Abstract

A dual-functional metasurface with simultaneous transmission and absorption characteristics is proposed and demonstrated by experiment. The ultrathin metasurface is composed of periodic metallic disks and split rings. The transmission band is surrounded by multiple absorption bands by properly designing the geometry of the structure. A maximum transmission of 63.8% is experimentally observed in the transmission band, and the measured absorption spectrum agrees well with numerical result. Furthermore, the designed metasurface is insensitive to the polarization states of the incident electromagnetic (EM) waves at normal incidence due to its structural symmetry.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Metasurface Salisbury screen: achieving ultra-wideband microwave absorption

Ziheng Zhou, Ke Chen, Junming Zhao, Ping Chen, Tian Jiang, Bo Zhu, Yijun Feng, and Yue Li
Opt. Express 25(24) 30241-30252 (2017)

Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces

Nanli Mou, Shulin Sun, Hongxing Dong, Shaohua Dong, Qiong He, Lei Zhou, and Long Zhang
Opt. Express 26(9) 11728-11736 (2018)

Metamaterial for polarization-incident angle independent broadband perfect absorption in the terahertz range

Xu Zhang, Hongqiang Li, Zeyong Wei, and Limei Qi
Opt. Mater. Express 7(9) 3294-3302 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  2. W. R. Zhu, X. P. Zhao, and N. Ji, “Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects,” Appl. Phys. Lett. 90(1), 011911 (2007).
    [Crossref]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  4. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
    [Crossref] [PubMed]
  5. N. I. Zheludev, “The Road Ahead for Metamaterials,” Science 328(5978), 582–583 (2010).
    [Crossref] [PubMed]
  6. F. Monticone and A. Alù, “Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials,” Chin. Phys. B 23(4), 047809 (2014).
    [Crossref]
  7. Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
    [Crossref] [PubMed]
  8. S. A. Schulz, J. Upham, F. Bouchard, I. D. Leon, E. Karimi, and R. W. Boyd, “Quantifying the impact of proximity error correction on plasmonic metasurfaces [Invited],” Opt. Mater. Express 5(12), 2798–2803 (2015).
    [Crossref]
  9. X. Zhang, Y. C. Fan, L. M. Qi, and H. Q. Li, “Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies,” Opt. Mater. Express 6(7), 2448–2457 (2016).
    [Crossref]
  10. S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
    [Crossref]
  11. Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
    [Crossref]
  12. J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips [Invited],” Opt. Mater. Express 5(10), 2313–2329 (2015).
    [Crossref]
  13. X. Zhang, Z. Y. Wei, Y. C. Fan, and L. M. Qi, “Structurally tunable reflective metamaterial polarization transformer based on closed fish-scale structure,” Curr. Appl. Phys. 17(6), 829–834 (2017).
    [Crossref]
  14. R. Chandrasekar, N. K. Emani, A. Lagutchev, V. M. Shalaev, C. Ciracì, D. R. Smith, and A. V. Kildishev, “Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances,” Opt. Mater. Express 5(11), 2682–2691 (2015).
    [Crossref]
  15. Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos–Hänchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
    [Crossref]
  16. H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
    [Crossref] [PubMed]
  17. X. Zhang, H. Q. Li, Z. Y. Wei, and L. M. Qi, “Metamaterial for polarization-incident angle independent broadband perfect absorption in the terahertz range,” Opt. Mater. Express 7(9), 3294–3302 (2017).
    [Crossref]
  18. H. Y. Chen, X. Y. Hou, and L. J. Deng, “Design of frequency-Selective surfaces radome for a planar slotted waveguide antenna,” IEEE Antenn. Wirel. Pr. 8, 1231–1233 (2009).
    [Crossref]
  19. M. H. Li, H. L. Yang, and D. E. Wen, “Transmission and reflection properties of composite metamaterials in free space: Experiments and simulations,” Microw. Opt. Technol. Lett. 51(8), 1865–1868 (2009).
    [Crossref]
  20. B. Li and Z. X. Shen, “Bandpass Frequency Selective Structure With Wideband Spurious Rejection,” IEEE Antenn. Wirel. Pr. 13, 145–148 (2014).
    [Crossref]
  21. Q. Chen, J. J. Bai, L. Chen, and Y. Q. Fu, “A Miniaturized Absorptive Frequency Selective Surface,” IEEE Antenn. Wirel. Pr. 14, 80–83 (2015).
    [Crossref]
  22. F. Costa and A. Monorchio, “A Frequency Selective Radome With Wideband Absorbing Properties,” IEEE Trans. Antenn. Propag. 60(6), 2740–2747 (2012).
    [Crossref]
  23. B. Yi, L. Yang, and P. G. Liu, “Design of Miniaturized and Ultrathin Absorptive/Transmissive Radome Based on Interdigital Square Loops,” Prog. Electromagnetics Res. 62, 117–123 (2016).
    [Crossref]
  24. X. Chen, Y. Li, Y. Fu, and N. Yuan, “Design and analysis of lumped resistor loaded metamaterial absorber with transmission band,” Opt. Express 20(27), 28347–28352 (2012).
    [Crossref] [PubMed]
  25. X. J. Yuan and X. F. Yuan, “A transmissive/absorbing radome with double absorbing band,” Microw. Opt. Technol. Lett. 58(8), 2016–2019 (2016).
    [Crossref]
  26. Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-Selective Rasorber Based on Square-Loop and Cross-Dipole Arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
    [Crossref]
  27. S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
    [Crossref]
  28. Computer Simulation Technology (CST), Inc.
  29. J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagnet. Wave. 28(13), 1541–1580 (2014).
    [Crossref]

