Abstract

GaSbBi/GaSb quantum wells (QWs) with Bi content up to 10.1% were grown using molecular beam epitaxy. High crystalline quality and clear interfaces were confirmed by high resolution transmission electron microscopy. The Bi distribution was investigated using energy dispersive X-ray spectroscopy. Room temperature photoluminescence (PL) reveals that the peak energy redshifts at a rate of 32 meV/Bi%, consistent with the theoretical predication using the 8-band kp model. From the temperature dependent PL, it was found that the temperature-insensitivity of the transition from the GaSbBi QW improved with increasing Bi content.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Influence of Bi on morphology and optical properties of InAs QDs

Lijuan Wang, Wenwu Pan, Xiren Chen, Xiaoyan Wu, Jun Shao, and Shumin Wang
Opt. Mater. Express 7(12) 4249-4257 (2017)

Synthesis and characterization of ZnO/ZnMgO multiple quantum wells by molecular beam epitaxy

Hsiang-Chen Wang, Che-Hao Liao, Yu-Lun Chueh, Chih-Chung Lai, Li-His Chen, and Raymond Chien-Chao Tsiang
Opt. Mater. Express 3(2) 237-247 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. J. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
    [Crossref]
  2. J. Kopaczek, R. Kudrawiec, W. M. Linhart, M. K. Rajpalke, K. M. Yu, T. S. Jones, M. J. Ashwin, J. Misiewicz, and T. D. Veal, “Temperature dependence of the band gap of GaSb1−xBix alloys with 0 <x ≤ 0.042 determined by photoreflectance,” Appl. Phys. Lett. 103(26), 261907 (2013).
    [Crossref]
  3. M. Gladysiewicz, R. Kudrawiec, and M. S. Wartak, “Electronic band structure and material gain of III-V-Bi quantum wells grown on GaSb substrate and dedicated for mid-infrared spectral range,” J. Appl. Phys. 119(7), 075701 (2016).
    [Crossref]
  4. T. Hosoda, G. Kipshidze, G. Tsvid, L. Shterengas, and G. Belenky, “Type-I GaSb-Based Laser Diodes Operating in 3.1 to 3.3 μm Wavelength Range,” IEEE Photonic. Tech. L. 22(10), 718–720 (2010).
    [Crossref]
  5. L. Shterengas, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36 μm at 12°C,” Appl. Phys. Lett. 93(1), 011103 (2008).
    [Crossref]
  6. L. Shterengas, G. L. Belenky, J. G. Kim, and R. U. Martinelli, “Design of high-power room-temperature continuous-wave GaSb-based type-I quantum-well lasers with λ > 2.5 µm,” Semicond. Sci. Technol. 19(5), 655–658 (2004).
    [Crossref]
  7. R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz, and A. Forchel, “Infrared photomodulation spectroscopy of an In 0.22Ga 0.78Sb/GaSb single quantum well,” Superlattices Microstruct. 32(1), 19–23 (2002).
    [Crossref]
  8. Y. Song, S. Wang, I. Saha Roy, P. Shi, and A. Hallen, “Growth of GaSb1−xBix by molecular beam epitaxy,” J. Vac. Sci. Technol. B30, 02B114 (2012).
  9. S. K. Das, T. D. Das, S. Dhar, M. de la Mare, and A. Krier, “Near infrared photoluminescence observed in dilute GaSbBi alloys grown by liquid phase epitaxy,” Infrared Phys. Technol. 55(1), 156–160 (2012).
    [Crossref]
  10. M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T. S. Jones, M. J. Ashwin, and T. D. Veal, “High Bi content GaSbBi alloys,” J. Appl. Phys. 116(4), 043511 (2014).
    [Crossref]
  11. L. Yue, Y. Zhang, F. Zhang, L. Wang, Y. Zhuzhong, J. Liu, and S. Wang, “Structural and optical properties of high Bi content GaSbBi films grown by molecular beam epitaxy,” in 2016 Compound Semiconductor Week (CSW) Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) &43rd International Symposium on Compound Semiconductors (ISCS), 2016), 1–2.
    [Crossref]
  12. L. Yue, X. Chen, Y. C. Zhang, F. Zhang, L. J. Wang, J. Shao, and S. M. Wang, “Molecular beam epitaxy growth and optical properties of high bismuth content GaSb1-xBix thin films,” J. Alloys Compd. 742, 780–789 (2018).
    [Crossref]
  13. O. Delorme, L. Cerutti, E. Tournié, and J. B. Rodriguez, “Molecular beam epitaxy and characterization of high Bi content GaSbBi alloys,” J. Cryst. Growth 477, 144–148 (2017).
    [Crossref]
  14. O. Delorme, L. Cerutti, E. Luna, G. Narcy, A. Trampert, E. Tournié, and J. B. Rodriguez, “GaSbBi/GaSb quantum well laser diodes,” Appl. Phys. Lett. 110(22), 222106 (2017).
    [Crossref]
  15. K. Jan, K. Robert, L. Wojciech, R. Mohana, J. Tim, A. Mark, and V. Tim, “Low- and high-energy photoluminescence from GaSb1−xBix with 0 < x ≤ 0.042,” Appl. Phys. Express 7(11), 111202 (2014).
    [Crossref]
  16. S. K. Das, T. D. Das, and S. Dhar, “Effect of post-growth anneal on the photoluminescence properties of GaSbBi,” Semicond. Sci. Technol. 29(1), 015003 (2014).
    [Crossref]
  17. X. R. Chen, Y. X. Song, L. Q. Zhu, Z. Qi, L. Zhu, F. X. Zha, S. L. Guo, S. M. Wang, and J. Shao, “Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance,” Chin. Phys. Lett. 32(6), 067301 (2015).
    [Crossref]
  18. X. Chen, Y. Song, L. Zhu, S. M. Wang, W. Lu, S. Guo, and J. Shao, “Shallow-terrace-like interface in dilute-bismuth GaSb/AlGaSb single quantum wells evidenced by photoluminescence,” J. Appl. Phys. 113(15), 153505 (2013).
    [Crossref]
  19. P. M. Thibado, B. R. Bennett, B. V. Shanabrook, and L. J. Whitman, “A RHEED and STM study of Sb-rich AlSb and GaSb (0 0 1) surface reconstructions,” J. Cryst. Growth 175–176, 317–322 (1997).
    [Crossref]
  20. J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
    [Crossref]
  21. J. Shao, W. Lu, G. K. O. Tsen, S. Guo, and J. M. Dell, “Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice,” J. Appl. Phys. 112(6), 063512 (2012).
    [Crossref]
  22. M. Lee, D. J. Nicholas, K. E. Singer, and B. Hamilton, “A photoluminescence and Hall effect study of GaSb grown by molecular beam epitaxy,” J. Appl. Phys. 59(8), 2895–2900 (1986).
    [Crossref]
  23. G. Pettinari, H. Engelkamp, P. C. M. Christianen, J. C. Maan, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Compositional evolution of Bi-induced acceptor states in GaAs1−xBix alloy,” Phys. Rev. B 83(20), 201201 (2011).
    [Crossref]
  24. S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, “Clustering effects in Ga(AsBi),” Appl. Phys. Lett. 96(13), 131115 (2010).
    [Crossref]
  25. D. L. Sales, E. Guerrero, J. F. Rodrigo, P. L. Galindo, A. Yáñez, M. Shafi, A. Khatab, R. H. Mari, M. Henini, S. Novikov, M. F. Chisholm, and S. I. Molina, “Distribution of bismuth atoms in epitaxial GaAsBi,” Appl. Phys. Lett. 98(10), 101902 (2011).
    [Crossref]
  26. C. M. Krammel, M. Roy, F. J. Tilley, P. A. Maksym, L. Y. Zhang, P. Wang, K. Wang, Y. Y. Li, S. M. Wang, and P. M. Koenraad, “Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy,” Phys. Rev. Mater. 1(3), 034606 (2017).
    [Crossref]
  27. D. S. Jiang, H. Jung, and K. Ploog, “Temperature dependence of photoluminescence from GaAs single and multiple quantum-well heterostructures grown by molecular-beam epitaxy,” J. Appl. Phys. 64(3), 1371 (1988).
    [Crossref]

2018 (1)

L. Yue, X. Chen, Y. C. Zhang, F. Zhang, L. J. Wang, J. Shao, and S. M. Wang, “Molecular beam epitaxy growth and optical properties of high bismuth content GaSb1-xBix thin films,” J. Alloys Compd. 742, 780–789 (2018).
[Crossref]

2017 (3)

