Abstract

Metal germanide thin films were investigated for infrared plasmonic applications. Thin films of copper and nickel were deposited onto amorphous germanium thin films and subsequently annealed at a range of temperatures. X-ray diffraction was used to identify stoichiometry, and SEM micrographs, energy dispersive spectroscopy, and atomic force microscopy were used to characterize composition and film quality. Electrical properties were analyzed via Hall measurements. Complex permittivity spectra were measured from 2 to 15 µm using IR ellipsometry. From this, surface plasmon polariton (SPP) characteristics such as propagation length and mode confinement were calculated and used to determine appropriate spectral windows for plasmonic applications with respect to film characteristics. Films were compared to similar palladium germanide and platinum germanide thin films and were evaluated for use with on-chip plasmonic components.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Platinum germanides for mid- and long-wave infrared plasmonics

Justin W. Cleary, William H. Streyer, Nima Nader, Shiva Vangala, Ivan Avrutsky, Bruce Claflin, Joshua Hendrickson, Daniel Wasserman, Robert E. Peale, Walter Buchwald, and Richard Soref
Opt. Express 23(3) 3316-3326 (2015)

Flexible InGaN nanowire membranes for enhanced solar water splitting

Rami T. ElAfandy, Mohamed Ebaid, Jung-Wook Min, Chao Zhao, Tien Khee Ng, and Boon S. Ooi
Opt. Express 26(14) A640-A650 (2018)

Fluorine-doped tin oxides for mid-infrared plasmonics

Farnood Khalilzadeh-Rezaie, Isaiah O. Oladeji, Justin W. Cleary, Nima Nader, Janardan Nath, Imen Rezadad, and Robert E. Peale
Opt. Mater. Express 5(10) 2184-2192 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  2. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  3. S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [Crossref]
  4. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  5. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
    [Crossref] [PubMed]
  6. R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012).
    [Crossref] [PubMed]
  7. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  8. J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon polariton properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
    [Crossref]
  9. J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730–734 (2010).
    [Crossref]
  10. J. W. Cleary, W. H. Streyer, N. Nader, S. Vangala, I. Avrutsky, B. Claflin, J. Hendrickson, D. Wasserman, R. E. Peale, W. Buchwald, and R. Soref, “Platinum germanides for mid- and long-wave infrared plasmonics,” Opt. Express 23(3), 3316–3326 (2015).
    [Crossref] [PubMed]
  11. E. M. Smith, W. H. Streyer, N. Nader, S. Vangala, R. Soref, D. Wasserman, and J. W. Cleary, “Palladium Germanides for Mid- and Long-Wave Infrared Plasmonics,” MRS Adv. 2(44), 2385–2390 (2017).
    [Crossref]
  12. S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
    [Crossref]
  13. S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. 24(3), 474–485 (2006).
    [Crossref]
  14. Y. F. Hsieh and L. J. Chen, “Interfacial reactions of palladium thin films on Ge(111) and Ge(001),” Thin Solid Films 162, 295–303 (1988).
    [Crossref]
  15. H. Shang, H. O. Schmidt, K. K. Chan, M. Copel, J. A. Ott, P. M. Kozlowski, S. E. Steen, S. A. Cordes, H. S. P. Wong, E. C. Jones, and W. E. Haensch, “High mobility p-channel germanium MOSFETs with a thin Ge oxynitride gate dielectric,” Dig. Int. Electron. Devices Meet. 17(4), 441–444 (2002).
  16. S. Gaudet, C. Detavernier, C. Lavoie, and P. Desjardins, “Reaction of thin Ni films with Ge: Phase formation and texture,” J. Appl. Phys. 100(3), 034306 (2006).
    [Crossref]
  17. J. K. Patterson, B. J. Park, K. Ritley, H. Z. Xiao, L. H. Allen, and A. Rockett, “Kinetrics of Ni/a-Ge bilayer reactions,” Thin Solid Films 253(1-2), 456–461 (1994).
    [Crossref]
  18. A. Patterson, “The Scherrer formula for X-ray particle size determination,” Phys. Rev. 56(10), 978–982 (1939).
    [Crossref]
  19. J. I. Langford and A. J. C. Wilson, “Scherrer after sixty years: A survey and some new results in the determination of crystallite size,” J. Appl. Cryst. 11(2), 102–113 (1978).
    [Crossref]
  20. J. Li, J. W. Mayer, and E. G. Colgan, “Oxidation and protection in copper and copper alloy thin films,” J. Appl. Phys. 70(5), 2820–2827 (1991).
    [Crossref]
  21. L. Krusin-Elbaum and M. O. Aboelfotoh, “Unusually low resistivity of copper germanide thin films formed at low temperatures,” Appl. Phys. Lett. 58(12), 1341–1343 (1991).
    [Crossref]
  22. J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Razaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050E (2017).
  23. E. L. Runnerstrom, K. P. Kelley, E. Sachet, C. T. Shelton, and J. P. Maria, “Epsilon-near-zero modes and surface plasmon resonance in fluorine-doped cadmium oxide thin films,” ACS Photonics 4(8), 1885–1892 (2017).
    [Crossref]
  24. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1998).
  25. J. W. Cleary, G. Medhi, M. Shahzad, I. Rezadad, D. Maukonen, R. E. Peale, G. D. Boreman, S. Wentzell, and W. R. Buchwald, “Infrared surface polaritons on antimony,” Opt. Express 20(3), 2693–2705 (2012).
    [Crossref] [PubMed]
  26. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
    [Crossref] [PubMed]
  27. N. Kinsey, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials,” J. Opt. Soc. Am. B 32(1), 121–142 (2015).
    [Crossref]
  28. J. Mu, R. Soref, L. C. Kimerling, and J. Michel, “Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding,” Appl. Phys. Lett. 104(3), 031115 (2014).
    [Crossref]
  29. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]