2017 (2)

X. Zhang, Z. Y. Wei, Y. C. Fan, and L. M. Qi, “Structurally tunable reflective metamaterial polarization transformer based on closed fish-scale structure,” Curr. Appl. Phys. 17(6), 829–834 (2017).
[Crossref]

X. Zhang, H. Q. Li, Z. Y. Wei, and L. M. Qi, “Metamaterial for polarization-incident angle independent broadband perfect absorption in the terahertz range,” Opt. Mater. Express 7(9), 3294–3302 (2017).
[Crossref]

2016 (6)

X. Zhang, Y. C. Fan, L. M. Qi, and H. Q. Li, “Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies,” Opt. Mater. Express 6(7), 2448–2457 (2016).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos–Hänchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

B. Yi, L. Yang, and P. G. Liu, “Design of Miniaturized and Ultrathin Absorptive/Transmissive Radome Based on Interdigital Square Loops,” Prog. Electromagnetics Res. 62, 117–123 (2016).
[Crossref]

X. J. Yuan and X. F. Yuan, “A transmissive/absorbing radome with double absorbing band,” Microw. Opt. Technol. Lett. 58(8), 2016–2019 (2016).
[Crossref]

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

2015 (7)

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Q. Chen, J. J. Bai, L. Chen, and Y. Q. Fu, “A Miniaturized Absorptive Frequency Selective Surface,” IEEE Antenn. Wirel. Pr. 14, 80–83 (2015).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips [Invited],” Opt. Mater. Express 5(10), 2313–2329 (2015).
[Crossref]

R. Chandrasekar, N. K. Emani, A. Lagutchev, V. M. Shalaev, C. Ciracì, D. R. Smith, and A. V. Kildishev, “Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances,” Opt. Mater. Express 5(11), 2682–2691 (2015).
[Crossref]

S. A. Schulz, J. Upham, F. Bouchard, I. D. Leon, E. Karimi, and R. W. Boyd, “Quantifying the impact of proximity error correction on plasmonic metasurfaces [Invited],” Opt. Mater. Express 5(12), 2798–2803 (2015).
[Crossref]

2014 (4)

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagnet. Wave. 28(13), 1541–1580 (2014).
[Crossref]