O. Delorme, L. Cerutti, E. Tournié, and J. B. Rodriguez, “Molecular beam epitaxy and characterization of high Bi content GaSbBi alloys,” J. Cryst. Growth 477, 144–148 (2017).
[Crossref]

O. Delorme, L. Cerutti, E. Luna, G. Narcy, A. Trampert, E. Tournié, and J. B. Rodriguez, “GaSbBi/GaSb quantum well laser diodes,” Appl. Phys. Lett. 110(22), 222106 (2017).
[Crossref]

C. M. Krammel, M. Roy, F. J. Tilley, P. A. Maksym, L. Y. Zhang, P. Wang, K. Wang, Y. Y. Li, S. M. Wang, and P. M. Koenraad, “Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy,” Phys. Rev. Mater. 1(3), 034606 (2017).
[Crossref]

2016 (1)

M. Gladysiewicz, R. Kudrawiec, and M. S. Wartak, “Electronic band structure and material gain of III-V-Bi quantum wells grown on GaSb substrate and dedicated for mid-infrared spectral range,” J. Appl. Phys. 119(7), 075701 (2016).
[Crossref]

2015 (1)

X. R. Chen, Y. X. Song, L. Q. Zhu, Z. Qi, L. Zhu, F. X. Zha, S. L. Guo, S. M. Wang, and J. Shao, “Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance,” Chin. Phys. Lett. 32(6), 067301 (2015).
[Crossref]

2014 (3)

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T. S. Jones, M. J. Ashwin, and T. D. Veal, “High Bi content GaSbBi alloys,” J. Appl. Phys. 116(4), 043511 (2014).
[Crossref]

K. Jan, K. Robert, L. Wojciech, R. Mohana, J. Tim, A. Mark, and V. Tim, “Low- and high-energy photoluminescence from GaSb1−xBix with 0 < x ≤ 0.042,” Appl. Phys. Express 7(11), 111202 (2014).
[Crossref]

S. K. Das, T. D. Das, and S. Dhar, “Effect of post-growth anneal on the photoluminescence properties of GaSbBi,” Semicond. Sci. Technol. 29(1), 015003 (2014).
[Crossref]

2013 (3)

X. Chen, Y. Song, L. Zhu, S. M. Wang, W. Lu, S. Guo, and J. Shao, “Shallow-terrace-like interface in dilute-bismuth GaSb/AlGaSb single quantum wells evidenced by photoluminescence,” J. Appl. Phys. 113(15), 153505 (2013).
[Crossref]

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. J. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

J. Kopaczek, R. Kudrawiec, W. M. Linhart, M. K. Rajpalke, K. M. Yu, T. S. Jones, M. J. Ashwin, J. Misiewicz, and T. D. Veal, “Temperature dependence of the band gap of GaSb1−xBix alloys with 0 <x ≤ 0.042 determined by photoreflectance,” Appl. Phys. Lett. 103(26), 261907 (2013).
[Crossref]

2012 (3)

Y. Song, S. Wang, I. Saha Roy, P. Shi, and A. Hallen, “Growth of GaSb1−xBix by molecular beam epitaxy,” J. Vac. Sci. Technol. B30, 02B114 (2012).

S. K. Das, T. D. Das, S. Dhar, M. de la Mare, and A. Krier, “Near infrared photoluminescence observed in dilute GaSbBi alloys grown by liquid phase epitaxy,” Infrared Phys. Technol. 55(1), 156–160 (2012).
[Crossref]

J. Shao, W. Lu, G. K. O. Tsen, S. Guo, and J. M. Dell, “Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice,” J. Appl. Phys. 112(6), 063512 (2012).
[Crossref]

2011 (2)

G. Pettinari, H. Engelkamp, P. C. M. Christianen, J. C. Maan, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Compositional evolution of Bi-induced acceptor states in GaAs1−xBix alloy,” Phys. Rev. B 83(20), 201201 (2011).
[Crossref]

D. L. Sales, E. Guerrero, J. F. Rodrigo, P. L. Galindo, A. Yáñez, M. Shafi, A. Khatab, R. H. Mari, M. Henini, S. Novikov, M. F. Chisholm, and S. I. Molina, “Distribution of bismuth atoms in epitaxial GaAsBi,” Appl. Phys. Lett. 98(10), 101902 (2011).
[Crossref]

2010 (2)

S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, “Clustering effects in Ga(AsBi),” Appl. Phys. Lett. 96(13), 131115 (2010).
[Crossref]

T. Hosoda, G. Kipshidze, G. Tsvid, L. Shterengas, and G. Belenky, “Type-I GaSb-Based Laser Diodes Operating in 3.1 to 3.3 μm Wavelength Range,” IEEE Photonic. Tech. L. 22(10), 718–720 (2010).
[Crossref]

2008 (1)

L. Shterengas, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36 μm at 12°C,” Appl. Phys. Lett. 93(1), 011103 (2008).
[Crossref]

2006 (1)

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

2004 (1)

L. Shterengas, G. L. Belenky, J. G. Kim, and R. U. Martinelli, “Design of high-power room-temperature continuous-wave GaSb-based type-I quantum-well lasers with λ > 2.5 µm,” Semicond. Sci. Technol. 19(5), 655–658 (2004).
[Crossref]

2002 (1)

R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz, and A. Forchel, “Infrared photomodulation spectroscopy of an In 0.22Ga 0.78Sb/GaSb single quantum well,” Superlattices Microstruct. 32(1), 19–23 (2002).
[Crossref]

1997 (1)

P. M. Thibado, B. R. Bennett, B. V. Shanabrook, and L. J. Whitman, “A RHEED and STM study of Sb-rich AlSb and GaSb (0 0 1) surface reconstructions,” J. Cryst. Growth 175–176, 317–322 (1997).
[Crossref]

1988 (1)

D. S. Jiang, H. Jung, and K. Ploog, “Temperature dependence of photoluminescence from GaAs single and multiple quantum-well heterostructures grown by molecular-beam epitaxy,” J. Appl. Phys. 64(3), 1371 (1988).
[Crossref]

1986 (1)

M. Lee, D. J. Nicholas, K. E. Singer, and B. Hamilton, “A photoluminescence and Hall effect study of GaSb grown by molecular beam epitaxy,” J. Appl. Phys. 59(8), 2895–2900 (1986).
[Crossref]

Alaria, J.

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T. S. Jones, M. J. Ashwin, and T. D. Veal, “High Bi content GaSbBi alloys,” J. Appl. Phys. 116(4), 043511 (2014).
[Crossref]

Ashwin, M. J.

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T. S. Jones, M. J. Ashwin, and T. D. Veal, “High Bi content GaSbBi alloys,” J. Appl. Phys. 116(4), 043511 (2014).
[Crossref]

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. J. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

J. Kopaczek, R. Kudrawiec, W. M. Linhart, M. K. Rajpalke, K. M. Yu, T. S. Jones, M. J. Ashwin, J. Misiewicz, and T. D. Veal, “Temperature dependence of the band gap of GaSb1−xBix alloys with 0 <x ≤ 0.042 determined by photoreflectance,” Appl. Phys. Lett. 103(26), 261907 (2013).
[Crossref]

Beaton, D. A.

S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, “Clustering effects in Ga(AsBi),” Appl. Phys. Lett. 96(13), 131115 (2010).
[Crossref]

Belenky, G.

T. Hosoda, G. Kipshidze, G. Tsvid, L. Shterengas, and G. Belenky, “Type-I GaSb-Based Laser Diodes Operating in 3.1 to 3.3 μm Wavelength Range,” IEEE Photonic. Tech. L. 22(10), 718–720 (2010).
[Crossref]

L. Shterengas, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36 μm at 12°C,” Appl. Phys. Lett. 93(1), 011103 (2008).
[Crossref]

Belenky, G. L.

L. Shterengas, G. L. Belenky, J. G. Kim, and R. U. Martinelli, “Design of high-power room-temperature continuous-wave GaSb-based type-I quantum-well lasers with λ > 2.5 µm,” Semicond. Sci. Technol. 19(5), 655–658 (2004).
[Crossref]

Bennett, B. R.

P. M. Thibado, B. R. Bennett, B. V. Shanabrook, and L. J. Whitman, “A RHEED and STM study of Sb-rich AlSb and GaSb (0 0 1) surface reconstructions,” J. Cryst. Growth 175–176, 317–322 (1997).
[Crossref]

Birkett, M.

