Abstract

Fe2+-doped ZnSe nanocrystals (NCs) were fabricated by femtosecond laser ablation in solution (FLAS). The synthesized Fe2+:ZnSe NCs was characterized by XRD and SEM, which demonstrated the nanocrystalline characteristic of the sample. By spin-coating colloidal Fe2+:ZnSe solution on a multiple-layer dielectric film, a Fe2+:ZnSe saturable absorber (SA) was prepared. Employing the as-prepared Fe2+:ZnSe NCs SA in an Er3+:ZBLAN fiber laser, a passively Q-switched laser was successfully demonstrated at ~2.78 μm, with a recorded minimum pulse width of ~0.52 μs, maximum repetition rate of 127.46 kHz, peak power of 7.30 W and pulse energy of 3.81 μJ. This work shows Fe2+:ZnSe NCs can be successfully fabricated by FLAS, and after ablation Fe2+:ZnSe NCs can be efficient miniaturized SA device candidates for mid-IR fiber lasers and have great potential to be prepared on a fluoride fiber end for a compact all-fiber passively Q-switching laser at room temperature.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm

Jianfeng Li, Hongyu Luo, Lele Wang, Bo Zhai, Heping Li, and Yong Liu
Opt. Express 23(17) 22362-22370 (2015)

Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm

Gongwen Zhu, Xiushan Zhu, Kaushik Balakrishnan, Robert A. Norwood, and N. Peyghambarian
Opt. Mater. Express 3(9) 1365-1377 (2013)