B. Li and Z. X. Shen, “Bandpass Frequency Selective Structure With Wideband Spurious Rejection,” IEEE Antenn. Wirel. Pr. 13, 145–148 (2014).
[Crossref]

Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-Selective Rasorber Based on Square-Loop and Cross-Dipole Arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
[Crossref]

F. Monticone and A. Alù, “Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials,” Chin. Phys. B 23(4), 047809 (2014).
[Crossref]

2012 (2)

F. Costa and A. Monorchio, “A Frequency Selective Radome With Wideband Absorbing Properties,” IEEE Trans. Antenn. Propag. 60(6), 2740–2747 (2012).
[Crossref]

X. Chen, Y. Li, Y. Fu, and N. Yuan, “Design and analysis of lumped resistor loaded metamaterial absorber with transmission band,” Opt. Express 20(27), 28347–28352 (2012).
[Crossref] [PubMed]

2010 (1)

N. I. Zheludev, “The Road Ahead for Metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

2009 (3)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

H. Y. Chen, X. Y. Hou, and L. J. Deng, “Design of frequency-Selective surfaces radome for a planar slotted waveguide antenna,” IEEE Antenn. Wirel. Pr. 8, 1231–1233 (2009).
[Crossref]

M. H. Li, H. L. Yang, and D. E. Wen, “Transmission and reflection properties of composite metamaterials in free space: Experiments and simulations,” Microw. Opt. Technol. Lett. 51(8), 1865–1868 (2009).
[Crossref]

2007 (1)

W. R. Zhu, X. P. Zhao, and N. Ji, “Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects,” Appl. Phys. Lett. 90(1), 011911 (2007).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Alù, A.

J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips [Invited],” Opt. Mater. Express 5(10), 2313–2329 (2015).
[Crossref]

F. Monticone and A. Alù, “Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials,” Chin. Phys. B 23(4), 047809 (2014).
[Crossref]

Bai, J. J.

Q. Chen, J. J. Bai, L. Chen, and Y. Q. Fu, “A Miniaturized Absorptive Frequency Selective Surface,” IEEE Antenn. Wirel. Pr. 14, 80–83 (2015).
[Crossref]

Belov, P. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Bouchard, F.

Boyd, R. W.

Cao, X. Y.

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

Chandrasekar, R.

Chen, H. T.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Chen, H. Y.

H. Y. Chen, X. Y. Hou, and L. J. Deng, “Design of frequency-Selective surfaces radome for a planar slotted waveguide antenna,” IEEE Antenn. Wirel. Pr. 8, 1231–1233 (2009).
[Crossref]

Chen, L.

Q. Chen, J. J. Bai, L. Chen, and Y. Q. Fu, “A Miniaturized Absorptive Frequency Selective Surface,” IEEE Antenn. Wirel. Pr. 14, 80–83 (2015).
[Crossref]

Chen, Q.

Q. Chen, J. J. Bai, L. Chen, and Y. Q. Fu, “A Miniaturized Absorptive Frequency Selective Surface,” IEEE Antenn. Wirel. Pr. 14, 80–83 (2015).
[Crossref]

Chen, X.

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Ciracì, C.

Costa, F.

F. Costa and A. Monorchio, “A Frequency Selective Radome With Wideband Absorbing Properties,” IEEE Trans. Antenn. Propag. 60(6), 2740–2747 (2012).
[Crossref]

Cui, T. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Deng, L. J.

H. Y. Chen, X. Y. Hou, and L. J. Deng, “Design of frequency-Selective surfaces radome for a planar slotted waveguide antenna,” IEEE Antenn. Wirel. Pr. 8, 1231–1233 (2009).
[Crossref]

Emani, N. K.

Fan, Y.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Fan, Y. C.

X. Zhang, Z. Y. Wei, Y. C. Fan, and L. M. Qi, “Structurally tunable reflective metamaterial polarization transformer based on closed fish-scale structure,” Curr. Appl. Phys. 17(6), 829–834 (2017).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos–Hänchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

X. Zhang, Y. C. Fan, L. M. Qi, and H. Q. Li, “Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies,” Opt. Mater. Express 6(7), 2448–2457 (2016).
[Crossref]

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Fu, Q.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Fu, Q. H.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos–Hänchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Fu, Y.