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T. S. Jones, M. J. Ashwin, and T. D. Veal, “High Bi content GaSbBi alloys,” J. Appl. Phys. 116(4), 043511 (2014).
[Crossref]

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. J. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

Buckeridge, J.

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. J. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

Capizzi, M.

G. Pettinari, H. Engelkamp, P. C. M. Christianen, J. C. Maan, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Compositional evolution of Bi-induced acceptor states in GaAs1−xBix alloy,” Phys. Rev. B 83(20), 201201 (2011).
[Crossref]

Cerutti, L.

O. Delorme, L. Cerutti, E. Tournié, and J. B. Rodriguez, “Molecular beam epitaxy and characterization of high Bi content GaSbBi alloys,” J. Cryst. Growth 477, 144–148 (2017).
[Crossref]

O. Delorme, L. Cerutti, E. Luna, G. Narcy, A. Trampert, E. Tournié, and J. B. Rodriguez, “GaSbBi/GaSb quantum well laser diodes,” Appl. Phys. Lett. 110(22), 222106 (2017).
[Crossref]

Chatterjee, S.

S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, “Clustering effects in Ga(AsBi),” Appl. Phys. Lett. 96(13), 131115 (2010).
[Crossref]

Chen, X.

L. Yue, X. Chen, Y. C. Zhang, F. Zhang, L. J. Wang, J. Shao, and S. M. Wang, “Molecular beam epitaxy growth and optical properties of high bismuth content GaSb1-xBix thin films,” J. Alloys Compd. 742, 780–789 (2018).
[Crossref]

X. Chen, Y. Song, L. Zhu, S. M. Wang, W. Lu, S. Guo, and J. Shao, “Shallow-terrace-like interface in dilute-bismuth GaSb/AlGaSb single quantum wells evidenced by photoluminescence,” J. Appl. Phys. 113(15), 153505 (2013).
[Crossref]

Chen, X. R.

X. R. Chen, Y. X. Song, L. Q. Zhu, Z. Qi, L. Zhu, F. X. Zha, S. L. Guo, S. M. Wang, and J. Shao, “Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance,” Chin. Phys. Lett. 32(6), 067301 (2015).
[Crossref]

Chernikov, A.

S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, “Clustering effects in Ga(AsBi),” Appl. Phys. Lett. 96(13), 131115 (2010).
[Crossref]

Chisholm, M. F.

D. L. Sales, E. Guerrero, J. F. Rodrigo, P. L. Galindo, A. Yáñez, M. Shafi, A. Khatab, R. H. Mari, M. Henini, S. Novikov, M. F. Chisholm, and S. I. Molina, “Distribution of bismuth atoms in epitaxial GaAsBi,” Appl. Phys. Lett. 98(10), 101902 (2011).
[Crossref]

Christianen, P. C. M.

G. Pettinari, H. Engelkamp, P. C. M. Christianen, J. C. Maan, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Compositional evolution of Bi-induced acceptor states in GaAs1−xBix alloy,” Phys. Rev. B 83(20), 201201 (2011).
[Crossref]

Chu, J.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Das, S. K.

S. K. Das, T. D. Das, and S. Dhar, “Effect of post-growth anneal on the photoluminescence properties of GaSbBi,” Semicond. Sci. Technol. 29(1), 015003 (2014).
[Crossref]

S. K. Das, T. D. Das, S. Dhar, M. de la Mare, and A. Krier, “Near infrared photoluminescence observed in dilute GaSbBi alloys grown by liquid phase epitaxy,” Infrared Phys. Technol. 55(1), 156–160 (2012).
[Crossref]

Das, T. D.

S. K. Das, T. D. Das, and S. Dhar, “Effect of post-growth anneal on the photoluminescence properties of GaSbBi,” Semicond. Sci. Technol. 29(1), 015003 (2014).
[Crossref]

S. K. Das, T. D. Das, S. Dhar, M. de la Mare, and A. Krier, “Near infrared photoluminescence observed in dilute GaSbBi alloys grown by liquid phase epitaxy,” Infrared Phys. Technol. 55(1), 156–160 (2012).
[Crossref]

de la Mare, M.

S. K. Das, T. D. Das, S. Dhar, M. de la Mare, and A. Krier, “Near infrared photoluminescence observed in dilute GaSbBi alloys grown by liquid phase epitaxy,” Infrared Phys. Technol. 55(1), 156–160 (2012).
[Crossref]

Dell, J. M.

J. Shao, W. Lu, G. K. O. Tsen, S. Guo, and J. M. Dell, “Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice,” J. Appl. Phys. 112(6), 063512 (2012).
[Crossref]

Delorme, O.

O. Delorme, L. Cerutti, E. Luna, G. Narcy, A. Trampert, E. Tournié, and J. B. Rodriguez, “GaSbBi/GaSb quantum well laser diodes,” Appl. Phys. Lett. 110(22), 222106 (2017).
[Crossref]

O. Delorme, L. Cerutti, E. Tournié, and J. B. Rodriguez, “Molecular beam epitaxy and characterization of high Bi content GaSbBi alloys,” J. Cryst. Growth 477, 144–148 (2017).
[Crossref]

Dhar, S.

S. K. Das, T. D. Das, and S. Dhar, “Effect of post-growth anneal on the photoluminescence properties of GaSbBi,” Semicond. Sci. Technol. 29(1), 015003 (2014).
[Crossref]

S. K. Das, T. D. Das, S. Dhar, M. de la Mare, and A. Krier, “Near infrared photoluminescence observed in dilute GaSbBi alloys grown by liquid phase epitaxy,” Infrared Phys. Technol. 55(1), 156–160 (2012).
[Crossref]

Engelkamp, H.

G. Pettinari, H. Engelkamp, P. C. M. Christianen, J. C. Maan, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Compositional evolution of Bi-induced acceptor states in GaAs1−xBix alloy,” Phys. Rev. B 83(20), 201201 (2011).
[Crossref]

Forchel, A.

R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz, and A. Forchel, “Infrared photomodulation spectroscopy of an In 0.22Ga 0.78Sb/GaSb single quantum well,” Superlattices Microstruct. 32(1), 19–23 (2002).
[Crossref]

Galindo, P. L.

D. L. Sales, E. Guerrero, J. F. Rodrigo, P. L. Galindo, A. Yáñez, M. Shafi, A. Khatab, R. H. Mari, M. Henini, S. Novikov, M. F. Chisholm, and S. I. Molina, “Distribution of bismuth atoms in epitaxial GaAsBi,” Appl. Phys. Lett. 98(10), 101902 (2011).
[Crossref]

Gladysiewicz, M.

M. Gladysiewicz, R. Kudrawiec, and M. S. Wartak, “Electronic band structure and material gain of III-V-Bi quantum wells grown on GaSb substrate and dedicated for mid-infrared spectral range,” J. Appl. Phys. 119(7), 075701 (2016).
[Crossref]

Guerrero, E.

D. L. Sales, E. Guerrero, J. F. Rodrigo, P. L. Galindo, A. Yáñez, M. Shafi, A. Khatab, R. H. Mari, M. Henini, S. Novikov, M. F. Chisholm, and S. I. Molina, “Distribution of bismuth atoms in epitaxial GaAsBi,” Appl. Phys. Lett. 98(10), 101902 (2011).
[Crossref]

Guo, S.

X. Chen, Y. Song, L. Zhu, S. M. Wang, W. Lu, S. Guo, and J. Shao, “Shallow-terrace-like interface in dilute-bismuth GaSb/AlGaSb single quantum wells evidenced by photoluminescence,” J. Appl. Phys. 113(15), 153505 (2013).
[Crossref]

J. Shao, W. Lu, G. K. O. Tsen, S. Guo, and J. M. Dell, “Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice,” J. Appl. Phys. 112(6), 063512 (2012).
[Crossref]

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Guo, S. L.

X. R. Chen, Y. X. Song, L. Q. Zhu, Z. Qi, L. Zhu, F. X. Zha, S. L. Guo, S. M. Wang, and J. Shao, “Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance,” Chin. Phys. Lett. 32(6), 067301 (2015).
[Crossref]

Hallen, A.

Y. Song, S. Wang, I. Saha Roy, P. Shi, and A. Hallen, “Growth of GaSb1−xBix by molecular beam epitaxy,” J. Vac. Sci. Technol. B30, 02B114 (2012).

Hamilton, B.

M. Lee, D. J. Nicholas, K. E. Singer, and B. Hamilton, “A photoluminescence and Hall effect study of GaSb grown by molecular beam epitaxy,” J. Appl. Phys. 59(8), 2895–2900 (1986).
[Crossref]

Henini, M.