Indium tin oxide nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber laser

Jia Guo, Huanian Zhang, Chao Zhang, Zhen Li, Yingqiang Sheng, Chonghui Li, Xihao Bao, Baoyuan Man, Yang Jiao, and Shouzhen Jiang
Opt. Mater. Express 7(10) 3494-3502 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
    [Crossref]
  2. R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
    [Crossref]
  3. S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and V. Gapontsev, “Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers [Invited],” Opt. Mater. Express 1(5), 898–910 (2011).
    [Crossref]
  4. S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
    [Crossref]
  5. J. J. Adams, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, and S. A. Payne, “4.0-4.5-mum lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material,” Opt. Lett. 24(23), 1720–1722 (1999).
    [Crossref] [PubMed]
  6. J. Kernal, V. V. Fedorov, A. Gallian, S. B. Mirov, and V. V. Badikov, “3.9-4.8 µm gain-switched lasing of Fe:ZnSe at room temperature,” Opt. Express 13(26), 10608–10615 (2005).
    [Crossref] [PubMed]
  7. S. D. Velikanov, N. A. Zaretskiy, E. A. Zotov, V. I. Kozlovsky, V. K. Yu, O. N. Krokhin, A. A. Maneshkin, P. P. Yu, S. A. Savinova, K. S. Ya, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes,” Quantum Electron. 45(1), 1–7 (2015).
    [Crossref]
  8. A. A. Voronov, I. K. Vladimir, V. K. Yurii, I. L. Aleksandr, P. P. Yu, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
    [Crossref]
  9. X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm [Invited],” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
    [Crossref]
  10. J. Peppers, V. V. Fedorov, and S. B. Mirov, “Mid-IR photoluminescence of Fe2+ and Cr2+ ions in ZnSe crystal under excitation in charge transfer bands,” Opt. Express 23(4), 4406–4414 (2015).
    [Crossref] [PubMed]
  11. C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W Passively Q-Switched Mid-Infrared Fiber Laser With a Wide Continuous Wavelength Tuning Range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
    [Crossref]
  12. C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8-μm Nanosecond Fiber Laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
    [Crossref]
  13. G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
    [Crossref]
  14. Z. Tao, F. Guoying, Z. Hong, Y. Xianheng, D. Shenyu, and Z. Shouhuan, “2.78 μ m passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13(7), 075102 (2016).
    [Crossref]
  15. N. S. Myoung, V. V. Fedorov, and S. B. Mirov, “Optically dense Fe:ZnSe crystals for energy scaled gain switched lasing,” Proceedings of SPIE - The International Society for Optical Engineering 7578, 75781H–75781H–75788 (2010).
    [Crossref]
  16. U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28(3), 231–240 (2006).
    [Crossref]
  17. L. Yang, J. Zhu, and D. Xiao, “Synthesis and characterization of ZnSe:Fe/ZnSe core/shell nanocrystals,” J. Lumin. 148, 129–133 (2014).
    [Crossref]
  18. S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
    [Crossref] [PubMed]
  19. N. Myoung, J. S. Park, A. Martinez, J. Peppers, S.-Y. Yim, W. S. Han, V. V. Fedorov, and S. B. Mirov, “Mid-IR spectroscopy of Fe:ZnSe quantum dots,” Opt. Express 24(5), 5366–5375 (2016).
    [Crossref] [PubMed]
  20. G. Feng, C. Yang, and S. Zhou, “Nanocrystalline Cr2+-doped ZnSe nanowires laser,” Nano Lett. 13(1), 272–275 (2013).
    [Crossref] [PubMed]
  21. P. Russo, A. Hu, G. Compagnini, W. W. Duley, and N. Y. Zhou, “Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots,” Nanoscale 6(4), 2381–2389 (2014).
    [Crossref] [PubMed]
  22. S. Barcikowski and G. Compagnini, “Advanced nanoparticle generation and excitation by lasers in liquids,” Phys. Chem. Chem. Phys. 15(9), 3022–3026 (2013).
    [Crossref] [PubMed]
  23. P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanetkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58(3), 238–241 (1987).
    [Crossref] [PubMed]
  24. S. B. Ogale, P. P. Patil, D. M. Phase, Y. V. Bhandarkar, S. K. Kulkarni, S. Kulkarni, S. V. Ghaisas, S. M. Kanetkar, V. G. Bhide, and S. Guha, “Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces,” Phys. Rev. B Condens. Matter 36(16), 8237–8250 (1987).
    [Crossref] [PubMed]
  25. A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong, “Fabrication and Characterization of Gold Nanoparticles by Femtosecond Laser Ablation in an Aqueous Solution of Cyclodextrins,” J. Phys. Chem. B 107(19), 4527–4531 (2003).
    [Crossref]
  26. J.-P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
    [Crossref]
  27. D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys. 13(45), 20255–20261 (2011).
    [Crossref] [PubMed]
  28. M. E. Povarnitsyn, T. E. Itina, P. R. Levashov, and K. V. Khishchenko, “Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment,” Phys. Chem. Chem. Phys. 15(9), 3108–3114 (2013).
    [Crossref] [PubMed]
  29. P. Blandin, K. A. Maximova, M. B. Gongalsky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, and A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B Mater. Biol. Med. 1(19), 2489–2495 (2013).
    [Crossref]
  30. D. Tan, B. Xu, P. Chen, Y. Dai, S. Zhou, G. Ma, and J. Qiu, “One-pot synthesis of luminescent hydrophilic silicon nanocrystals,” RSC Advances 2(22), 8254–8257 (2012).
    [Crossref]
  31. T. Sakka, K. Saito, and Y. H. Ogata, “Confinement effect of laser ablation plume in liquids probed by self-absorption of C2 Swan band emission,” J. Appl. Phys. 97(1), 014902 (2005).
    [Crossref]
  32. D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” PrMS 76, 154–228 (2016).
  33. A. Martinez, D. Martyshkin, R. Camata, V. Fedorov, and S. Mirov, “Crystal field engineering of transition metal doped II-VI ternary and quaternary semiconductors for mid-IR tunable laser applications,” Opt. Mater. Express 5(9), 2036–2046 (2015).
    [Crossref]
  34. A. Martinez, L. Williams, V. Fedorov, and S. Mirov, “Gamma radiation-enhanced thermal diffusion of iron ions into II-VI semiconductor crystals,” Opt. Mater. Express 5(3), 558–565 (2015).
    [Crossref]
  35. T. Zhang, G. Feng, H. Zhang, S. Ning, B. Lan, and S. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8 μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
    [Crossref]
  36. R. Herda, S. Kivistö, and O. G. Okhotnikov, “Dynamic gain induced pulse shortening in Q-switched lasers,” Opt. Lett. 33(9), 1011–1013 (2008).
    [Crossref] [PubMed]
  37. J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
    [Crossref] [PubMed]
  38. Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
    [Crossref] [PubMed]
  39. C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 37(18), 3849–3851 (2012).
    [Crossref] [PubMed]

2017 (2)

X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm [Invited],” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W Passively Q-Switched Mid-Infrared Fiber Laser With a Wide Continuous Wavelength Tuning Range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

2016 (5)

Z. Tao, F. Guoying, Z. Hong, Y. Xianheng, D. Shenyu, and Z. Shouhuan, “2.78 μ m passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13(7), 075102 (2016).
[Crossref]

N. Myoung, J. S. Park, A. Martinez, J. Peppers, S.-Y. Yim, W. S. Han, V. V. Fedorov, and S. B. Mirov, “Mid-IR spectroscopy of Fe:ZnSe quantum dots,” Opt. Express 24(5), 5366–5375 (2016).
[Crossref] [PubMed]

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” PrMS 76, 154–228 (2016).