Fu, Y. Q.

Q. Chen, J. J. Bai, L. Chen, and Y. Q. Fu, “A Miniaturized Absorptive Frequency Selective Surface,” IEEE Antenn. Wirel. Pr. 14, 80–83 (2015).
[Crossref]

Gao, J.

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

Glybovski, S. B.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Gomez-Diaz, J. S.

Gu, C.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Hou, X. Y.

H. Y. Chen, X. Y. Hou, and L. J. Deng, “Design of frequency-Selective surfaces radome for a planar slotted waveguide antenna,” IEEE Antenn. Wirel. Pr. 8, 1231–1233 (2009).
[Crossref]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Ji, N.

W. R. Zhu, X. P. Zhao, and N. Ji, “Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects,” Appl. Phys. Lett. 90(1), 011911 (2007).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Karimi, E.

Kildishev, A. V.

Kim, K. W.

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagnet. Wave. 28(13), 1541–1580 (2014).
[Crossref]

Kim, Y. J.

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagnet. Wave. 28(13), 1541–1580 (2014).
[Crossref]

Kivshar, Y. S.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Koschny, T.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos–Hänchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Lagutchev, A.

Lee, Y. P.

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagnet. Wave. 28(13), 1541–1580 (2014).
[Crossref]

Leon, I. D.

Li, B.

B. Li and Z. X. Shen, “Bandpass Frequency Selective Structure With Wideband Spurious Rejection,” IEEE Antenn. Wirel. Pr. 13, 145–148 (2014).
[Crossref]

Li, H.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Li, H. Q.

Li, J.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Li, M. H.

M. H. Li, H. L. Yang, and D. E. Wen, “Transmission and reflection properties of composite metamaterials in free space: Experiments and simulations,” Microw. Opt. Technol. Lett. 51(8), 1865–1868 (2009).
[Crossref]

Li, S. J.

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

Li, Y.

Liu, P. G.

B. Yi, L. Yang, and P. G. Liu, “Design of Miniaturized and Ultrathin Absorptive/Transmissive Radome Based on Interdigital Square Loops,” Prog. Electromagnetics Res. 62, 117–123 (2016).
[Crossref]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Liu, T.

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

Liu, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Monorchio, A.

F. Costa and A. Monorchio, “A Frequency Selective Radome With Wideband Absorbing Properties,” IEEE Trans. Antenn. Propag. 60(6), 2740–2747 (2012).
[Crossref]

Monticone, F.

F. Monticone and A. Alù, “Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials,” Chin. Phys. B 23(4), 047809 (2014).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Qi, L. M.

Rhee, J. Y.

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagnet. Wave. 28(13), 1541–1580 (2014).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schulz, S. A.

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shalaev, V. M.

Shang, Y. P.

Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-Selective Rasorber Based on Square-Loop and Cross-Dipole Arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shen, N. H.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos–Hänchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Shen, Z. X.

B. Li and Z. X. Shen, “Bandpass Frequency Selective Structure With Wideband Spurious Rejection,” IEEE Antenn. Wirel. Pr. 13, 145–148 (2014).
[Crossref]

Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-Selective Rasorber Based on Square-Loop and Cross-Dipole Arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
[Crossref]

Simovski, C. R.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Smith, D. R.

R. Chandrasekar, N. K. Emani, A. Lagutchev, V. M. Shalaev, C. Ciracì, D. R. Smith, and A. V. Kildishev, “Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances,” Opt. Mater. Express 5(11), 2682–2691 (2015).
[Crossref]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Soukoulis, C. M.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos–Hänchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Taylor, A. J.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Tretyakov, S. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Tymchenko, M.

Upham, J.

Wei, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Wei, Z. Y.