2017 (3)

E. M. Smith, W. H. Streyer, N. Nader, S. Vangala, R. Soref, D. Wasserman, and J. W. Cleary, “Palladium Germanides for Mid- and Long-Wave Infrared Plasmonics,” MRS Adv. 2(44), 2385–2390 (2017).
[Crossref]

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Razaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050E (2017).

E. L. Runnerstrom, K. P. Kelley, E. Sachet, C. T. Shelton, and J. P. Maria, “Epsilon-near-zero modes and surface plasmon resonance in fluorine-doped cadmium oxide thin films,” ACS Photonics 4(8), 1885–1892 (2017).
[Crossref]

2015 (2)

2014 (1)

J. Mu, R. Soref, L. C. Kimerling, and J. Michel, “Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding,” Appl. Phys. Lett. 104(3), 031115 (2014).
[Crossref]

2013 (2)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

2012 (3)

2010 (3)

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730–734 (2010).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

2008 (2)

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

2007 (1)

S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

2006 (2)

S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. 24(3), 474–485 (2006).
[Crossref]

S. Gaudet, C. Detavernier, C. Lavoie, and P. Desjardins, “Reaction of thin Ni films with Ge: Phase formation and texture,” J. Appl. Phys. 100(3), 034306 (2006).
[Crossref]

1994 (1)

J. K. Patterson, B. J. Park, K. Ritley, H. Z. Xiao, L. H. Allen, and A. Rockett, “Kinetrics of Ni/a-Ge bilayer reactions,” Thin Solid Films 253(1-2), 456–461 (1994).
[Crossref]

1991 (3)

J. Li, J. W. Mayer, and E. G. Colgan, “Oxidation and protection in copper and copper alloy thin films,” J. Appl. Phys. 70(5), 2820–2827 (1991).
[Crossref]

L. Krusin-Elbaum and M. O. Aboelfotoh, “Unusually low resistivity of copper germanide thin films formed at low temperatures,” Appl. Phys. Lett. 58(12), 1341–1343 (1991).
[Crossref]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[Crossref] [PubMed]