T. Zhang, G. Feng, H. Zhang, S. Ning, B. Lan, and S. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8 μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
[Crossref]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

2015 (6)

2014 (2)

L. Yang, J. Zhu, and D. Xiao, “Synthesis and characterization of ZnSe:Fe/ZnSe core/shell nanocrystals,” J. Lumin. 148, 129–133 (2014).
[Crossref]

P. Russo, A. Hu, G. Compagnini, W. W. Duley, and N. Y. Zhou, “Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots,” Nanoscale 6(4), 2381–2389 (2014).
[Crossref] [PubMed]

2013 (5)

S. Barcikowski and G. Compagnini, “Advanced nanoparticle generation and excitation by lasers in liquids,” Phys. Chem. Chem. Phys. 15(9), 3022–3026 (2013).
[Crossref] [PubMed]

G. Feng, C. Yang, and S. Zhou, “Nanocrystalline Cr2+-doped ZnSe nanowires laser,” Nano Lett. 13(1), 272–275 (2013).
[Crossref] [PubMed]

G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
[Crossref]

M. E. Povarnitsyn, T. E. Itina, P. R. Levashov, and K. V. Khishchenko, “Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment,” Phys. Chem. Chem. Phys. 15(9), 3108–3114 (2013).
[Crossref] [PubMed]

P. Blandin, K. A. Maximova, M. B. Gongalsky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, and A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B Mater. Biol. Med. 1(19), 2489–2495 (2013).
[Crossref]

2012 (3)

D. Tan, B. Xu, P. Chen, Y. Dai, S. Zhou, G. Ma, and J. Qiu, “One-pot synthesis of luminescent hydrophilic silicon nanocrystals,” RSC Advances 2(22), 8254–8257 (2012).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8-μm Nanosecond Fiber Laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 37(18), 3849–3851 (2012).
[Crossref] [PubMed]

2011 (2)

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and V. Gapontsev, “Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers [Invited],” Opt. Mater. Express 1(5), 898–910 (2011).
[Crossref]

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys. 13(45), 20255–20261 (2011).
[Crossref] [PubMed]

2008 (1)

2006 (2)

A. A. Voronov, I. K. Vladimir, V. K. Yurii, I. L. Aleksandr, P. P. Yu, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28(3), 231–240 (2006).
[Crossref]

2005 (4)

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[Crossref] [PubMed]

J. Kernal, V. V. Fedorov, A. Gallian, S. B. Mirov, and V. V. Badikov, “3.9-4.8 µm gain-switched lasing of Fe:ZnSe at room temperature,” Opt. Express 13(26), 10608–10615 (2005).
[Crossref] [PubMed]

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

T. Sakka, K. Saito, and Y. H. Ogata, “Confinement effect of laser ablation plume in liquids probed by self-absorption of C2 Swan band emission,” J. Appl. Phys. 97(1), 014902 (2005).
[Crossref]

2003 (1)

A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong, “Fabrication and Characterization of Gold Nanoparticles by Femtosecond Laser Ablation in an Aqueous Solution of Cyclodextrins,” J. Phys. Chem. B 107(19), 4527–4531 (2003).
[Crossref]

1999 (1)

1997 (1)

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

1987 (2)

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanetkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58(3), 238–241 (1987).
[Crossref] [PubMed]

S. B. Ogale, P. P. Patil, D. M. Phase, Y. V. Bhandarkar, S. K. Kulkarni, S. Kulkarni, S. V. Ghaisas, S. M. Kanetkar, V. G. Bhide, and S. Guha, “Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces,” Phys. Rev. B Condens. Matter 36(16), 8237–8250 (1987).
[Crossref] [PubMed]

Adams, J. J.

Aleksandr, I. L.

A. A. Voronov, I. K. Vladimir, V. K. Yurii, I. L. Aleksandr, P. P. Yu, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

Badikov, V. V.