X. Zhang, Z. Y. Wei, Y. C. Fan, and L. M. Qi, “Structurally tunable reflective metamaterial polarization transformer based on closed fish-scale structure,” Curr. Appl. Phys. 17(6), 829–834 (2017).
[Crossref]

X. Zhang, H. Q. Li, Z. Y. Wei, and L. M. Qi, “Metamaterial for polarization-incident angle independent broadband perfect absorption in the terahertz range,” Opt. Mater. Express 7(9), 3294–3302 (2017).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos–Hänchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Wen, D. E.

M. H. Li, H. L. Yang, and D. E. Wen, “Transmission and reflection properties of composite metamaterials in free space: Experiments and simulations,” Microw. Opt. Technol. Lett. 51(8), 1865–1868 (2009).
[Crossref]

Xiao, S. Q.

Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-Selective Rasorber Based on Square-Loop and Cross-Dipole Arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
[Crossref]

Yang, H. L.

M. H. Li, H. L. Yang, and D. E. Wen, “Transmission and reflection properties of composite metamaterials in free space: Experiments and simulations,” Microw. Opt. Technol. Lett. 51(8), 1865–1868 (2009).
[Crossref]

Yang, L.

B. Yi, L. Yang, and P. G. Liu, “Design of Miniaturized and Ultrathin Absorptive/Transmissive Radome Based on Interdigital Square Loops,” Prog. Electromagnetics Res. 62, 117–123 (2016).
[Crossref]

Yi, B.

B. Yi, L. Yang, and P. G. Liu, “Design of Miniaturized and Ultrathin Absorptive/Transmissive Radome Based on Interdigital Square Loops,” Prog. Electromagnetics Res. 62, 117–123 (2016).
[Crossref]

Yoo, Y. J.

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagnet. Wave. 28(13), 1541–1580 (2014).
[Crossref]

Yu, N.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Yuan, N.

Yuan, X. F.

X. J. Yuan and X. F. Yuan, “A transmissive/absorbing radome with double absorbing band,” Microw. Opt. Technol. Lett. 58(8), 2016–2019 (2016).
[Crossref]

Yuan, X. J.

X. J. Yuan and X. F. Yuan, “A transmissive/absorbing radome with double absorbing band,” Microw. Opt. Technol. Lett. 58(8), 2016–2019 (2016).
[Crossref]

Zhang, C.

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

Zhang, F.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Zhang, F. L.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos–Hänchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Zhang, P.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos–Hänchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Zhang, X.

Zhang, Z.

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

Zhao, Q.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos–Hänchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Zhao, X. P.

W. R. Zhu, X. P. Zhao, and N. Ji, “Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects,” Appl. Phys. Lett. 90(1), 011911 (2007).
[Crossref]

Zheludev, N. I.

N. I. Zheludev, “The Road Ahead for Metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

Zheng, G.

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

Zheng, Y. J.

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

Zhu, W. R.

W. R. Zhu, X. P. Zhao, and N. Ji, “Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects,” Appl. Phys. Lett. 90(1), 011911 (2007).
[Crossref]

ACS Photonics (1)

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Adv. Opt. Mater. (1)

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos–Hänchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Appl. Phys. Lett. (2)

S. J. Li, J. Gao, X. Y. Cao, Z. Zhang, T. Liu, Y. J. Zheng, C. Zhang, and G. Zheng, “Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber,” Appl. Phys. Lett. 106(18), 181103 (2015).
[Crossref]

W. R. Zhu, X. P. Zhao, and N. Ji, “Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects,” Appl. Phys. Lett. 90(1), 011911 (2007).
[Crossref]

Chin. Phys. B (1)

F. Monticone and A. Alù, “Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials,” Chin. Phys. B 23(4), 047809 (2014).
[Crossref]

Curr. Appl. Phys. (1)

X. Zhang, Z. Y. Wei, Y. C. Fan, and L. M. Qi, “Structurally tunable reflective metamaterial polarization transformer based on closed fish-scale structure,” Curr. Appl. Phys. 17(6), 829–834 (2017).
[Crossref]