1988 (1)

Y. F. Hsieh and L. J. Chen, “Interfacial reactions of palladium thin films on Ge(111) and Ge(001),” Thin Solid Films 162, 295–303 (1988).
[Crossref]

1978 (1)

J. I. Langford and A. J. C. Wilson, “Scherrer after sixty years: A survey and some new results in the determination of crystallite size,” J. Appl. Cryst. 11(2), 102–113 (1978).
[Crossref]

1939 (1)

A. Patterson, “The Scherrer formula for X-ray particle size determination,” Phys. Rev. 56(10), 978–982 (1939).
[Crossref]

Aboelfotoh, M. O.

L. Krusin-Elbaum and M. O. Aboelfotoh, “Unusually low resistivity of copper germanide thin films formed at low temperatures,” Appl. Phys. Lett. 58(12), 1341–1343 (1991).
[Crossref]

Allen, L. H.

J. K. Patterson, B. J. Park, K. Ritley, H. Z. Xiao, L. H. Allen, and A. Rockett, “Kinetrics of Ni/a-Ge bilayer reactions,” Thin Solid Films 253(1-2), 456–461 (1994).
[Crossref]

Avrutsky, I.

Boltasseva, A.

N. Kinsey, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials,” J. Opt. Soc. Am. B 32(1), 121–142 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Boreman, G. D.

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[Crossref] [PubMed]

Buchwald, W.

Buchwald, W. R.

Chen, L. J.

Y. F. Hsieh and L. J. Chen, “Interfacial reactions of palladium thin films on Ge(111) and Ge(001),” Thin Solid Films 162, 295–303 (1988).
[Crossref]

Claflin, B.

Cleary, J. W.

E. M. Smith, W. H. Streyer, N. Nader, S. Vangala, R. Soref, D. Wasserman, and J. W. Cleary, “Palladium Germanides for Mid- and Long-Wave Infrared Plasmonics,” MRS Adv. 2(44), 2385–2390 (2017).
[Crossref]

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Razaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050E (2017).

J. W. Cleary, W. H. Streyer, N. Nader, S. Vangala, I. Avrutsky, B. Claflin, J. Hendrickson, D. Wasserman, R. E. Peale, W. Buchwald, and R. Soref, “Platinum germanides for mid- and long-wave infrared plasmonics,” Opt. Express 23(3), 3316–3326 (2015).
[Crossref] [PubMed]

J. W. Cleary, G. Medhi, M. Shahzad, I. Rezadad, D. Maukonen, R. E. Peale, G. D. Boreman, S. Wentzell, and W. R. Buchwald, “Infrared surface polaritons on antimony,” Opt. Express 20(3), 2693–2705 (2012).
[Crossref] [PubMed]

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012).
[Crossref] [PubMed]

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon polariton properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730–734 (2010).
[Crossref]

Colgan, E. G.

J. Li, J. W. Mayer, and E. G. Colgan, “Oxidation and protection in copper and copper alloy thin films,” J. Appl. Phys. 70(5), 2820–2827 (1991).
[Crossref]

Desjardins, P.

S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. 24(3), 474–485 (2006).
[Crossref]

S. Gaudet, C. Detavernier, C. Lavoie, and P. Desjardins, “Reaction of thin Ni films with Ge: Phase formation and texture,” J. Appl. Phys. 100(3), 034306 (2006).
[Crossref]

Detavernier, C.

S. Gaudet, C. Detavernier, C. Lavoie, and P. Desjardins, “Reaction of thin Ni films with Ge: Phase formation and texture,” J. Appl. Phys. 100(3), 034306 (2006).
[Crossref]

S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. 24(3), 474–485 (2006).
[Crossref]

Drehman, A.

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Eyink, K.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon polariton properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

Ferrera, M.

Gaudet, S.

