Abstract

Owing to their various emission bands in the mid-IR region, Pr3+ ion-doped materials are expected to be a potential candidate as laser media. In this work, Pr3+ ion-doped Ge22Sb8Se70−2x(GaI)x (x = 1–5) chalcogenide glasses were prepared for investigation of the mid-IR spectroscopic properties. The glass structure and the optical, thermal, and luminescent properties were investigated. The 0.2–1.5 mol% Pr3+-doped Ge-Sb-Se-Ga-I bulk glass exhibited intense photoluminescence in the wavelength range of 3.5–5.5 μm under 1.55 μm light excitation. By heat treating the precursor glass at 30 °C above its glass transition temperature (Tg) for different durations, GeSe2 and Sb2Se3 nanocrystals were precipitated into the glass. After heat treatment, the 3.5–5.5 μm emission intensity of glass enhanced and reached the maximum after 10 h of heat treatment.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

5 April 2018: Typographical corrections were made to the title and abstract.


OSA Recommended Articles
Tb3+ doped Ga5Ge20Sb10Se65-xTex (x = 0-37.5) chalcogenide glasses and fibers for MWIR and LWIR emissions

N. Abdellaoui, F. Starecki, C. Boussard-Pledel, Y. Shpotyuk, J.-L. Doualan, A. Braud, E. Baudet, P. Nemec, F. Cheviré, M. Dussauze, B. Bureau, P. Camy, and V. Nazabal
Opt. Mater. Express 8(9) 2887-2900 (2018)

Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass

Zhuoqi Tang, David Furniss, Michael Fay, Hesham Sakr, Lukasz Sójka, Nigel Neate, Nicola Weston, Slawomir Sujecki, Trevor M. Benson, and Angela B. Seddon
Opt. Mater. Express 5(4) 870-886 (2015)

Mid-infrared emissions of Dy3+ doped Ga-As-S chalcogenide glasses and fibers and their potential for a 4.2 μm fiber laser

Jian Cui, Xusheng Xiao, Yantao Xu, Xiaoxia Cui, Meiling Chen, Junjiang Guo, Min Lu, Bo Peng, and Haitao Guo
Opt. Mater. Express 8(8) 2089-2102 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
    [Crossref]
  2. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
    [Crossref] [PubMed]
  3. P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave Spectroscopy,” Appl. Spectrosc. 59(1), 1–9 (2005).
    [Crossref] [PubMed]
  4. J. Ari, F. Starecki, C. Boussard-Plédel, J. Doualan, L. Quétel, K. Michel, A. Braud, P. Camy, R. Chahal, and B. Bureau, “Rare-earth doped chalcogenide glasses for mid-IR gas sensor applications,” in Conference on Optical Components and Materials XIV (SPIE-Int Soc Optical Engineering, 2017), p. 101000Q.
  5. F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators B: Chem. 207, 518–525 (2015).
    [Crossref]
  6. T. Schweizer, “Rare-earth-doped gallium lanthanum sulphide glasses for mid-infrared fibre lasers,” (University of Southampton, 2000).
  7. M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
    [Crossref]
  8. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
    [Crossref] [PubMed]
  9. F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
    [Crossref]
  10. L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
    [Crossref]
  11. H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22(18), 21236–21252 (2014).
    [Crossref] [PubMed]
  12. V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, M. V. Sukhanov, L. A. Ketkova, N. S. Zernova, V. G. Plotnichenko, and V. V. Koltashev, “Preparation and investigation of Pr3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics,” J. Lumin. 183, 129–134 (2017).
    [Crossref]
  13. R. Balda, S. García-Revilla, J. Fernández, V. Seznec, V. Nazabal, X. H. Zhang, J. L. Adam, M. Allix, and G. Matzen, “Upconversion luminescence of transparent Er3+-doped chalcohalide glass-ceramics,” Opt. Mater. 31(5), 760–764 (2009).
    [Crossref]
  14. R. Wang, K. Yan, M. Zhang, X. Shen, S. Dai, X. Yang, Z. Yang, A. Yang, B. Zhang, and B. Luther-Davies, “Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+,” Appl. Phys. Lett. 107(16), 161901 (2015).
    [Crossref]
  15. E. F. Schubert, J. K. Kim, and J.-Q. Xi, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi, B Basic Res. 244(8), 3002–3008 (2007).
    [Crossref]
  16. L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
    [Crossref]
  17. H. Grosswhite and H. W. Moos, Optical Properties of Ions in Crystals (Interscience, 1967).
  18. T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial distribution of rare-earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation,” Phys. Rev. B 81(10), 760–762 (2010).
    [Crossref]
  19. C. Lu, H. Guo, Y. Xu, C. Hou, M. Lu, X. He, P. Wang, W. Li, and B. Peng, “Mid-infrared emissions of Pr3+ -doped GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Res. Bull. 60, 391–396 (2014).
    [Crossref]
  20. S. El-Sayed, “Far-infrared studies of the amorphous SbxGe28-xSe72 glassy semiconductor,” Semicond. Sci. Technol. 18(4), 337–341 (2003).
    [Crossref]
  21. J. Holubova, Z. Cernosek, and E. Cernoskova, “SbxSe100-x system (0≤x≤8) studied by DSC and Raman spectroscopy,” J. Optoelectron. Adv. Mater. 1, 663–666 (2007).
  22. P. Němec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
    [Crossref]
  23. D. R. Goyal and A. S. Maan, “Far-infrared absorption in amorphous Sb15GexSe85-x glasses,” J. Non-Cryst. Solids 183(1-2), 182–185 (1995).
    [Crossref]
  24. P. Němec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+ -doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
    [Crossref]
  25. L. Calvez, H. L. Ma, J. Lucas, P. Glouannec, and X. H. Zhang, “Thermal analysis of RbI crystallization in the GeSe2-Sb2Se3-RbI system,” J. Non-Cryst. Solids 353(52-54), 4702–4706 (2007).
    [Crossref]
  26. F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J.-L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154–2157 (2006).
  27. L. Calvez, M. Roze, Y. Ledemi, H. L. Ma, J. Lucas, M. Allix, G. Matzen, and X. H. Zhang, “Controlled crystallization in Ge-(Sb/Ga)-(S/Se)-MX glasses for infrared applications,” J. Ceram. Soc. Jpn. 116(1358), 1079–1082 (2008).
    [Crossref]
  28. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
    [Crossref]