Balakrishnan, K.

Barcikowski, S.

S. Barcikowski and G. Compagnini, “Advanced nanoparticle generation and excitation by lasers in liquids,” Phys. Chem. Chem. Phys. 15(9), 3022–3026 (2013).
[Crossref] [PubMed]

Bhandarkar, Y. V.

S. B. Ogale, P. P. Patil, D. M. Phase, Y. V. Bhandarkar, S. K. Kulkarni, S. Kulkarni, S. V. Ghaisas, S. M. Kanetkar, V. G. Bhide, and S. Guha, “Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces,” Phys. Rev. B Condens. Matter 36(16), 8237–8250 (1987).
[Crossref] [PubMed]

Bhide, V. G.

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanetkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58(3), 238–241 (1987).
[Crossref] [PubMed]

S. B. Ogale, P. P. Patil, D. M. Phase, Y. V. Bhandarkar, S. K. Kulkarni, S. Kulkarni, S. V. Ghaisas, S. M. Kanetkar, V. G. Bhide, and S. Guha, “Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces,” Phys. Rev. B Condens. Matter 36(16), 8237–8250 (1987).
[Crossref] [PubMed]

Bibeau, C.

Blandin, P.

P. Blandin, K. A. Maximova, M. B. Gongalsky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, and A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B Mater. Biol. Med. 1(19), 2489–2495 (2013).
[Crossref]

Burger, A.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Cai, Z.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Camata, R.

Chen, K. T.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Chen, P.

D. Tan, B. Xu, P. Chen, Y. Dai, S. Zhou, G. Ma, and J. Qiu, “One-pot synthesis of luminescent hydrophilic silicon nanocrystals,” RSC Advances 2(22), 8254–8257 (2012).
[Crossref]

Chirvony, V. S.

P. Blandin, K. A. Maximova, M. B. Gongalsky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, and A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B Mater. Biol. Med. 1(19), 2489–2495 (2013).
[Crossref]

Chuvatkin, R. S.

S. D. Velikanov, N. A. Zaretskiy, E. A. Zotov, V. I. Kozlovsky, V. K. Yu, O. N. Krokhin, A. A. Maneshkin, P. P. Yu, S. A. Savinova, K. S. Ya, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes,” Quantum Electron. 45(1), 1–7 (2015).
[Crossref]

Compagnini, G.

P. Russo, A. Hu, G. Compagnini, W. W. Duley, and N. Y. Zhou, “Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots,” Nanoscale 6(4), 2381–2389 (2014).
[Crossref] [PubMed]

S. Barcikowski and G. Compagnini, “Advanced nanoparticle generation and excitation by lasers in liquids,” Phys. Chem. Chem. Phys. 15(9), 3022–3026 (2013).
[Crossref] [PubMed]

Dai, Y.

D. Tan, B. Xu, P. Chen, Y. Dai, S. Zhou, G. Ma, and J. Qiu, “One-pot synthesis of luminescent hydrophilic silicon nanocrystals,” RSC Advances 2(22), 8254–8257 (2012).
[Crossref]

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys. 13(45), 20255–20261 (2011).
[Crossref] [PubMed]

DeLoach, L. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Demirbas, U.

U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28(3), 231–240 (2006).
[Crossref]

Duley, W. W.

P. Russo, A. Hu, G. Compagnini, W. W. Duley, and N. Y. Zhou, “Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots,” Nanoscale 6(4), 2381–2389 (2014).
[Crossref] [PubMed]

Efros, A. L.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[Crossref] [PubMed]

Erwin, S. C.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[Crossref] [PubMed]

Fedorov, V.

Fedorov, V. V.

Feng, G.

T. Zhang, G. Feng, H. Zhang, S. Ning, B. Lan, and S. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8 μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
[Crossref]

G. Feng, C. Yang, and S. Zhou, “Nanocrystalline Cr2+-doped ZnSe nanowires laser,” Nano Lett. 13(1), 272–275 (2013).
[Crossref] [PubMed]

Frolov, M. P.

S. D. Velikanov, N. A. Zaretskiy, E. A. Zotov, V. I. Kozlovsky, V. K. Yu, O. N. Krokhin, A. A. Maneshkin, P. P. Yu, S. A. Savinova, K. S. Ya, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes,” Quantum Electron. 45(1), 1–7 (2015).
[Crossref]

A. A. Voronov, I. K. Vladimir, V. K. Yurii, I. L. Aleksandr, P. P. Yu, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

Furu, L. H.