S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. 24(3), 474–485 (2006).
[Crossref]

S. Gaudet, C. Detavernier, C. Lavoie, and P. Desjardins, “Reaction of thin Ni films with Ge: Phase formation and texture,” J. Appl. Phys. 100(3), 034306 (2006).
[Crossref]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Gibson, R.

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Razaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050E (2017).

Halas, N.

S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Hendrickson, J.

Hsieh, Y. F.

Y. F. Hsieh and L. J. Chen, “Interfacial reactions of palladium thin films on Ge(111) and Ge(001),” Thin Solid Films 162, 295–303 (1988).
[Crossref]

Ishigami, M.

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Kelley, K. P.

E. L. Runnerstrom, K. P. Kelley, E. Sachet, C. T. Shelton, and J. P. Maria, “Epsilon-near-zero modes and surface plasmon resonance in fluorine-doped cadmium oxide thin films,” ACS Photonics 4(8), 1885–1892 (2017).
[Crossref]

Kellock, A. J.

S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. 24(3), 474–485 (2006).
[Crossref]

Khalilzadeh-Razaie, F.

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Razaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050E (2017).

Kimerling, L. C.

J. Mu, R. Soref, L. C. Kimerling, and J. Michel, “Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding,” Appl. Phys. Lett. 104(3), 031115 (2014).
[Crossref]

Kinsey, N.

Krusin-Elbaum, L.

L. Krusin-Elbaum and M. O. Aboelfotoh, “Unusually low resistivity of copper germanide thin films formed at low temperatures,” Appl. Phys. Lett. 58(12), 1341–1343 (1991).
[Crossref]

Lal, S.

S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Langford, J. I.

J. I. Langford and A. J. C. Wilson, “Scherrer after sixty years: A survey and some new results in the determination of crystallite size,” J. Appl. Cryst. 11(2), 102–113 (1978).
[Crossref]

Lavoie, C.

S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. 24(3), 474–485 (2006).
[Crossref]

S. Gaudet, C. Detavernier, C. Lavoie, and P. Desjardins, “Reaction of thin Ni films with Ge: Phase formation and texture,” J. Appl. Phys. 100(3), 034306 (2006).
[Crossref]

Law, S.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Leedy, K.

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Razaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050E (2017).

Leedy, K. D.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon polariton properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

Li, J.

J. Li, J. W. Mayer, and E. G. Colgan, “Oxidation and protection in copper and copper alloy thin films,” J. Appl. Phys. 70(5), 2820–2827 (1991).
[Crossref]

Link, S.

S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Look, D. C.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon polariton properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

Maria, J. P.

E. L. Runnerstrom, K. P. Kelley, E. Sachet, C. T. Shelton, and J. P. Maria, “Epsilon-near-zero modes and surface plasmon resonance in fluorine-doped cadmium oxide thin films,” ACS Photonics 4(8), 1885–1892 (2017).
[Crossref]

Maukonen, D.

Mayer, J. W.

J. Li, J. W. Mayer, and E. G. Colgan, “Oxidation and protection in copper and copper alloy thin films,” J. Appl. Phys. 70(5), 2820–2827 (1991).
[Crossref]

Medhi, G.

Michel, J.

J. Mu, R. Soref, L. C. Kimerling, and J. Michel, “Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding,” Appl. Phys. Lett. 104(3), 031115 (2014).
[Crossref]

Mu, J.

J. Mu, R. Soref, L. C. Kimerling, and J. Michel, “Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding,” Appl. Phys. Lett. 104(3), 031115 (2014).
[Crossref]

Nader, N.

E. M. Smith, W. H. Streyer, N. Nader, S. Vangala, R. Soref, D. Wasserman, and J. W. Cleary, “Palladium Germanides for Mid- and Long-Wave Infrared Plasmonics,” MRS Adv. 2(44), 2385–2390 (2017).
[Crossref]

J. W. Cleary, W. H. Streyer, N. Nader, S. Vangala, I. Avrutsky, B. Claflin, J. Hendrickson, D. Wasserman, R. E. Peale, W. Buchwald, and R. Soref, “Platinum germanides for mid- and long-wave infrared plasmonics,” Opt. Express 23(3), 3316–3326 (2015).
[Crossref] [PubMed]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Oladeji, I. O.