2017 (1)

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, M. V. Sukhanov, L. A. Ketkova, N. S. Zernova, V. G. Plotnichenko, and V. V. Koltashev, “Preparation and investigation of Pr3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics,” J. Lumin. 183, 129–134 (2017).
[Crossref]

2015 (2)

R. Wang, K. Yan, M. Zhang, X. Shen, S. Dai, X. Yang, Z. Yang, A. Yang, B. Zhang, and B. Luther-Davies, “Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+,” Appl. Phys. Lett. 107(16), 161901 (2015).
[Crossref]

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators B: Chem. 207, 518–525 (2015).
[Crossref]

2014 (3)

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22(18), 21236–21252 (2014).
[Crossref] [PubMed]

C. Lu, H. Guo, Y. Xu, C. Hou, M. Lu, X. He, P. Wang, W. Li, and B. Peng, “Mid-infrared emissions of Pr3+ -doped GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Res. Bull. 60, 391–396 (2014).
[Crossref]

2013 (1)

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

2011 (2)

2010 (2)

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial distribution of rare-earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation,” Phys. Rev. B 81(10), 760–762 (2010).
[Crossref]

2009 (1)

R. Balda, S. García-Revilla, J. Fernández, V. Seznec, V. Nazabal, X. H. Zhang, J. L. Adam, M. Allix, and G. Matzen, “Upconversion luminescence of transparent Er3+-doped chalcohalide glass-ceramics,” Opt. Mater. 31(5), 760–764 (2009).
[Crossref]

2008 (1)

L. Calvez, M. Roze, Y. Ledemi, H. L. Ma, J. Lucas, M. Allix, G. Matzen, and X. H. Zhang, “Controlled crystallization in Ge-(Sb/Ga)-(S/Se)-MX glasses for infrared applications,” J. Ceram. Soc. Jpn. 116(1358), 1079–1082 (2008).
[Crossref]

2007 (3)

L. Calvez, H. L. Ma, J. Lucas, P. Glouannec, and X. H. Zhang, “Thermal analysis of RbI crystallization in the GeSe2-Sb2Se3-RbI system,” J. Non-Cryst. Solids 353(52-54), 4702–4706 (2007).
[Crossref]

E. F. Schubert, J. K. Kim, and J.-Q. Xi, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi, B Basic Res. 244(8), 3002–3008 (2007).
[Crossref]

J. Holubova, Z. Cernosek, and E. Cernoskova, “SbxSe100-x system (0≤x≤8) studied by DSC and Raman spectroscopy,” J. Optoelectron. Adv. Mater. 1, 663–666 (2007).

2006 (1)

F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J.-L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154–2157 (2006).