Gallian, A.

Gapontsev, V.

Ghaisas, S. V.

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanetkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58(3), 238–241 (1987).
[Crossref] [PubMed]

S. B. Ogale, P. P. Patil, D. M. Phase, Y. V. Bhandarkar, S. K. Kulkarni, S. Kulkarni, S. V. Ghaisas, S. M. Kanetkar, V. G. Bhide, and S. Guha, “Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces,” Phys. Rev. B Condens. Matter 36(16), 8237–8250 (1987).
[Crossref] [PubMed]

Gongalsky, M. B.

P. Blandin, K. A. Maximova, M. B. Gongalsky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, and A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B Mater. Biol. Med. 1(19), 2489–2495 (2013).
[Crossref]

Guha, S.

S. B. Ogale, P. P. Patil, D. M. Phase, Y. V. Bhandarkar, S. K. Kulkarni, S. Kulkarni, S. V. Ghaisas, S. M. Kanetkar, V. G. Bhide, and S. Guha, “Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces,” Phys. Rev. B Condens. Matter 36(16), 8237–8250 (1987).
[Crossref] [PubMed]

Guoying, F.

Z. Tao, F. Guoying, Z. Hong, Y. Xianheng, D. Shenyu, and Z. Shouhuan, “2.78 μ m passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13(7), 075102 (2016).
[Crossref]

Haftel, M. I.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[Crossref] [PubMed]

Han, W. S.

He, M.

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys. 13(45), 20255–20261 (2011).
[Crossref] [PubMed]

Herda, R.

Hong, Z.

Z. Tao, F. Guoying, Z. Hong, Y. Xianheng, D. Shenyu, and Z. Shouhuan, “2.78 μ m passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13(7), 075102 (2016).
[Crossref]

Hu, A.

P. Russo, A. Hu, G. Compagnini, W. W. Duley, and N. Y. Zhou, “Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots,” Nanoscale 6(4), 2381–2389 (2014).
[Crossref] [PubMed]

Itina, T. E.

M. E. Povarnitsyn, T. E. Itina, P. R. Levashov, and K. V. Khishchenko, “Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment,” Phys. Chem. Chem. Phys. 15(9), 3108–3114 (2013).
[Crossref] [PubMed]

Jin, Z.

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys. 13(45), 20255–20261 (2011).
[Crossref] [PubMed]

Kabashin, A. V.

P. Blandin, K. A. Maximova, M. B. Gongalsky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, and A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B Mater. Biol. Med. 1(19), 2489–2495 (2013).
[Crossref]

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong, “Fabrication and Characterization of Gold Nanoparticles by Femtosecond Laser Ablation in an Aqueous Solution of Cyclodextrins,” J. Phys. Chem. B 107(19), 4527–4531 (2003).
[Crossref]

Kanetkar, S. M.

S. B. Ogale, P. P. Patil, D. M. Phase, Y. V. Bhandarkar, S. K. Kulkarni, S. Kulkarni, S. V. Ghaisas, S. M. Kanetkar, V. G. Bhide, and S. Guha, “Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces,” Phys. Rev. B Condens. Matter 36(16), 8237–8250 (1987).
[Crossref] [PubMed]

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanetkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58(3), 238–241 (1987).
[Crossref] [PubMed]

Kennedy, T. A.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[Crossref] [PubMed]

Kernal, J.

Khishchenko, K. V.

M. E. Povarnitsyn, T. E. Itina, P. R. Levashov, and K. V. Khishchenko, “Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment,” Phys. Chem. Chem. Phys. 15(9), 3108–3114 (2013).
[Crossref] [PubMed]

Kingston, C.

A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong, “Fabrication and Characterization of Gold Nanoparticles by Femtosecond Laser Ablation in an Aqueous Solution of Cyclodextrins,” J. Phys. Chem. B 107(19), 4527–4531 (2003).
[Crossref]

Kivistö, S.

Konynenbelt, K.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W Passively Q-Switched Mid-Infrared Fiber Laser With a Wide Continuous Wavelength Tuning Range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

Kotov, L. V.

Kozlovsky, V. I.