D. L. Sales, E. Guerrero, J. F. Rodrigo, P. L. Galindo, A. Yáñez, M. Shafi, A. Khatab, R. H. Mari, M. Henini, S. Novikov, M. F. Chisholm, and S. I. Molina, “Distribution of bismuth atoms in epitaxial GaAsBi,” Appl. Phys. Lett. 98(10), 101902 (2011).
[Crossref]

Hosoda, T.

T. Hosoda, G. Kipshidze, G. Tsvid, L. Shterengas, and G. Belenky, “Type-I GaSb-Based Laser Diodes Operating in 3.1 to 3.3 μm Wavelength Range,” IEEE Photonic. Tech. L. 22(10), 718–720 (2010).
[Crossref]

L. Shterengas, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36 μm at 12°C,” Appl. Phys. Lett. 93(1), 011103 (2008).
[Crossref]

Imhof, S.

S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, “Clustering effects in Ga(AsBi),” Appl. Phys. Lett. 96(13), 131115 (2010).
[Crossref]

Jan, K.

K. Jan, K. Robert, L. Wojciech, R. Mohana, J. Tim, A. Mark, and V. Tim, “Low- and high-energy photoluminescence from GaSb1−xBix with 0 < x ≤ 0.042,” Appl. Phys. Express 7(11), 111202 (2014).
[Crossref]

Jiang, D. S.

D. S. Jiang, H. Jung, and K. Ploog, “Temperature dependence of photoluminescence from GaAs single and multiple quantum-well heterostructures grown by molecular-beam epitaxy,” J. Appl. Phys. 64(3), 1371 (1988).
[Crossref]

Johnson, S. R.

S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, “Clustering effects in Ga(AsBi),” Appl. Phys. Lett. 96(13), 131115 (2010).
[Crossref]

Jones, T. S.

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T. S. Jones, M. J. Ashwin, and T. D. Veal, “High Bi content GaSbBi alloys,” J. Appl. Phys. 116(4), 043511 (2014).
[Crossref]

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. J. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

J. Kopaczek, R. Kudrawiec, W. M. Linhart, M. K. Rajpalke, K. M. Yu, T. S. Jones, M. J. Ashwin, J. Misiewicz, and T. D. Veal, “Temperature dependence of the band gap of GaSb1−xBix alloys with 0 <x ≤ 0.042 determined by photoreflectance,” Appl. Phys. Lett. 103(26), 261907 (2013).
[Crossref]

Jung, H.

D. S. Jiang, H. Jung, and K. Ploog, “Temperature dependence of photoluminescence from GaAs single and multiple quantum-well heterostructures grown by molecular-beam epitaxy,” J. Appl. Phys. 64(3), 1371 (1988).
[Crossref]

Khatab, A.

D. L. Sales, E. Guerrero, J. F. Rodrigo, P. L. Galindo, A. Yáñez, M. Shafi, A. Khatab, R. H. Mari, M. Henini, S. Novikov, M. F. Chisholm, and S. I. Molina, “Distribution of bismuth atoms in epitaxial GaAsBi,” Appl. Phys. Lett. 98(10), 101902 (2011).
[Crossref]

Kim, J. G.

L. Shterengas, G. L. Belenky, J. G. Kim, and R. U. Martinelli, “Design of high-power room-temperature continuous-wave GaSb-based type-I quantum-well lasers with λ > 2.5 µm,” Semicond. Sci. Technol. 19(5), 655–658 (2004).
[Crossref]

Kipshidze, G.

T. Hosoda, G. Kipshidze, G. Tsvid, L. Shterengas, and G. Belenky, “Type-I GaSb-Based Laser Diodes Operating in 3.1 to 3.3 μm Wavelength Range,” IEEE Photonic. Tech. L. 22(10), 718–720 (2010).
[Crossref]

L. Shterengas, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36 μm at 12°C,” Appl. Phys. Lett. 93(1), 011103 (2008).
[Crossref]

Koch, M.

S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, “Clustering effects in Ga(AsBi),” Appl. Phys. Lett. 96(13), 131115 (2010).
[Crossref]

Koch, S. W.

S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, “Clustering effects in Ga(AsBi),” Appl. Phys. Lett. 96(13), 131115 (2010).
[Crossref]

Koenraad, P. M.

C. M. Krammel, M. Roy, F. J. Tilley, P. A. Maksym, L. Y. Zhang, P. Wang, K. Wang, Y. Y. Li, S. M. Wang, and P. M. Koenraad, “Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy,” Phys. Rev. Mater. 1(3), 034606 (2017).
[Crossref]

Kolata, K.

S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, “Clustering effects in Ga(AsBi),” Appl. Phys. Lett. 96(13), 131115 (2010).
[Crossref]

Kopaczek, J.

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T. S. Jones, M. J. Ashwin, and T. D. Veal, “High Bi content GaSbBi alloys,” J. Appl. Phys. 116(4), 043511 (2014).
[Crossref]

J. Kopaczek, R. Kudrawiec, W. M. Linhart, M. K. Rajpalke, K. M. Yu, T. S. Jones, M. J. Ashwin, J. Misiewicz, and T. D. Veal, “Temperature dependence of the band gap of GaSb1−xBix alloys with 0 <x ≤ 0.042 determined by photoreflectance,” Appl. Phys. Lett. 103(26), 261907 (2013).
[Crossref]

Köster, N. S.

S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, “Clustering effects in Ga(AsBi),” Appl. Phys. Lett. 96(13), 131115 (2010).
[Crossref]

Krammel, C. M.

C. M. Krammel, M. Roy, F. J. Tilley, P. A. Maksym, L. Y. Zhang, P. Wang, K. Wang, Y. Y. Li, S. M. Wang, and P. M. Koenraad, “Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy,” Phys. Rev. Mater. 1(3), 034606 (2017).
[Crossref]

Krier, A.

S. K. Das, T. D. Das, S. Dhar, M. de la Mare, and A. Krier, “Near infrared photoluminescence observed in dilute GaSbBi alloys grown by liquid phase epitaxy,” Infrared Phys. Technol. 55(1), 156–160 (2012).
[Crossref]

Kudrawiec, R.

M. Gladysiewicz, R. Kudrawiec, and M. S. Wartak, “Electronic band structure and material gain of III-V-Bi quantum wells grown on GaSb substrate and dedicated for mid-infrared spectral range,” J. Appl. Phys. 119(7), 075701 (2016).
[Crossref]

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T. S. Jones, M. J. Ashwin, and T. D. Veal, “High Bi content GaSbBi alloys,” J. Appl. Phys. 116(4), 043511 (2014).
[Crossref]

J. Kopaczek, R. Kudrawiec, W. M. Linhart, M. K. Rajpalke, K. M. Yu, T. S. Jones, M. J. Ashwin, J. Misiewicz, and T. D. Veal, “Temperature dependence of the band gap of GaSb1−xBix alloys with 0 <x ≤ 0.042 determined by photoreflectance,” Appl. Phys. Lett. 103(26), 261907 (2013).
[Crossref]

R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz, and A. Forchel, “Infrared photomodulation spectroscopy of an In 0.22Ga 0.78Sb/GaSb single quantum well,” Superlattices Microstruct. 32(1), 19–23 (2002).
[Crossref]

Lee, M.

M. Lee, D. J. Nicholas, K. E. Singer, and B. Hamilton, “A photoluminescence and Hall effect study of GaSb grown by molecular beam epitaxy,” J. Appl. Phys. 59(8), 2895–2900 (1986).
[Crossref]

Li, Y. Y.

C. M. Krammel, M. Roy, F. J. Tilley, P. A. Maksym, L. Y. Zhang, P. Wang, K. Wang, Y. Y. Li, S. M. Wang, and P. M. Koenraad, “Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy,” Phys. Rev. Mater. 1(3), 034606 (2017).
[Crossref]

Li, Z.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Linhart, W. M.

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T. S. Jones, M. J. Ashwin, and T. D. Veal, “High Bi content GaSbBi alloys,” J. Appl. Phys. 116(4), 043511 (2014).
[Crossref]

J. Kopaczek, R. Kudrawiec, W. M. Linhart, M. K. Rajpalke, K. M. Yu, T. S. Jones, M. J. Ashwin, J. Misiewicz, and T. D. Veal, “Temperature dependence of the band gap of GaSb1−xBix alloys with 0 <x ≤ 0.042 determined by photoreflectance,” Appl. Phys. Lett. 103(26), 261907 (2013).
[Crossref]

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. J. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

Lu, W.