2005 (1)

2003 (2)

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

S. El-Sayed, “Far-infrared studies of the amorphous SbxGe28-xSe72 glassy semiconductor,” Semicond. Sci. Technol. 18(4), 337–341 (2003).
[Crossref]

2001 (1)

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

2000 (2)

P. Němec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
[Crossref]

P. Němec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+ -doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
[Crossref]

1995 (1)

D. R. Goyal and A. S. Maan, “Far-infrared absorption in amorphous Sb15GexSe85-x glasses,” J. Non-Cryst. Solids 183(1-2), 182–185 (1995).
[Crossref]

1970 (1)

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[Crossref]

Adam, J. L.

R. Balda, S. García-Revilla, J. Fernández, V. Seznec, V. Nazabal, X. H. Zhang, J. L. Adam, M. Allix, and G. Matzen, “Upconversion luminescence of transparent Er3+-doped chalcohalide glass-ceramics,” Opt. Mater. 31(5), 760–764 (2009).
[Crossref]

Adam, J.-L.

F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J.-L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154–2157 (2006).

Aggarwal, I.

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Allix, M.

R. Balda, S. García-Revilla, J. Fernández, V. Seznec, V. Nazabal, X. H. Zhang, J. L. Adam, M. Allix, and G. Matzen, “Upconversion luminescence of transparent Er3+-doped chalcohalide glass-ceramics,” Opt. Mater. 31(5), 760–764 (2009).
[Crossref]

L. Calvez, M. Roze, Y. Ledemi, H. L. Ma, J. Lucas, M. Allix, G. Matzen, and X. H. Zhang, “Controlled crystallization in Ge-(Sb/Ga)-(S/Se)-MX glasses for infrared applications,” J. Ceram. Soc. Jpn. 116(1358), 1079–1082 (2008).
[Crossref]

Astapovich, M. S.

Balda, R.

R. Balda, S. García-Revilla, J. Fernández, V. Seznec, V. Nazabal, X. H. Zhang, J. L. Adam, M. Allix, and G. Matzen, “Upconversion luminescence of transparent Er3+-doped chalcohalide glass-ceramics,” Opt. Mater. 31(5), 760–764 (2009).
[Crossref]

Barney, E.

Belin, S.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Benson, T. M.

Beres-Pawlik, E.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Biriukov, A. S.

Boesewetter, D. E.

Boussard-Plédel, C.

Braud, A.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators B: Chem. 207, 518–525 (2015).
[Crossref]

Bureau, B.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators B: Chem. 207, 518–525 (2015).
[Crossref]

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave Spectroscopy,” Appl. Spectrosc. 59(1), 1–9 (2005).
[Crossref] [PubMed]

Calvez, L.

L. Calvez, M. Roze, Y. Ledemi, H. L. Ma, J. Lucas, M. Allix, G. Matzen, and X. H. Zhang, “Controlled crystallization in Ge-(Sb/Ga)-(S/Se)-MX glasses for infrared applications,” J. Ceram. Soc. Jpn. 116(1358), 1079–1082 (2008).
[Crossref]

L. Calvez, H. L. Ma, J. Lucas, P. Glouannec, and X. H. Zhang, “Thermal analysis of RbI crystallization in the GeSe2-Sb2Se3-RbI system,” J. Non-Cryst. Solids 353(52-54), 4702–4706 (2007).
[Crossref]

Camy, P.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators B: Chem. 207, 518–525 (2015).
[Crossref]

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Cernosek, Z.

J. Holubova, Z. Cernosek, and E. Cernoskova, “SbxSe100-x system (0≤x≤8) studied by DSC and Raman spectroscopy,” J. Optoelectron. Adv. Mater. 1, 663–666 (2007).

Cernoskova, E.

J. Holubova, Z. Cernosek, and E. Cernoskova, “SbxSe100-x system (0≤x≤8) studied by DSC and Raman spectroscopy,” J. Optoelectron. Adv. Mater. 1, 663–666 (2007).

Chahal, R.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators B: Chem. 207, 518–525 (2015).
[Crossref]

Charpentier, F.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators B: Chem. 207, 518–525 (2015).
[Crossref]

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Chen, G.

F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J.-L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154–2157 (2006).

Churbanov, M. F.

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, M. V. Sukhanov, L. A. Ketkova, N. S. Zernova, V. G. Plotnichenko, and V. V. Koltashev, “Preparation and investigation of Pr3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics,” J. Lumin. 183, 129–134 (2017).
[Crossref]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref] [PubMed]

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

Cole, B.

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Collier, J.

Dai, S.

R. Wang, K. Yan, M. Zhang, X. Shen, S. Dai, X. Yang, Z. Yang, A. Yang, B. Zhang, and B. Luther-Davies, “Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+,” Appl. Phys. Lett. 107(16), 161901 (2015).
[Crossref]

Dantanarayana, H.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Dexter, D. L.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[Crossref]

Dianov, E. M.

