphene metamaterial,” RSC Advances 7(64), 40321–40326 (2017).
[Crossref]

L. Zhu, L. Dong, J. Guo, F. Y. Meng, and Q. Wu, “Tunable electromagnetically induced transparency in hybrid grapheneall-dielectric metamaterial,” Appl. Phys., A Mater. Sci. Process. 123(3), 192 (2017).
[Crossref]

ACS Nano (2)

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Y. Huang, E. Sutter, N. N. Shi, J. Zheng, T. Yang, D. Englund, H. J. Gao, and P. Sutter, “Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref] [PubMed]

ACS Photonics (2)

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

G. Z. Liang, X. N. Hu, X. C. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Adv. Opt. Mater. (1)

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Appl. Phys. Lett. (5)

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. K. Lee, “Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules,” Appl. Phys. Lett. 109(21), 211103 (2016).
[Crossref]

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99(16), 161113 (2011).
[Crossref]

X. G. Yin, T. H. Feng, S. P. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

B. Vasić, M. Jakovljević, G. Isić, and R. Gajić, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

S. Marcinkevičius, A. Gushterov, and J. P. Reithmaier, “Trannsient electromagnetically induced transparency in self-assembled quantum dots,” Appl. Phys. Lett. 92(4), 041113 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

L. Zhu, L. Dong, J. Guo, F. Y. Meng, and Q. Wu, “Tunable electromagnetically induced transparency in hybrid grapheneall-dielectric metamaterial,” Appl. Phys., A Mater. Sci. Process. 123(3), 192 (2017).
[Crossref]

Carbon (3)

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulationof electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, and J. X. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

X. Y. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

Chin. Phys. B (1)

G. W. Ding, S. B. Liu, H. F. Zhang, X. K. Kong, H. M. Li, B. X. Li, S. Y. Liu, and H. Li, “Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial,” Chin. Phys. B 24(11), 534–538 (2015).
[Crossref]

IEEE Photonic Tech. L. (1)

X. L. Zhao, C. Yuan, W. H. Lv, S. L. Xu, and J. Q. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic Tech. L. 27(12), 1321–1324 (2015).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

J. Appl. Phys. (1)

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

J. Electron. Mater. (1)

T. H. Feng and H. P. Han, “Tunable transmission-line metamaterials mimicking electromagnetically induced transparency,” J. Electron. Mater. 45(11), 1–5 (2016).
[Crossref]

J. Opt. (1)

C. X. Liu, P. G. Liu, C. Yang, and L. A. Bian, “Terahertz metamaterial based on dual-band graphene ring resonator for modulating and sensing applications,” J. Opt. 19(11), 115102 (2017).
[Crossref]

Nano Lett. (3)

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett. 9(8), 2873–2876 (2009).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Nanoscale (1)

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Nature (2)

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Mater. Express (2)

Phys. Rev. A (1)

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46(1), R29–R32 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Plasmonics (2)

S. Izadshenas, A. Zakery, and Z. Vafapour, “Tunable slow light in graphene metamaterial in a broad terahertz range,” Plasmonics 13, 63–70 (2018).

Z. Vafapour and H. Alaei, “Achieving a high Q-Factor and tunable slow-light via classical electromagnetically induced transparency (Cl-EIT) in metamaterials,” Plasmonics 12(2), 479–488 (2017).
[Crossref]

Rsc Adv. (1)

H. N. Yang, E. Owiti, Y. B. Pei, S. R. Li, P. Liu, and X. D. Sun, “Polarization independent and tunable plasmon induced transparency for slow light,” Rsc Adv. 7(31), 19169–19173 (2017).
[Crossref]

RSC Advances (1)

X. J. He, Y. M. Huang, X. Y. Yang, L. Zhu, F. M. Wu, and J. X. Jiang, “Tunable electromagnetically induced transparency based on terahertz graphene metamaterial,” RSC Advances 7(64), 40321–40326 (2017).
[Crossref]

Sci. Rep. (1)

Y. C. Fan, T. Qiao, F. L. Zhang, Q. Fu, J. J. Dong, B. T. Kong, and H. Q. Li, “A metamaterial modulator based on electrically controllable electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2016).
[Crossref] [PubMed]

Science (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

A. K. Geim, “Graphene: Status and Prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of the metal-graphene hybrid metamaterial, the unit cells are arranged in a periodic array with periodic lengths px = py = 80 μm, respectively, (b) the unit cell of the structure.
Fig. 2
Fig. 2 Transmission spectra of four structures: (a) the sole vertical cut-wire pairs, the sole warped cut-wires, (b) the combined EIT structure and the hybrid structure with graphene strips.
Fig. 3
Fig. 3 (a–c) The surface current distributions of the combined cut-wire structure at the resonant frequencies corresponding to the transmission dips (0.86 and 1.28THz) and the transparency peak (0.99THz).
Fig. 4
Fig. 4 (a) Transmission spectra with different Fermi energy, (b) transmission versus Fermi energy at three resonant frequencies of the transmission peak (0.99 THz) and dips (0.86 THz and 1.28 THz).
Fig. 5
Fig. 5 The surface current distributions at transmission peak of the hybrid metamaterial with (a) EF = 0.4 eV and (b) EF = 0.05 eV
Fig. 6
Fig. 6 Transmission spectra of (a) the sole warped cut-wires and (b) the sole vertical cut-wire pairs with the graphene strip of different Fermi energy.
Fig. 7
Fig. 7 (a) The transmission phase shift and (b) group delay of the EIT metamaterial as the Fermi energy of graphene increases.
Fig. 8
Fig. 8 (a) Transparency spectra and (b) peak frequency shift with different refractive index as EF = 0.05eV, (c) the sensitivities for different Fermi energy.

Tables (1)

Tables Icon

Table 1 The group delay, DBP, Q-factor, and transparency peak amplitude of hybrid metamaterial with various Fermi energy

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ intra (ω, E F ,Γ, T)=j e 2 k B T π 2 (ωj τ 1 ) ( E F k B T +2ln( e E F k B T +1) ),
E F = v F π ε 0 ε r V g /e d s ,