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Razaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050E (2017).

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Park, B. J.

J. K. Patterson, B. J. Park, K. Ritley, H. Z. Xiao, L. H. Allen, and A. Rockett, “Kinetrics of Ni/a-Ge bilayer reactions,” Thin Solid Films 253(1-2), 456–461 (1994).
[Crossref]

Patterson, A.

A. Patterson, “The Scherrer formula for X-ray particle size determination,” Phys. Rev. 56(10), 978–982 (1939).
[Crossref]

Patterson, J. K.

J. K. Patterson, B. J. Park, K. Ritley, H. Z. Xiao, L. H. Allen, and A. Rockett, “Kinetrics of Ni/a-Ge bilayer reactions,” Thin Solid Films 253(1-2), 456–461 (1994).
[Crossref]

Peale, R. E.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Podolskiy, V.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Rezadad, I.

Ritley, K.

J. K. Patterson, B. J. Park, K. Ritley, H. Z. Xiao, L. H. Allen, and A. Rockett, “Kinetrics of Ni/a-Ge bilayer reactions,” Thin Solid Films 253(1-2), 456–461 (1994).
[Crossref]

Rockett, A.

J. K. Patterson, B. J. Park, K. Ritley, H. Z. Xiao, L. H. Allen, and A. Rockett, “Kinetrics of Ni/a-Ge bilayer reactions,” Thin Solid Films 253(1-2), 456–461 (1994).
[Crossref]

Runnerstrom, E. L.

E. L. Runnerstrom, K. P. Kelley, E. Sachet, C. T. Shelton, and J. P. Maria, “Epsilon-near-zero modes and surface plasmon resonance in fluorine-doped cadmium oxide thin films,” ACS Photonics 4(8), 1885–1892 (2017).
[Crossref]

Sachet, E.

E. L. Runnerstrom, K. P. Kelley, E. Sachet, C. T. Shelton, and J. P. Maria, “Epsilon-near-zero modes and surface plasmon resonance in fluorine-doped cadmium oxide thin films,” ACS Photonics 4(8), 1885–1892 (2017).
[Crossref]

Sambles, J. R.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[Crossref] [PubMed]

Shahzad, M.

Shalaev, V. M.

N. Kinsey, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials,” J. Opt. Soc. Am. B 32(1), 121–142 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shelton, C. T.

E. L. Runnerstrom, K. P. Kelley, E. Sachet, C. T. Shelton, and J. P. Maria, “Epsilon-near-zero modes and surface plasmon resonance in fluorine-doped cadmium oxide thin films,” ACS Photonics 4(8), 1885–1892 (2017).
[Crossref]

Shelton, D. J.

Smith, C. W.

Smith, E. M.

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Razaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050E (2017).

E. M. Smith, W. H. Streyer, N. Nader, S. Vangala, R. Soref, D. Wasserman, and J. W. Cleary, “Palladium Germanides for Mid- and Long-Wave Infrared Plasmonics,” MRS Adv. 2(44), 2385–2390 (2017).
[Crossref]

Snure, M. R.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon polariton properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

Soref, R.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Streyer, W. H.

E. M. Smith, W. H. Streyer, N. Nader, S. Vangala, R. Soref, D. Wasserman, and J. W. Cleary, “Palladium Germanides for Mid- and Long-Wave Infrared Plasmonics,” MRS Adv. 2(44), 2385–2390 (2017).
[Crossref]

J. W. Cleary, W. H. Streyer, N. Nader, S. Vangala, I. Avrutsky, B. Claflin, J. Hendrickson, D. Wasserman, R. E. Peale, W. Buchwald, and R. Soref, “Platinum germanides for mid- and long-wave infrared plasmonics,” Opt. Express 23(3), 3316–3326 (2015).
[Crossref] [PubMed]

Tiwari, A.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon polariton properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

Vangala, S.