X. Chen, Y. Song, L. Zhu, S. M. Wang, W. Lu, S. Guo, and J. Shao, “Shallow-terrace-like interface in dilute-bismuth GaSb/AlGaSb single quantum wells evidenced by photoluminescence,” J. Appl. Phys. 113(15), 153505 (2013).
[Crossref]

J. Shao, W. Lu, G. K. O. Tsen, S. Guo, and J. M. Dell, “Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice,” J. Appl. Phys. 112(6), 063512 (2012).
[Crossref]

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Lu, X.

G. Pettinari, H. Engelkamp, P. C. M. Christianen, J. C. Maan, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Compositional evolution of Bi-induced acceptor states in GaAs1−xBix alloy,” Phys. Rev. B 83(20), 201201 (2011).
[Crossref]

S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, “Clustering effects in Ga(AsBi),” Appl. Phys. Lett. 96(13), 131115 (2010).
[Crossref]

Lü, X.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Luna, E.

O. Delorme, L. Cerutti, E. Luna, G. Narcy, A. Trampert, E. Tournié, and J. B. Rodriguez, “GaSbBi/GaSb quantum well laser diodes,” Appl. Phys. Lett. 110(22), 222106 (2017).
[Crossref]

Maan, J. C.

G. Pettinari, H. Engelkamp, P. C. M. Christianen, J. C. Maan, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Compositional evolution of Bi-induced acceptor states in GaAs1−xBix alloy,” Phys. Rev. B 83(20), 201201 (2011).
[Crossref]

Maksym, P. A.

C. M. Krammel, M. Roy, F. J. Tilley, P. A. Maksym, L. Y. Zhang, P. Wang, K. Wang, Y. Y. Li, S. M. Wang, and P. M. Koenraad, “Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy,” Phys. Rev. Mater. 1(3), 034606 (2017).
[Crossref]

Mari, R. H.

D. L. Sales, E. Guerrero, J. F. Rodrigo, P. L. Galindo, A. Yáñez, M. Shafi, A. Khatab, R. H. Mari, M. Henini, S. Novikov, M. F. Chisholm, and S. I. Molina, “Distribution of bismuth atoms in epitaxial GaAsBi,” Appl. Phys. Lett. 98(10), 101902 (2011).
[Crossref]

Mark, A.

K. Jan, K. Robert, L. Wojciech, R. Mohana, J. Tim, A. Mark, and V. Tim, “Low- and high-energy photoluminescence from GaSb1−xBix with 0 < x ≤ 0.042,” Appl. Phys. Express 7(11), 111202 (2014).
[Crossref]

Martinelli, R. U.

L. Shterengas, G. L. Belenky, J. G. Kim, and R. U. Martinelli, “Design of high-power room-temperature continuous-wave GaSb-based type-I quantum-well lasers with λ > 2.5 µm,” Semicond. Sci. Technol. 19(5), 655–658 (2004).
[Crossref]

Misiewicz, J.

J. Kopaczek, R. Kudrawiec, W. M. Linhart, M. K. Rajpalke, K. M. Yu, T. S. Jones, M. J. Ashwin, J. Misiewicz, and T. D. Veal, “Temperature dependence of the band gap of GaSb1−xBix alloys with 0 <x ≤ 0.042 determined by photoreflectance,” Appl. Phys. Lett. 103(26), 261907 (2013).
[Crossref]

R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz, and A. Forchel, “Infrared photomodulation spectroscopy of an In 0.22Ga 0.78Sb/GaSb single quantum well,” Superlattices Microstruct. 32(1), 19–23 (2002).
[Crossref]

Mohana, R.

K. Jan, K. Robert, L. Wojciech, R. Mohana, J. Tim, A. Mark, and V. Tim, “Low- and high-energy photoluminescence from GaSb1−xBix with 0 < x ≤ 0.042,” Appl. Phys. Express 7(11), 111202 (2014).
[Crossref]

Molina, S. I.

D. L. Sales, E. Guerrero, J. F. Rodrigo, P. L. Galindo, A. Yáñez, M. Shafi, A. Khatab, R. H. Mari, M. Henini, S. Novikov, M. F. Chisholm, and S. I. Molina, “Distribution of bismuth atoms in epitaxial GaAsBi,” Appl. Phys. Lett. 98(10), 101902 (2011).
[Crossref]

Narcy, G.

O. Delorme, L. Cerutti, E. Luna, G. Narcy, A. Trampert, E. Tournié, and J. B. Rodriguez, “GaSbBi/GaSb quantum well laser diodes,” Appl. Phys. Lett. 110(22), 222106 (2017).
[Crossref]

Nicholas, D. J.

M. Lee, D. J. Nicholas, K. E. Singer, and B. Hamilton, “A photoluminescence and Hall effect study of GaSb grown by molecular beam epitaxy,” J. Appl. Phys. 59(8), 2895–2900 (1986).
[Crossref]

Novikov, S.

D. L. Sales, E. Guerrero, J. F. Rodrigo, P. L. Galindo, A. Yáñez, M. Shafi, A. Khatab, R. H. Mari, M. Henini, S. Novikov, M. F. Chisholm, and S. I. Molina, “Distribution of bismuth atoms in epitaxial GaAsBi,” Appl. Phys. Lett. 98(10), 101902 (2011).
[Crossref]

Pettinari, G.

G. Pettinari, H. Engelkamp, P. C. M. Christianen, J. C. Maan, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Compositional evolution of Bi-induced acceptor states in GaAs1−xBix alloy,” Phys. Rev. B 83(20), 201201 (2011).
[Crossref]

Ploog, K.

D. S. Jiang, H. Jung, and K. Ploog, “Temperature dependence of photoluminescence from GaAs single and multiple quantum-well heterostructures grown by molecular-beam epitaxy,” J. Appl. Phys. 64(3), 1371 (1988).
[Crossref]

Polimeni, A.

G. Pettinari, H. Engelkamp, P. C. M. Christianen, J. C. Maan, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Compositional evolution of Bi-induced acceptor states in GaAs1−xBix alloy,” Phys. Rev. B 83(20), 201201 (2011).
[Crossref]

Qi, Z.

X. R. Chen, Y. X. Song, L. Q. Zhu, Z. Qi, L. Zhu, F. X. Zha, S. L. Guo, S. M. Wang, and J. Shao, “Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance,” Chin. Phys. Lett. 32(6), 067301 (2015).
[Crossref]

Rajpalke, M. K.

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T. S. Jones, M. J. Ashwin, and T. D. Veal, “High Bi content GaSbBi alloys,” J. Appl. Phys. 116(4), 043511 (2014).
[Crossref]

J. Kopaczek, R. Kudrawiec, W. M. Linhart, M. K. Rajpalke, K. M. Yu, T. S. Jones, M. J. Ashwin, J. Misiewicz, and T. D. Veal, “Temperature dependence of the band gap of GaSb1−xBix alloys with 0 <x ≤ 0.042 determined by photoreflectance,” Appl. Phys. Lett. 103(26), 261907 (2013).
[Crossref]

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. J. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

Robert, K.

K. Jan, K. Robert, L. Wojciech, R. Mohana, J. Tim, A. Mark, and V. Tim, “Low- and high-energy photoluminescence from GaSb1−xBix with 0 < x ≤ 0.042,” Appl. Phys. Express 7(11), 111202 (2014).
[Crossref]

Rodrigo, J. F.

D. L. Sales, E. Guerrero, J. F. Rodrigo, P. L. Galindo, A. Yáñez, M. Shafi, A. Khatab, R. H. Mari, M. Henini, S. Novikov, M. F. Chisholm, and S. I. Molina, “Distribution of bismuth atoms in epitaxial GaAsBi,” Appl. Phys. Lett. 98(10), 101902 (2011).
[Crossref]

Rodriguez, J. B.

O. Delorme, L. Cerutti, E. Tournié, and J. B. Rodriguez, “Molecular beam epitaxy and characterization of high Bi content GaSbBi alloys,” J. Cryst. Growth 477, 144–148 (2017).
[Crossref]

O. Delorme, L. Cerutti, E. Luna, G. Narcy, A. Trampert, E. Tournié, and J. B. Rodriguez, “GaSbBi/GaSb quantum well laser diodes,” Appl. Phys. Lett. 110(22), 222106 (2017).
[Crossref]

Roy, M.

C. M. Krammel, M. Roy, F. J. Tilley, P. A. Maksym, L. Y. Zhang, P. Wang, K. Wang, Y. Y. Li, S. M. Wang, and P. M. Koenraad, “Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy,” Phys. Rev. Mater. 1(3), 034606 (2017).
[Crossref]

Rubel, O.