Doualan, J. L.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Doualan, J.-L.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators B: Chem. 207, 518–525 (2015).
[Crossref]

Elliott, S. R.

T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial distribution of rare-earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation,” Phys. Rev. B 81(10), 760–762 (2010).
[Crossref]

El-Sayed, S.

S. El-Sayed, “Far-infrared studies of the amorphous SbxGe28-xSe72 glassy semiconductor,” Semicond. Sci. Technol. 18(4), 337–341 (2003).
[Crossref]

Faber, E.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Fernández, J.

R. Balda, S. García-Revilla, J. Fernández, V. Seznec, V. Nazabal, X. H. Zhang, J. L. Adam, M. Allix, and G. Matzen, “Upconversion luminescence of transparent Er3+-doped chalcohalide glass-ceramics,” Opt. Mater. 31(5), 760–764 (2009).
[Crossref]

Frumar, M.

P. Němec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
[Crossref]

P. Němec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+ -doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
[Crossref]

Frumarová, B.

P. Němec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+ -doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
[Crossref]

P. Němec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
[Crossref]

Furniss, D.

Galagan, B. I.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

García-Revilla, S.

R. Balda, S. García-Revilla, J. Fernández, V. Seznec, V. Nazabal, X. H. Zhang, J. L. Adam, M. Allix, and G. Matzen, “Upconversion luminescence of transparent Er3+-doped chalcohalide glass-ceramics,” Opt. Mater. 31(5), 760–764 (2009).
[Crossref]

Glouannec, P.

L. Calvez, H. L. Ma, J. Lucas, P. Glouannec, and X. H. Zhang, “Thermal analysis of RbI crystallization in the GeSe2-Sb2Se3-RbI system,” J. Non-Cryst. Solids 353(52-54), 4702–4706 (2007).
[Crossref]

Goyal, D. R.

D. R. Goyal and A. S. Maan, “Far-infrared absorption in amorphous Sb15GexSe85-x glasses,” J. Non-Cryst. Solids 183(1-2), 182–185 (1995).
[Crossref]

Guo, H.

C. Lu, H. Guo, Y. Xu, C. Hou, M. Lu, X. He, P. Wang, W. Li, and B. Peng, “Mid-infrared emissions of Pr3+ -doped GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Res. Bull. 60, 391–396 (2014).
[Crossref]

He, X.

C. Lu, H. Guo, Y. Xu, C. Hou, M. Lu, X. He, P. Wang, W. Li, and B. Peng, “Mid-infrared emissions of Pr3+ -doped GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Res. Bull. 60, 391–396 (2014).
[Crossref]

Hegedus, J.

T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial distribution of rare-earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation,” Phys. Rev. B 81(10), 760–762 (2010).
[Crossref]

Heo, J.

T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial distribution of rare-earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation,” Phys. Rev. B 81(10), 760–762 (2010).
[Crossref]

Holubova, J.

J. Holubova, Z. Cernosek, and E. Cernoskova, “SbxSe100-x system (0≤x≤8) studied by DSC and Raman spectroscopy,” J. Optoelectron. Adv. Mater. 1, 663–666 (2007).

Hou, C.

C. Lu, H. Guo, Y. Xu, C. Hou, M. Lu, X. He, P. Wang, W. Li, and B. Peng, “Mid-infrared emissions of Pr3+ -doped GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Res. Bull. 60, 391–396 (2014).
[Crossref]

Jóvári, P.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Juncker, C.

Karaksina, E. V.

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, M. V. Sukhanov, L. A. Ketkova, N. S. Zernova, V. G. Plotnichenko, and V. V. Koltashev, “Preparation and investigation of Pr3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics,” J. Lumin. 183, 129–134 (2017).
[Crossref]

Ketkova, L. A.

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, M. V. Sukhanov, L. A. Ketkova, N. S. Zernova, V. G. Plotnichenko, and V. V. Koltashev, “Preparation and investigation of Pr3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics,” J. Lumin. 183, 129–134 (2017).
[Crossref]

Kim, J. K.

E. F. Schubert, J. K. Kim, and J.-Q. Xi, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi, B Basic Res. 244(8), 3002–3008 (2007).
[Crossref]

Koltashev, V. V.

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, M. V. Sukhanov, L. A. Ketkova, N. S. Zernova, V. G. Plotnichenko, and V. V. Koltashev, “Preparation and investigation of Pr3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics,” J. Lumin. 183, 129–134 (2017).
[Crossref]

Kosolapov, A. F.

Kotereva, T. V.

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, M. V. Sukhanov, L. A. Ketkova, N. S. Zernova, V. G. Plotnichenko, and V. V. Koltashev, “Preparation and investigation of Pr3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics,” J. Lumin. 183, 129–134 (2017).
[Crossref]

Kryukova, E. B.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

Le Coq, D.