E. M. Smith, W. H. Streyer, N. Nader, S. Vangala, R. Soref, D. Wasserman, and J. W. Cleary, “Palladium Germanides for Mid- and Long-Wave Infrared Plasmonics,” MRS Adv. 2(44), 2385–2390 (2017).
[Crossref]

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Razaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050E (2017).

J. W. Cleary, W. H. Streyer, N. Nader, S. Vangala, I. Avrutsky, B. Claflin, J. Hendrickson, D. Wasserman, R. E. Peale, W. Buchwald, and R. Soref, “Platinum germanides for mid- and long-wave infrared plasmonics,” Opt. Express 23(3), 3316–3326 (2015).
[Crossref] [PubMed]

Wasserman, D.

E. M. Smith, W. H. Streyer, N. Nader, S. Vangala, R. Soref, D. Wasserman, and J. W. Cleary, “Palladium Germanides for Mid- and Long-Wave Infrared Plasmonics,” MRS Adv. 2(44), 2385–2390 (2017).
[Crossref]

J. W. Cleary, W. H. Streyer, N. Nader, S. Vangala, I. Avrutsky, B. Claflin, J. Hendrickson, D. Wasserman, R. E. Peale, W. Buchwald, and R. Soref, “Platinum germanides for mid- and long-wave infrared plasmonics,” Opt. Express 23(3), 3316–3326 (2015).
[Crossref] [PubMed]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Wentzell, S.

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Wilson, A. J. C.

J. I. Langford and A. J. C. Wilson, “Scherrer after sixty years: A survey and some new results in the determination of crystallite size,” J. Appl. Cryst. 11(2), 102–113 (1978).
[Crossref]

Xiao, H. Z.

J. K. Patterson, B. J. Park, K. Ritley, H. Z. Xiao, L. H. Allen, and A. Rockett, “Kinetrics of Ni/a-Ge bilayer reactions,” Thin Solid Films 253(1-2), 456–461 (1994).
[Crossref]

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[Crossref] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

ACS Photonics (1)

E. L. Runnerstrom, K. P. Kelley, E. Sachet, C. T. Shelton, and J. P. Maria, “Epsilon-near-zero modes and surface plasmon resonance in fluorine-doped cadmium oxide thin films,” ACS Photonics 4(8), 1885–1892 (2017).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

L. Krusin-Elbaum and M. O. Aboelfotoh, “Unusually low resistivity of copper germanide thin films formed at low temperatures,” Appl. Phys. Lett. 58(12), 1341–1343 (1991).
[Crossref]

J. Mu, R. Soref, L. C. Kimerling, and J. Michel, “Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding,” Appl. Phys. Lett. 104(3), 031115 (2014).
[Crossref]

J. Appl. Cryst. (1)

J. I. Langford and A. J. C. Wilson, “Scherrer after sixty years: A survey and some new results in the determination of crystallite size,” J. Appl. Cryst. 11(2), 102–113 (1978).
[Crossref]

J. Appl. Phys. (2)

J. Li, J. W. Mayer, and E. G. Colgan, “Oxidation and protection in copper and copper alloy thin films,” J. Appl. Phys. 70(5), 2820–2827 (1991).
[Crossref]

S. Gaudet, C. Detavernier, C. Lavoie, and P. Desjardins, “Reaction of thin Ni films with Ge: Phase formation and texture,” J. Appl. Phys. 100(3), 034306 (2006).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. (1)

S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. 24(3), 474–485 (2006).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

MRS Adv. (1)

E. M. Smith, W. H. Streyer, N. Nader, S. Vangala, R. Soref, D. Wasserman, and J. W. Cleary, “Palladium Germanides for Mid- and Long-Wave Infrared Plasmonics,” MRS Adv. 2(44), 2385–2390 (2017).
[Crossref]

Nanophotonics (1)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Nat. Photonics (3)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Opt. Express (4)

Phys. Rev. (1)

A. Patterson, “The Scherrer formula for X-ray particle size determination,” Phys. Rev. 56(10), 978–982 (1939).
[Crossref]

Phys. Rev. B Condens. Matter (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[Crossref] [PubMed]

Proc. SPIE (2)

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Razaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050E (2017).