S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, “Clustering effects in Ga(AsBi),” Appl. Phys. Lett. 96(13), 131115 (2010).
[Crossref]

Ryczko, K.

R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz, and A. Forchel, “Infrared photomodulation spectroscopy of an In 0.22Ga 0.78Sb/GaSb single quantum well,” Superlattices Microstruct. 32(1), 19–23 (2002).
[Crossref]

Saha Roy, I.

Y. Song, S. Wang, I. Saha Roy, P. Shi, and A. Hallen, “Growth of GaSb1−xBix by molecular beam epitaxy,” J. Vac. Sci. Technol. B30, 02B114 (2012).

Sales, D. L.

D. L. Sales, E. Guerrero, J. F. Rodrigo, P. L. Galindo, A. Yáñez, M. Shafi, A. Khatab, R. H. Mari, M. Henini, S. Novikov, M. F. Chisholm, and S. I. Molina, “Distribution of bismuth atoms in epitaxial GaAsBi,” Appl. Phys. Lett. 98(10), 101902 (2011).
[Crossref]

Scanlon, D. O.

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. J. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

Sek, G.

R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz, and A. Forchel, “Infrared photomodulation spectroscopy of an In 0.22Ga 0.78Sb/GaSb single quantum well,” Superlattices Microstruct. 32(1), 19–23 (2002).
[Crossref]

Shafi, M.

D. L. Sales, E. Guerrero, J. F. Rodrigo, P. L. Galindo, A. Yáñez, M. Shafi, A. Khatab, R. H. Mari, M. Henini, S. Novikov, M. F. Chisholm, and S. I. Molina, “Distribution of bismuth atoms in epitaxial GaAsBi,” Appl. Phys. Lett. 98(10), 101902 (2011).
[Crossref]

Shanabrook, B. V.

P. M. Thibado, B. R. Bennett, B. V. Shanabrook, and L. J. Whitman, “A RHEED and STM study of Sb-rich AlSb and GaSb (0 0 1) surface reconstructions,” J. Cryst. Growth 175–176, 317–322 (1997).
[Crossref]

Shao, J.

L. Yue, X. Chen, Y. C. Zhang, F. Zhang, L. J. Wang, J. Shao, and S. M. Wang, “Molecular beam epitaxy growth and optical properties of high bismuth content GaSb1-xBix thin films,” J. Alloys Compd. 742, 780–789 (2018).
[Crossref]

X. R. Chen, Y. X. Song, L. Q. Zhu, Z. Qi, L. Zhu, F. X. Zha, S. L. Guo, S. M. Wang, and J. Shao, “Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance,” Chin. Phys. Lett. 32(6), 067301 (2015).
[Crossref]

X. Chen, Y. Song, L. Zhu, S. M. Wang, W. Lu, S. Guo, and J. Shao, “Shallow-terrace-like interface in dilute-bismuth GaSb/AlGaSb single quantum wells evidenced by photoluminescence,” J. Appl. Phys. 113(15), 153505 (2013).
[Crossref]

J. Shao, W. Lu, G. K. O. Tsen, S. Guo, and J. M. Dell, “Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice,” J. Appl. Phys. 112(6), 063512 (2012).
[Crossref]

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Shi, P.

Y. Song, S. Wang, I. Saha Roy, P. Shi, and A. Hallen, “Growth of GaSb1−xBix by molecular beam epitaxy,” J. Vac. Sci. Technol. B30, 02B114 (2012).

Shterengas, L.

T. Hosoda, G. Kipshidze, G. Tsvid, L. Shterengas, and G. Belenky, “Type-I GaSb-Based Laser Diodes Operating in 3.1 to 3.3 μm Wavelength Range,” IEEE Photonic. Tech. L. 22(10), 718–720 (2010).
[Crossref]

L. Shterengas, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36 μm at 12°C,” Appl. Phys. Lett. 93(1), 011103 (2008).
[Crossref]

L. Shterengas, G. L. Belenky, J. G. Kim, and R. U. Martinelli, “Design of high-power room-temperature continuous-wave GaSb-based type-I quantum-well lasers with λ > 2.5 µm,” Semicond. Sci. Technol. 19(5), 655–658 (2004).
[Crossref]

Singer, K. E.

M. Lee, D. J. Nicholas, K. E. Singer, and B. Hamilton, “A photoluminescence and Hall effect study of GaSb grown by molecular beam epitaxy,” J. Appl. Phys. 59(8), 2895–2900 (1986).
[Crossref]

Song, Y.

X. Chen, Y. Song, L. Zhu, S. M. Wang, W. Lu, S. Guo, and J. Shao, “Shallow-terrace-like interface in dilute-bismuth GaSb/AlGaSb single quantum wells evidenced by photoluminescence,” J. Appl. Phys. 113(15), 153505 (2013).
[Crossref]

Y. Song, S. Wang, I. Saha Roy, P. Shi, and A. Hallen, “Growth of GaSb1−xBix by molecular beam epitaxy,” J. Vac. Sci. Technol. B30, 02B114 (2012).

Song, Y. X.

X. R. Chen, Y. X. Song, L. Q. Zhu, Z. Qi, L. Zhu, F. X. Zha, S. L. Guo, S. M. Wang, and J. Shao, “Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance,” Chin. Phys. Lett. 32(6), 067301 (2015).
[Crossref]

Suchalkin, S.

L. Shterengas, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36 μm at 12°C,” Appl. Phys. Lett. 93(1), 011103 (2008).
[Crossref]

Thibado, P. M.

P. M. Thibado, B. R. Bennett, B. V. Shanabrook, and L. J. Whitman, “A RHEED and STM study of Sb-rich AlSb and GaSb (0 0 1) surface reconstructions,” J. Cryst. Growth 175–176, 317–322 (1997).
[Crossref]

Thränhardt, A.

S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, “Clustering effects in Ga(AsBi),” Appl. Phys. Lett. 96(13), 131115 (2010).
[Crossref]

Tiedje, T.

G. Pettinari, H. Engelkamp, P. C. M. Christianen, J. C. Maan, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Compositional evolution of Bi-induced acceptor states in GaAs1−xBix alloy,” Phys. Rev. B 83(20), 201201 (2011).
[Crossref]

S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, “Clustering effects in Ga(AsBi),” Appl. Phys. Lett. 96(13), 131115 (2010).
[Crossref]

Tilley, F. J.

C. M. Krammel, M. Roy, F. J. Tilley, P. A. Maksym, L. Y. Zhang, P. Wang, K. Wang, Y. Y. Li, S. M. Wang, and P. M. Koenraad, “Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy,” Phys. Rev. Mater. 1(3), 034606 (2017).
[Crossref]

Tim, J.

K. Jan, K. Robert, L. Wojciech, R. Mohana, J. Tim, A. Mark, and V. Tim, “Low- and high-energy photoluminescence from GaSb1−xBix with 0 < x ≤ 0.042,” Appl. Phys. Express 7(11), 111202 (2014).
[Crossref]

Tim, V.

K. Jan, K. Robert, L. Wojciech, R. Mohana, J. Tim, A. Mark, and V. Tim, “Low- and high-energy photoluminescence from GaSb1−xBix with 0 < x ≤ 0.042,” Appl. Phys. Express 7(11), 111202 (2014).
[Crossref]

Tournié, E.

O. Delorme, L. Cerutti, E. Luna, G. Narcy, A. Trampert, E. Tournié, and J. B. Rodriguez, “GaSbBi/GaSb quantum well laser diodes,” Appl. Phys. Lett. 110(22), 222106 (2017).
[Crossref]

O. Delorme, L. Cerutti, E. Tournié, and J. B. Rodriguez, “Molecular beam epitaxy and characterization of high Bi content GaSbBi alloys,” J. Cryst. Growth 477, 144–148 (2017).
[Crossref]

Trampert, A.

O. Delorme, L. Cerutti, E. Luna, G. Narcy, A. Trampert, E. Tournié, and J. B. Rodriguez, “GaSbBi/GaSb quantum well laser diodes,” Appl. Phys. Lett. 110(22), 222106 (2017).
[Crossref]

Tsen, G. K. O.

J. Shao, W. Lu, G. K. O. Tsen, S. Guo, and J. M. Dell, “Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice,” J. Appl. Phys. 112(6), 063512 (2012).
[Crossref]

Tsvid, G.