Ledemi, Y.

L. Calvez, M. Roze, Y. Ledemi, H. L. Ma, J. Lucas, M. Allix, G. Matzen, and X. H. Zhang, “Controlled crystallization in Ge-(Sb/Ga)-(S/Se)-MX glasses for infrared applications,” J. Ceram. Soc. Jpn. 116(1358), 1079–1082 (2008).
[Crossref]

Lee, T. H.

T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial distribution of rare-earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation,” Phys. Rev. B 81(10), 760–762 (2010).
[Crossref]

Li, W.

C. Lu, H. Guo, Y. Xu, C. Hou, M. Lu, X. He, P. Wang, W. Li, and B. Peng, “Mid-infrared emissions of Pr3+ -doped GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Res. Bull. 60, 391–396 (2014).
[Crossref]

Lu, C.

C. Lu, H. Guo, Y. Xu, C. Hou, M. Lu, X. He, P. Wang, W. Li, and B. Peng, “Mid-infrared emissions of Pr3+ -doped GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Res. Bull. 60, 391–396 (2014).
[Crossref]

Lu, M.

C. Lu, H. Guo, Y. Xu, C. Hou, M. Lu, X. He, P. Wang, W. Li, and B. Peng, “Mid-infrared emissions of Pr3+ -doped GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Res. Bull. 60, 391–396 (2014).
[Crossref]

Lucas, J.

L. Calvez, M. Roze, Y. Ledemi, H. L. Ma, J. Lucas, M. Allix, G. Matzen, and X. H. Zhang, “Controlled crystallization in Ge-(Sb/Ga)-(S/Se)-MX glasses for infrared applications,” J. Ceram. Soc. Jpn. 116(1358), 1079–1082 (2008).
[Crossref]

L. Calvez, H. L. Ma, J. Lucas, P. Glouannec, and X. H. Zhang, “Thermal analysis of RbI crystallization in the GeSe2-Sb2Se3-RbI system,” J. Non-Cryst. Solids 353(52-54), 4702–4706 (2007).
[Crossref]

Lucas, P.

Luther-Davies, B.

R. Wang, K. Yan, M. Zhang, X. Shen, S. Dai, X. Yang, Z. Yang, A. Yang, B. Zhang, and B. Luther-Davies, “Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+,” Appl. Phys. Lett. 107(16), 161901 (2015).
[Crossref]

Ma, H.

F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J.-L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154–2157 (2006).

Ma, H. L.

L. Calvez, M. Roze, Y. Ledemi, H. L. Ma, J. Lucas, M. Allix, G. Matzen, and X. H. Zhang, “Controlled crystallization in Ge-(Sb/Ga)-(S/Se)-MX glasses for infrared applications,” J. Ceram. Soc. Jpn. 116(1358), 1079–1082 (2008).
[Crossref]

L. Calvez, H. L. Ma, J. Lucas, P. Glouannec, and X. H. Zhang, “Thermal analysis of RbI crystallization in the GeSe2-Sb2Se3-RbI system,” J. Non-Cryst. Solids 353(52-54), 4702–4706 (2007).
[Crossref]

Maan, A. S.

D. R. Goyal and A. S. Maan, “Far-infrared absorption in amorphous Sb15GexSe85-x glasses,” J. Non-Cryst. Solids 183(1-2), 182–185 (1995).
[Crossref]

Matzen, G.

R. Balda, S. García-Revilla, J. Fernández, V. Seznec, V. Nazabal, X. H. Zhang, J. L. Adam, M. Allix, and G. Matzen, “Upconversion luminescence of transparent Er3+-doped chalcohalide glass-ceramics,” Opt. Mater. 31(5), 760–764 (2009).
[Crossref]

L. Calvez, M. Roze, Y. Ledemi, H. L. Ma, J. Lucas, M. Allix, G. Matzen, and X. H. Zhang, “Controlled crystallization in Ge-(Sb/Ga)-(S/Se)-MX glasses for infrared applications,” J. Ceram. Soc. Jpn. 116(1358), 1079–1082 (2008).
[Crossref]

Michel, K.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators B: Chem. 207, 518–525 (2015).
[Crossref]

Miyakawa, T.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[Crossref]

Moizan, V.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators B: Chem. 207, 518–525 (2015).
[Crossref]

Moneim, N. A.

Nazabal, V.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators B: Chem. 207, 518–525 (2015).
[Crossref]

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

R. Balda, S. García-Revilla, J. Fernández, V. Seznec, V. Nazabal, X. H. Zhang, J. L. Adam, M. Allix, and G. Matzen, “Upconversion luminescence of transparent Er3+-doped chalcohalide glass-ceramics,” Opt. Mater. 31(5), 760–764 (2009).
[Crossref]

Nemec, P.