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon polariton properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

Thin Solid Films (2)

J. K. Patterson, B. J. Park, K. Ritley, H. Z. Xiao, L. H. Allen, and A. Rockett, “Kinetrics of Ni/a-Ge bilayer reactions,” Thin Solid Films 253(1-2), 456–461 (1994).
[Crossref]

Y. F. Hsieh and L. J. Chen, “Interfacial reactions of palladium thin films on Ge(111) and Ge(001),” Thin Solid Films 162, 295–303 (1988).
[Crossref]

Other (3)

H. Shang, H. O. Schmidt, K. K. Chan, M. Copel, J. A. Ott, P. M. Kozlowski, S. E. Steen, S. A. Cordes, H. S. P. Wong, E. C. Jones, and W. E. Haensch, “High mobility p-channel germanium MOSFETs with a thin Ge oxynitride gate dielectric,” Dig. Int. Electron. Devices Meet. 17(4), 441–444 (2002).

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 XRD spectra of nickel germanide films annealed between 150 °C-500 °C.
Fig. 2
Fig. 2 Relative intensity and Full Width Half Maximum (FWHM) of (a) peaks identifying cubic Ge and (b) peaks identifying orthorhombic NiGe from the XRD spectra in Fig. 1.
Fig. 3
Fig. 3 SEM images of annealed NiGe films. All of the images have the same magnification.
Fig. 4
Fig. 4 Measured (a) real and (b) imaginary parts of the permittivity for annealed nickel germanide films. (c) Optical skin depth calculated from the complex permittivity.
Fig. 5
Fig. 5 Peak intensities and FWHM for Ge and Cu3Ge phases in the copper germanide films.
Fig. 6
Fig. 6 SEM images of annealed copper germanide films. Note that the center two images are the same film, but at different magnifications to show segregation of film by composition.
Fig. 7
Fig. 7 XPS data for CuGe films annealed at 200 °C, 450 °C and 500 °C. Samples were sputter-etched in 15 seconds intervals, with XPS spectra measured before and after each etch.
Fig. 8
Fig. 8 Measured (a) real and (b) imaginary parts of the permittivity for annealed copper germanide films. (c) Optical skin depth calculated from the complex permittivity.
Fig. 9
Fig. 9 (Top) Resistivity measurements calculated from nominal 250 nm thickness and measured sheet resistance by van der Pauw configuration measurements. Calculated mobility (center) and carrier concentration (bottom) from Hall data. Pd-Ge is notated by the black squares; Ni-Ge is notated by the red circles; Cu-Ge is notated by the blue diamonds.
Fig. 10
Fig. 10 Complex permittivity of various annealed metal germanide films: Copper germanide and nickel germanide from this work; platinum germanide from [10]; and palladium germanide from [11]. Solid lines represent 500 °C anneals, dashed lines show 300 °C anneals (350 °C) anneal for Pt-Ge.
Fig. 11
Fig. 11 Plots of QSPP for (a) nickel germanide alloys and (b) copper germanide alloys. QSPP calculation is used from ref [7].

Tables (2)

Tables Icon

Table 1 SPP spectral ranges for all metal germanide alloys, and for all measured anneal temperatures.

Tables Icon

Table 2 SPP lower spectral limit for metal germanide alloys encased in a germanium dielectric layer.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ= Kλ Δ( 2θ )cos( θ ) ,
δ= [ 2π λ Im ϵ ] 1 ,
L x = [ 2 Im  k SPP ] 1 ,
k SPP = 2π λ   ϵ d ϵ c ϵ d + ϵ c .
L d,c = [ 2π λ Re ϵ d,c 2 ϵ d + ϵ c ] 1 .

Metrics