T. Hosoda, G. Kipshidze, G. Tsvid, L. Shterengas, and G. Belenky, “Type-I GaSb-Based Laser Diodes Operating in 3.1 to 3.3 μm Wavelength Range,” IEEE Photonic. Tech. L. 22(10), 718–720 (2010).
[Crossref]

Veal, T. D.

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T. S. Jones, M. J. Ashwin, and T. D. Veal, “High Bi content GaSbBi alloys,” J. Appl. Phys. 116(4), 043511 (2014).
[Crossref]

J. Kopaczek, R. Kudrawiec, W. M. Linhart, M. K. Rajpalke, K. M. Yu, T. S. Jones, M. J. Ashwin, J. Misiewicz, and T. D. Veal, “Temperature dependence of the band gap of GaSb1−xBix alloys with 0 <x ≤ 0.042 determined by photoreflectance,” Appl. Phys. Lett. 103(26), 261907 (2013).
[Crossref]

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. J. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

Wang, K.

C. M. Krammel, M. Roy, F. J. Tilley, P. A. Maksym, L. Y. Zhang, P. Wang, K. Wang, Y. Y. Li, S. M. Wang, and P. M. Koenraad, “Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy,” Phys. Rev. Mater. 1(3), 034606 (2017).
[Crossref]

Wang, L. J.

L. Yue, X. Chen, Y. C. Zhang, F. Zhang, L. J. Wang, J. Shao, and S. M. Wang, “Molecular beam epitaxy growth and optical properties of high bismuth content GaSb1-xBix thin films,” J. Alloys Compd. 742, 780–789 (2018).
[Crossref]

Wang, P.

C. M. Krammel, M. Roy, F. J. Tilley, P. A. Maksym, L. Y. Zhang, P. Wang, K. Wang, Y. Y. Li, S. M. Wang, and P. M. Koenraad, “Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy,” Phys. Rev. Mater. 1(3), 034606 (2017).
[Crossref]

Wang, S.

Y. Song, S. Wang, I. Saha Roy, P. Shi, and A. Hallen, “Growth of GaSb1−xBix by molecular beam epitaxy,” J. Vac. Sci. Technol. B30, 02B114 (2012).

Wang, S. M.

L. Yue, X. Chen, Y. C. Zhang, F. Zhang, L. J. Wang, J. Shao, and S. M. Wang, “Molecular beam epitaxy growth and optical properties of high bismuth content GaSb1-xBix thin films,” J. Alloys Compd. 742, 780–789 (2018).
[Crossref]

C. M. Krammel, M. Roy, F. J. Tilley, P. A. Maksym, L. Y. Zhang, P. Wang, K. Wang, Y. Y. Li, S. M. Wang, and P. M. Koenraad, “Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy,” Phys. Rev. Mater. 1(3), 034606 (2017).
[Crossref]

X. R. Chen, Y. X. Song, L. Q. Zhu, Z. Qi, L. Zhu, F. X. Zha, S. L. Guo, S. M. Wang, and J. Shao, “Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance,” Chin. Phys. Lett. 32(6), 067301 (2015).
[Crossref]

X. Chen, Y. Song, L. Zhu, S. M. Wang, W. Lu, S. Guo, and J. Shao, “Shallow-terrace-like interface in dilute-bismuth GaSb/AlGaSb single quantum wells evidenced by photoluminescence,” J. Appl. Phys. 113(15), 153505 (2013).
[Crossref]

Wartak, M. S.

M. Gladysiewicz, R. Kudrawiec, and M. S. Wartak, “Electronic band structure and material gain of III-V-Bi quantum wells grown on GaSb substrate and dedicated for mid-infrared spectral range,” J. Appl. Phys. 119(7), 075701 (2016).
[Crossref]

Whitman, L. J.

P. M. Thibado, B. R. Bennett, B. V. Shanabrook, and L. J. Whitman, “A RHEED and STM study of Sb-rich AlSb and GaSb (0 0 1) surface reconstructions,” J. Cryst. Growth 175–176, 317–322 (1997).
[Crossref]

Wojciech, L.

K. Jan, K. Robert, L. Wojciech, R. Mohana, J. Tim, A. Mark, and V. Tim, “Low- and high-energy photoluminescence from GaSb1−xBix with 0 < x ≤ 0.042,” Appl. Phys. Express 7(11), 111202 (2014).
[Crossref]

Yáñez, A.

D. L. Sales, E. Guerrero, J. F. Rodrigo, P. L. Galindo, A. Yáñez, M. Shafi, A. Khatab, R. H. Mari, M. Henini, S. Novikov, M. F. Chisholm, and S. I. Molina, “Distribution of bismuth atoms in epitaxial GaAsBi,” Appl. Phys. Lett. 98(10), 101902 (2011).
[Crossref]

Yu, K. M.

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T. S. Jones, M. J. Ashwin, and T. D. Veal, “High Bi content GaSbBi alloys,” J. Appl. Phys. 116(4), 043511 (2014).
[Crossref]

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. J. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

J. Kopaczek, R. Kudrawiec, W. M. Linhart, M. K. Rajpalke, K. M. Yu, T. S. Jones, M. J. Ashwin, J. Misiewicz, and T. D. Veal, “Temperature dependence of the band gap of GaSb1−xBix alloys with 0 <x ≤ 0.042 determined by photoreflectance,” Appl. Phys. Lett. 103(26), 261907 (2013).
[Crossref]

Yue, F.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Yue, L.

L. Yue, X. Chen, Y. C. Zhang, F. Zhang, L. J. Wang, J. Shao, and S. M. Wang, “Molecular beam epitaxy growth and optical properties of high bismuth content GaSb1-xBix thin films,” J. Alloys Compd. 742, 780–789 (2018).
[Crossref]

Zha, F. X.

X. R. Chen, Y. X. Song, L. Q. Zhu, Z. Qi, L. Zhu, F. X. Zha, S. L. Guo, S. M. Wang, and J. Shao, “Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance,” Chin. Phys. Lett. 32(6), 067301 (2015).
[Crossref]

Zhang, F.

L. Yue, X. Chen, Y. C. Zhang, F. Zhang, L. J. Wang, J. Shao, and S. M. Wang, “Molecular beam epitaxy growth and optical properties of high bismuth content GaSb1-xBix thin films,” J. Alloys Compd. 742, 780–789 (2018).
[Crossref]

Zhang, L. Y.

C. M. Krammel, M. Roy, F. J. Tilley, P. A. Maksym, L. Y. Zhang, P. Wang, K. Wang, Y. Y. Li, S. M. Wang, and P. M. Koenraad, “Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy,” Phys. Rev. Mater. 1(3), 034606 (2017).
[Crossref]

Zhang, Y. C.

L. Yue, X. Chen, Y. C. Zhang, F. Zhang, L. J. Wang, J. Shao, and S. M. Wang, “Molecular beam epitaxy growth and optical properties of high bismuth content GaSb1-xBix thin films,” J. Alloys Compd. 742, 780–789 (2018).
[Crossref]

Zhu, L.

X. R. Chen, Y. X. Song, L. Q. Zhu, Z. Qi, L. Zhu, F. X. Zha, S. L. Guo, S. M. Wang, and J. Shao, “Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance,” Chin. Phys. Lett. 32(6), 067301 (2015).
[Crossref]

X. Chen, Y. Song, L. Zhu, S. M. Wang, W. Lu, S. Guo, and J. Shao, “Shallow-terrace-like interface in dilute-bismuth GaSb/AlGaSb single quantum wells evidenced by photoluminescence,” J. Appl. Phys. 113(15), 153505 (2013).
[Crossref]

Zhu, L. Q.