P. Němec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+ -doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
[Crossref]

P. Němec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
[Crossref]

Oladeji, A.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Peng, B.

C. Lu, H. Guo, Y. Xu, C. Hou, M. Lu, X. He, P. Wang, W. Li, and B. Peng, “Mid-infrared emissions of Pr3+ -doped GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Res. Bull. 60, 391–396 (2014).
[Crossref]

Plotnichenko, V. G.

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, M. V. Sukhanov, L. A. Ketkova, N. S. Zernova, V. G. Plotnichenko, and V. V. Koltashev, “Preparation and investigation of Pr3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics,” J. Lumin. 183, 129–134 (2017).
[Crossref]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref] [PubMed]

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

Pryamikov, A. D.

Pyrkov, Y. N.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

Quetel, L.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators B: Chem. 207, 518–525 (2015).
[Crossref]

Ren, J.

F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J.-L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154–2157 (2006).

Riley, M. R.

Roze, M.

L. Calvez, M. Roze, Y. Ledemi, H. L. Ma, J. Lucas, M. Allix, G. Matzen, and X. H. Zhang, “Controlled crystallization in Ge-(Sb/Ga)-(S/Se)-MX glasses for infrared applications,” J. Ceram. Soc. Jpn. 116(1358), 1079–1082 (2008).
[Crossref]

Sakr, H.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22(18), 21236–21252 (2014).
[Crossref] [PubMed]

Sanghera, J.

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Schubert, E. F.

E. F. Schubert, J. K. Kim, and J.-Q. Xi, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi, B Basic Res. 244(8), 3002–3008 (2007).
[Crossref]

Scripachev, I. V.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

Seddon, A. B.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22(18), 21236–21252 (2014).
[Crossref] [PubMed]

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Seznec, V.

R. Balda, S. García-Revilla, J. Fernández, V. Seznec, V. Nazabal, X. H. Zhang, J. L. Adam, M. Allix, and G. Matzen, “Upconversion luminescence of transparent Er3+-doped chalcohalide glass-ceramics,” Opt. Mater. 31(5), 760–764 (2009).
[Crossref]

Shaw, L.

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Shen, X.

R. Wang, K. Yan, M. Zhang, X. Shen, S. Dai, X. Yang, Z. Yang, A. Yang, B. Zhang, and B. Luther-Davies, “Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+,” Appl. Phys. Lett. 107(16), 161901 (2015).
[Crossref]

Shiryaev, V. S.

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, M. V. Sukhanov, L. A. Ketkova, N. S. Zernova, V. G. Plotnichenko, and V. V. Koltashev, “Preparation and investigation of Pr3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics,” J. Lumin. 183, 129–134 (2017).
[Crossref]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref] [PubMed]

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

Simdyankin, S. I.

T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial distribution of rare-earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation,” Phys. Rev. B 81(10), 760–762 (2010).
[Crossref]

Smetanin, S. V.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

Snopatin, G. E.

Sojka, L.

Sójka, L.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Starecki, F.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators B: Chem. 207, 518–525 (2015).
[Crossref]

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Sujecki, S.

Sukhanov, M. V.

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, M. V. Sukhanov, L. A. Ketkova, N. S. Zernova, V. G. Plotnichenko, and V. V. Koltashev, “Preparation and investigation of Pr3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics,” J. Lumin. 183, 129–134 (2017).
[Crossref]

Tang, Z.

Thielen, P.

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Troles, J.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators B: Chem. 207, 518–525 (2015).
[Crossref]

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Velmuzhov, A. P.

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, M. V. Sukhanov, L. A. Ketkova, N. S. Zernova, V. G. Plotnichenko, and V. V. Koltashev, “Preparation and investigation of Pr3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics,” J. Lumin. 183, 129–134 (2017).
[Crossref]

Wang, P.

C. Lu, H. Guo, Y. Xu, C. Hou, M. Lu, X. He, P. Wang, W. Li, and B. Peng, “Mid-infrared emissions of Pr3+ -doped GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Res. Bull. 60, 391–396 (2014).
[Crossref]

Wang, R.

R. Wang, K. Yan, M. Zhang, X. Shen, S. Dai, X. Yang, Z. Yang, A. Yang, B. Zhang, and B. Luther-Davies, “Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+,” Appl. Phys. Lett. 107(16), 161901 (2015).
[Crossref]

Xi, J.-Q.

E. F. Schubert, J. K. Kim, and J.-Q. Xi, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi, B Basic Res. 244(8), 3002–3008 (2007).
[Crossref]

Xia, F.