IEEE Antenn. Wirel. Pr. (3)

H. Y. Chen, X. Y. Hou, and L. J. Deng, “Design of frequency-Selective surfaces radome for a planar slotted waveguide antenna,” IEEE Antenn. Wirel. Pr. 8, 1231–1233 (2009).
[Crossref]

B. Li and Z. X. Shen, “Bandpass Frequency Selective Structure With Wideband Spurious Rejection,” IEEE Antenn. Wirel. Pr. 13, 145–148 (2014).
[Crossref]

Q. Chen, J. J. Bai, L. Chen, and Y. Q. Fu, “A Miniaturized Absorptive Frequency Selective Surface,” IEEE Antenn. Wirel. Pr. 14, 80–83 (2015).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

F. Costa and A. Monorchio, “A Frequency Selective Radome With Wideband Absorbing Properties,” IEEE Trans. Antenn. Propag. 60(6), 2740–2747 (2012).
[Crossref]

Y. P. Shang, Z. X. Shen, and S. Q. Xiao, “Frequency-Selective Rasorber Based on Square-Loop and Cross-Dipole Arrays,” IEEE Trans. Antenn. Propag. 62(11), 5581–5589 (2014).
[Crossref]

J. Electromagnet. Wave. (1)

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagnet. Wave. 28(13), 1541–1580 (2014).
[Crossref]

Microw. Opt. Technol. Lett. (2)

X. J. Yuan and X. F. Yuan, “A transmissive/absorbing radome with double absorbing band,” Microw. Opt. Technol. Lett. 58(8), 2016–2019 (2016).
[Crossref]

M. H. Li, H. L. Yang, and D. E. Wen, “Transmission and reflection properties of composite metamaterials in free space: Experiments and simulations,” Microw. Opt. Technol. Lett. 51(8), 1865–1868 (2009).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (5)

Phys. Rep. (1)

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Prog. Electromagnetics Res. (1)

B. Yi, L. Yang, and P. G. Liu, “Design of Miniaturized and Ultrathin Absorptive/Transmissive Radome Based on Interdigital Square Loops,” Prog. Electromagnetics Res. 62, 117–123 (2016).
[Crossref]

Rep. Prog. Phys. (1)

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Science (4)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

N. I. Zheludev, “The Road Ahead for Metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

Other (1)

Computer Simulation Technology (CST), Inc.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the metasurface unit cell. (b) Top layer and (c) bottom layer of the metasurface unit cell. (d) Top layer and (e) bottom layer of the fabricated metasurface.
Fig. 2
Fig. 2 The transmission and absorption characteristics of the metasurface: (a) simulation, (b) measurement for the x-polarized incidence.
Fig. 3
Fig. 3 The x component distributions for both the electric field: (a) 6.58 GHz, (b) 8.71 GHz, (c) 10.48 GHz, (d) 12.03 GHz and magnetic field: (e) 6.58 GHz, (f) 8.71 GHz, (g) 10.48 GHz (h) 12.03 GHz at the main absorption bands and transmission band for the x-polarized incidence.
Fig. 4
Fig. 4 The surface current distributions: (a) 6.58 GHz, (b) 8.71 GHz, (c) 10.48 GHz, (d) 12.03 GHz at the main absorption bands and transmission band for the x-polarized incidence.
Fig. 5
Fig. 5 (a) Transmission and (b) absorption characteristics of the metasurface when the diameter of the metallic disk on the bottom layer increases from 20 to 23 mm.
Fig. 6
Fig. 6 (a) Transmission and (b) absorption of the metasurface as functions of the loss tangent of the dielectric and frequency for the x-polarized incidence.
Fig. 7
Fig. 7 (a) Transmission and (c) absorption of the dual-functional metasurface as functions of the frequency and the incident angle for TE incidence. (b) Transmission and (d) absorption of the dual-functional metasurface as functions of the frequency and the incident angle for TM incidence.

Metrics