X. R. Chen, Y. X. Song, L. Q. Zhu, Z. Qi, L. Zhu, F. X. Zha, S. L. Guo, S. M. Wang, and J. Shao, “Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance,” Chin. Phys. Lett. 32(6), 067301 (2015).
[Crossref]

Appl. Phys. Express (1)

K. Jan, K. Robert, L. Wojciech, R. Mohana, J. Tim, A. Mark, and V. Tim, “Low- and high-energy photoluminescence from GaSb1−xBix with 0 < x ≤ 0.042,” Appl. Phys. Express 7(11), 111202 (2014).
[Crossref]

Appl. Phys. Lett. (6)

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. J. Ashwin, and T. D. Veal, “Growth and properties of GaSbBi alloys,” Appl. Phys. Lett. 103(14), 142106 (2013).
[Crossref]

J. Kopaczek, R. Kudrawiec, W. M. Linhart, M. K. Rajpalke, K. M. Yu, T. S. Jones, M. J. Ashwin, J. Misiewicz, and T. D. Veal, “Temperature dependence of the band gap of GaSb1−xBix alloys with 0 <x ≤ 0.042 determined by photoreflectance,” Appl. Phys. Lett. 103(26), 261907 (2013).
[Crossref]

L. Shterengas, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36 μm at 12°C,” Appl. Phys. Lett. 93(1), 011103 (2008).
[Crossref]

S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, “Clustering effects in Ga(AsBi),” Appl. Phys. Lett. 96(13), 131115 (2010).
[Crossref]

D. L. Sales, E. Guerrero, J. F. Rodrigo, P. L. Galindo, A. Yáñez, M. Shafi, A. Khatab, R. H. Mari, M. Henini, S. Novikov, M. F. Chisholm, and S. I. Molina, “Distribution of bismuth atoms in epitaxial GaAsBi,” Appl. Phys. Lett. 98(10), 101902 (2011).
[Crossref]

O. Delorme, L. Cerutti, E. Luna, G. Narcy, A. Trampert, E. Tournié, and J. B. Rodriguez, “GaSbBi/GaSb quantum well laser diodes,” Appl. Phys. Lett. 110(22), 222106 (2017).
[Crossref]

Chin. Phys. Lett. (1)

X. R. Chen, Y. X. Song, L. Q. Zhu, Z. Qi, L. Zhu, F. X. Zha, S. L. Guo, S. M. Wang, and J. Shao, “Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance,” Chin. Phys. Lett. 32(6), 067301 (2015).
[Crossref]

IEEE Photonic. Tech. L. (1)

T. Hosoda, G. Kipshidze, G. Tsvid, L. Shterengas, and G. Belenky, “Type-I GaSb-Based Laser Diodes Operating in 3.1 to 3.3 μm Wavelength Range,” IEEE Photonic. Tech. L. 22(10), 718–720 (2010).
[Crossref]

Infrared Phys. Technol. (1)

S. K. Das, T. D. Das, S. Dhar, M. de la Mare, and A. Krier, “Near infrared photoluminescence observed in dilute GaSbBi alloys grown by liquid phase epitaxy,” Infrared Phys. Technol. 55(1), 156–160 (2012).
[Crossref]

J. Alloys Compd. (1)

L. Yue, X. Chen, Y. C. Zhang, F. Zhang, L. J. Wang, J. Shao, and S. M. Wang, “Molecular beam epitaxy growth and optical properties of high bismuth content GaSb1-xBix thin films,” J. Alloys Compd. 742, 780–789 (2018).
[Crossref]

J. Appl. Phys. (6)

X. Chen, Y. Song, L. Zhu, S. M. Wang, W. Lu, S. Guo, and J. Shao, “Shallow-terrace-like interface in dilute-bismuth GaSb/AlGaSb single quantum wells evidenced by photoluminescence,” J. Appl. Phys. 113(15), 153505 (2013).
[Crossref]

M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T. S. Jones, M. J. Ashwin, and T. D. Veal, “High Bi content GaSbBi alloys,” J. Appl. Phys. 116(4), 043511 (2014).
[Crossref]

M. Gladysiewicz, R. Kudrawiec, and M. S. Wartak, “Electronic band structure and material gain of III-V-Bi quantum wells grown on GaSb substrate and dedicated for mid-infrared spectral range,” J. Appl. Phys. 119(7), 075701 (2016).
[Crossref]

D. S. Jiang, H. Jung, and K. Ploog, “Temperature dependence of photoluminescence from GaAs single and multiple quantum-well heterostructures grown by molecular-beam epitaxy,” J. Appl. Phys. 64(3), 1371 (1988).
[Crossref]

J. Shao, W. Lu, G. K. O. Tsen, S. Guo, and J. M. Dell, “Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice,” J. Appl. Phys. 112(6), 063512 (2012).
[Crossref]

M. Lee, D. J. Nicholas, K. E. Singer, and B. Hamilton, “A photoluminescence and Hall effect study of GaSb grown by molecular beam epitaxy,” J. Appl. Phys. 59(8), 2895–2900 (1986).
[Crossref]

J. Cryst. Growth (2)

P. M. Thibado, B. R. Bennett, B. V. Shanabrook, and L. J. Whitman, “A RHEED and STM study of Sb-rich AlSb and GaSb (0 0 1) surface reconstructions,” J. Cryst. Growth 175–176, 317–322 (1997).
[Crossref]

O. Delorme, L. Cerutti, E. Tournié, and J. B. Rodriguez, “Molecular beam epitaxy and characterization of high Bi content GaSbBi alloys,” J. Cryst. Growth 477, 144–148 (2017).
[Crossref]

J. Vac. Sci. Technol. (1)

Y. Song, S. Wang, I. Saha Roy, P. Shi, and A. Hallen, “Growth of GaSb1−xBix by molecular beam epitaxy,” J. Vac. Sci. Technol. B30, 02B114 (2012).

Phys. Rev. B (1)

G. Pettinari, H. Engelkamp, P. C. M. Christianen, J. C. Maan, A. Polimeni, M. Capizzi, X. Lu, and T. Tiedje, “Compositional evolution of Bi-induced acceptor states in GaAs1−xBix alloy,” Phys. Rev. B 83(20), 201201 (2011).
[Crossref]

Phys. Rev. Mater. (1)

C. M. Krammel, M. Roy, F. J. Tilley, P. A. Maksym, L. Y. Zhang, P. Wang, K. Wang, Y. Y. Li, S. M. Wang, and P. M. Koenraad, “Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy,” Phys. Rev. Mater. 1(3), 034606 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Semicond. Sci. Technol. (2)

S. K. Das, T. D. Das, and S. Dhar, “Effect of post-growth anneal on the photoluminescence properties of GaSbBi,” Semicond. Sci. Technol. 29(1), 015003 (2014).
[Crossref]

L. Shterengas, G. L. Belenky, J. G. Kim, and R. U. Martinelli, “Design of high-power room-temperature continuous-wave GaSb-based type-I quantum-well lasers with λ > 2.5 µm,” Semicond. Sci. Technol. 19(5), 655–658 (2004).
[Crossref]

Superlattices Microstruct. (1)

R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz, and A. Forchel, “Infrared photomodulation spectroscopy of an In 0.22Ga 0.78Sb/GaSb single quantum well,” Superlattices Microstruct. 32(1), 19–23 (2002).
[Crossref]

Other (1)

L. Yue, Y. Zhang, F. Zhang, L. Wang, Y. Zhuzhong, J. Liu, and S. Wang, “Structural and optical properties of high Bi content GaSbBi films grown by molecular beam epitaxy,” in 2016 Compound Semiconductor Week (CSW) Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) &43rd International Symposium on Compound Semiconductors (ISCS), 2016), 1–2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 STEM image (a) and the EDS mappings of (b) Bi, (c) Ga and (d) Sb for GaSbBi QW with Bi content of 10.1%. The scale bar is 30 nm.
Fig. 2
Fig. 2 STEM image (a) and the EDS line scans along the growth direction (b) of the GaSbBi QW with Bi content of 10.1%.
Fig. 3
Fig. 3 HRTEM image of the GaSbBi QW with Bi content of 10.1%. The red arrows mark the interfaces.
Fig. 4
Fig. 4 (a) RT PL spectra of GaSbBi QW samples with varying Bi concentration. (b) Fundamental transition in the QW extracted from PL measurements (solid squares). Bandgap of unstrained GaSbBi (thin black line), light-hole (LH) strained bandgap (green dash line), heavy-hole (HH) strained band gap (blue dash line), and the fundamental transition (11H) in the GaSbBi/GaSb QW(thick black line) calculated using 8-band kp Hamiltonian.
Fig. 5
Fig. 5 Quantum confinement potential for GaSbBi/GaSb QWs of various Bi concentrations together with energy levels confinement in the QW.
Fig. 6
Fig. 6 Temperature dependence of PL spectra for GaSbBi QW samples with Bi content of (a) 6.6%, (b) 8.3% and (c) 10.1%. Black arrows are positioned in (c) to mark the PL peaks of GaSbBi QW.
Fig. 7
Fig. 7 (a) Temperature dependence of the PL peak energy and Varshni fitting curves of GaSbBi, and the Varshni fitting curve of GaSb using the parameter from reference [2]; (b) Temperature dependence of integrated PL intensity and the fitting curves using Eq. (2).

Tables (1)

Tables Icon

Table 1 Varshni fitting parameters.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ( T ) = E ( 0 )  α  T 2  / ( T + β ),
I int ( T ) = C / ( 1+ A e   E a  /  k B T  )

Metrics