F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J.-L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154–2157 (2006).

Xu, Y.

C. Lu, H. Guo, Y. Xu, C. Hou, M. Lu, X. He, P. Wang, W. Li, and B. Peng, “Mid-infrared emissions of Pr3+ -doped GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Res. Bull. 60, 391–396 (2014).
[Crossref]

Yan, K.

R. Wang, K. Yan, M. Zhang, X. Shen, S. Dai, X. Yang, Z. Yang, A. Yang, B. Zhang, and B. Luther-Davies, “Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+,” Appl. Phys. Lett. 107(16), 161901 (2015).
[Crossref]

Yang, A.

R. Wang, K. Yan, M. Zhang, X. Shen, S. Dai, X. Yang, Z. Yang, A. Yang, B. Zhang, and B. Luther-Davies, “Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+,” Appl. Phys. Lett. 107(16), 161901 (2015).
[Crossref]

Yang, X.

R. Wang, K. Yan, M. Zhang, X. Shen, S. Dai, X. Yang, Z. Yang, A. Yang, B. Zhang, and B. Luther-Davies, “Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+,” Appl. Phys. Lett. 107(16), 161901 (2015).
[Crossref]

Yang, Z.

R. Wang, K. Yan, M. Zhang, X. Shen, S. Dai, X. Yang, Z. Yang, A. Yang, B. Zhang, and B. Luther-Davies, “Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+,” Appl. Phys. Lett. 107(16), 161901 (2015).
[Crossref]

Zernova, N. S.

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, M. V. Sukhanov, L. A. Ketkova, N. S. Zernova, V. G. Plotnichenko, and V. V. Koltashev, “Preparation and investigation of Pr3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics,” J. Lumin. 183, 129–134 (2017).
[Crossref]

Zhang, B.

R. Wang, K. Yan, M. Zhang, X. Shen, S. Dai, X. Yang, Z. Yang, A. Yang, B. Zhang, and B. Luther-Davies, “Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+,” Appl. Phys. Lett. 107(16), 161901 (2015).
[Crossref]

Zhang, M.

R. Wang, K. Yan, M. Zhang, X. Shen, S. Dai, X. Yang, Z. Yang, A. Yang, B. Zhang, and B. Luther-Davies, “Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+,” Appl. Phys. Lett. 107(16), 161901 (2015).
[Crossref]

Zhang, X.

F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J.-L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154–2157 (2006).

Zhang, X. H.

R. Balda, S. García-Revilla, J. Fernández, V. Seznec, V. Nazabal, X. H. Zhang, J. L. Adam, M. Allix, and G. Matzen, “Upconversion luminescence of transparent Er3+-doped chalcohalide glass-ceramics,” Opt. Mater. 31(5), 760–764 (2009).
[Crossref]

L. Calvez, M. Roze, Y. Ledemi, H. L. Ma, J. Lucas, M. Allix, G. Matzen, and X. H. Zhang, “Controlled crystallization in Ge-(Sb/Ga)-(S/Se)-MX glasses for infrared applications,” J. Ceram. Soc. Jpn. 116(1358), 1079–1082 (2008).
[Crossref]

L. Calvez, H. L. Ma, J. Lucas, P. Glouannec, and X. H. Zhang, “Thermal analysis of RbI crystallization in the GeSe2-Sb2Se3-RbI system,” J. Non-Cryst. Solids 353(52-54), 4702–4706 (2007).
[Crossref]

Appl. Phys. Lett. (1)

R. Wang, K. Yan, M. Zhang, X. Shen, S. Dai, X. Yang, Z. Yang, A. Yang, B. Zhang, and B. Luther-Davies, “Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+,” Appl. Phys. Lett. 107(16), 161901 (2015).
[Crossref]

Appl. Spectrosc. (1)

IEEE J. Quantum Electron. (1)

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Int. J. Appl. Glass Sci. (1)

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

J. Am. Ceram. Soc. (1)

F. Xia, X. Zhang, J. Ren, G. Chen, H. Ma, and J.-L. Adam, “Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system,” J. Am. Ceram. Soc. 89, 2154–2157 (2006).

J. Ceram. Soc. Jpn. (1)

L. Calvez, M. Roze, Y. Ledemi, H. L. Ma, J. Lucas, M. Allix, G. Matzen, and X. H. Zhang, “Controlled crystallization in Ge-(Sb/Ga)-(S/Se)-MX glasses for infrared applications,” J. Ceram. Soc. Jpn. 116(1358), 1079–1082 (2008).
[Crossref]

J. Lumin. (1)

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, M. V. Sukhanov, L. A. Ketkova, N. S. Zernova, V. G. Plotnichenko, and V. V. Koltashev, “Preparation and investigation of Pr3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics,” J. Lumin. 183, 129–134 (2017).
[Crossref]

J. Non-Cryst. Solids (5)

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

P. Němec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
[Crossref]

D. R. Goyal and A. S. Maan, “Far-infrared absorption in amorphous Sb15GexSe85-x glasses,” J. Non-Cryst. Solids 183(1-2), 182–185 (1995).
[Crossref]

P. Němec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+ -doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
[Crossref]

L. Calvez, H. L. Ma, J. Lucas, P. Glouannec, and X. H. Zhang, “Thermal analysis of RbI crystallization in the GeSe2-Sb2Se3-RbI system,” J. Non-Cryst. Solids 353(52-54), 4702–4706 (2007).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

J. Holubova, Z. Cernosek, and E. Cernoskova, “SbxSe100-x system (0≤x≤8) studied by DSC and Raman spectroscopy,” J. Optoelectron. Adv. Mater. 1, 663–666 (2007).

Mater. Lett. (1)

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Mater. Res. Bull. (1)

C. Lu, H. Guo, Y. Xu, C. Hou, M. Lu, X. He, P. Wang, W. Li, and B. Peng, “Mid-infrared emissions of Pr3+ -doped GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Res. Bull. 60, 391–396 (2014).
[Crossref]

Opt. Express (3)

Opt. Mater. (2)

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

R. Balda, S. García-Revilla, J. Fernández, V. Seznec, V. Nazabal, X. H. Zhang, J. L. Adam, M. Allix, and G. Matzen, “Upconversion luminescence of transparent Er3+-doped chalcohalide glass-ceramics,” Opt. Mater. 31(5), 760–764 (2009).
[Crossref]

Phys. Rev. B (2)

T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial distribution of rare-earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation,” Phys. Rev. B 81(10), 760–762 (2010).
[Crossref]

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[Crossref]

Phys. Status Solidi, B Basic Res. (1)

E. F. Schubert, J. K. Kim, and J.-Q. Xi, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi, B Basic Res. 244(8), 3002–3008 (2007).
[Crossref]

Semicond. Sci. Technol. (1)

S. El-Sayed, “Far-infrared studies of the amorphous SbxGe28-xSe72 glassy semiconductor,” Semicond. Sci. Technol. 18(4), 337–341 (2003).
[Crossref]

Sens. Actuators B: Chem. (1)

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators B: Chem. 207, 518–525 (2015).
[Crossref]

Other (3)

T. Schweizer, “Rare-earth-doped gallium lanthanum sulphide glasses for mid-infrared fibre lasers,” (University of Southampton, 2000).

J. Ari, F. Starecki, C. Boussard-Plédel, J. Doualan, L. Quétel, K. Michel, A. Braud, P. Camy, R. Chahal, and B. Bureau, “Rare-earth doped chalcogenide glasses for mid-IR gas sensor applications,” in Conference on Optical Components and Materials XIV (SPIE-Int Soc Optical Engineering, 2017), p. 101000Q.

H. Grosswhite and H. W. Moos, Optical Properties of Ions in Crystals (Interscience, 1967).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Absorption spectra of Pr3+ doped Ge–Sb–Se–Ga–I bulk glasses; (b) Pr3+ level and related transitions
Fig. 2
Fig. 2 MIR emission spectra of Pr3+-doped samples under 1.55 μm nm laser excitation (a) with increase in GaI concentration and (b) with increase of Pr3+ ion concentration.
Fig. 3
Fig. 3 Pr3+-doped Ge22Sb8Se66(GaI)2 bulk glass and Se purification of Pr3+-doped Ge22Sb8Se66(GaI)2 bulk glass: (a) absorption spectra; (b) photoluminescence spectra.
Fig. 4
Fig. 4 Normalized Raman spectra of Ge22Sb8Se70−2 x (GaI) x (x = 1, 2,3,4,5)–0.2Pr glass.
Fig. 5
Fig. 5 (a) XRD patterns of Ge22Sb8Se62(GaI)4–0.5Pr base glass and glass ceramics obtained by heat treatments at 312 °C for different durations, respectively, (b) SEM images for base sample at × 50000, (c) SEM images for sample at 312 °C for 24 h at × 50000, and (d) TEM image of the Ge22Sb8Se62(GaI)4–0.5Pr sample crystallized at 312 °C 24 h.
Fig. 6
Fig. 6 Infrared emission spectra of Ge22Sb8Se62(GaI)4–0.5Pr base glass and glass ceramics obtained by heat treatments at 312 °C for different durations under 1550 nm laser excitation, respectively.

Tables (1)

Tables Icon

Table 1 Glass compositions with corresponding Tg, density, and refractive index at 4.5 μm

Metrics