S. D. Velikanov, N. A. Zaretskiy, E. A. Zotov, V. I. Kozlovsky, V. K. Yu, O. N. Krokhin, A. A. Maneshkin, P. P. Yu, S. A. Savinova, K. S. Ya, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes,” Quantum Electron. 45(1), 1–7 (2015).
[Crossref]

Krokhin, O. N.

S. D. Velikanov, N. A. Zaretskiy, E. A. Zotov, V. I. Kozlovsky, V. K. Yu, O. N. Krokhin, A. A. Maneshkin, P. P. Yu, S. A. Savinova, K. S. Ya, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes,” Quantum Electron. 45(1), 1–7 (2015).
[Crossref]

Krol, D. M.

Krupke, W. F.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Kulkarni, S.

S. B. Ogale, P. P. Patil, D. M. Phase, Y. V. Bhandarkar, S. K. Kulkarni, S. Kulkarni, S. V. Ghaisas, S. M. Kanetkar, V. G. Bhide, and S. Guha, “Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces,” Phys. Rev. B Condens. Matter 36(16), 8237–8250 (1987).
[Crossref] [PubMed]

Kulkarni, S. A.

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanetkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58(3), 238–241 (1987).
[Crossref] [PubMed]

Kulkarni, S. K.

S. B. Ogale, P. P. Patil, D. M. Phase, Y. V. Bhandarkar, S. K. Kulkarni, S. Kulkarni, S. V. Ghaisas, S. M. Kanetkar, V. G. Bhide, and S. Guha, “Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces,” Phys. Rev. B Condens. Matter 36(16), 8237–8250 (1987).
[Crossref] [PubMed]

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanetkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58(3), 238–241 (1987).
[Crossref] [PubMed]

Lan, B.

T. Zhang, G. Feng, H. Zhang, S. Ning, B. Lan, and S. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8 μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
[Crossref]

Levashov, P. R.

M. E. Povarnitsyn, T. E. Itina, P. R. Levashov, and K. V. Khishchenko, “Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment,” Phys. Chem. Chem. Phys. 15(9), 3108–3114 (2013).
[Crossref] [PubMed]

Li, H.

Li, J.

Liu, Y.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W Passively Q-Switched Mid-Infrared Fiber Laser With a Wide Continuous Wavelength Tuning Range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref] [PubMed]

Luo, H.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W Passively Q-Switched Mid-Infrared Fiber Laser With a Wide Continuous Wavelength Tuning Range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref] [PubMed]

Luo, Z.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Luong, J. H. T.

A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong, “Fabrication and Characterization of Gold Nanoparticles by Femtosecond Laser Ablation in an Aqueous Solution of Cyclodextrins,” J. Phys. Chem. B 107(19), 4527–4531 (2003).
[Crossref]

Ma, G.

D. Tan, B. Xu, P. Chen, Y. Dai, S. Zhou, G. Ma, and J. Qiu, “One-pot synthesis of luminescent hydrophilic silicon nanocrystals,” RSC Advances 2(22), 8254–8257 (2012).
[Crossref]

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys. 13(45), 20255–20261 (2011).
[Crossref] [PubMed]

Ma, Z.

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys. 13(45), 20255–20261 (2011).
[Crossref] [PubMed]

Maneshkin, A. A.

S. D. Velikanov, N. A. Zaretskiy, E. A. Zotov, V. I. Kozlovsky, V. K. Yu, O. N. Krokhin, A. A. Maneshkin, P. P. Yu, S. A. Savinova, K. S. Ya, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes,” Quantum Electron. 45(1), 1–7 (2015).
[Crossref]

Martinez, A.

Martyshkin, D.

Maximova, K. A.

P. Blandin, K. A. Maximova, M. B. Gongalsky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, and A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B Mater. Biol. Med. 1(19), 2489–2495 (2013).
[Crossref]

Meunier, M.

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong, “Fabrication and Characterization of Gold Nanoparticles by Femtosecond Laser Ablation in an Aqueous Solution of Cyclodextrins,” J. Phys. Chem. B 107(19), 4527–4531 (2003).
[Crossref]

Mirov, M.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and V. Gapontsev, “Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers [Invited],” Opt. Mater. Express 1(5), 898–910 (2011).
[Crossref]

Mirov, S.

Mirov, S. B.

Moskalev, I.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and V. Gapontsev, “Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers [Invited],” Opt. Mater. Express 1(5), 898–910 (2011).
[Crossref]

Myoung, N.

Ning, S.

T. Zhang, G. Feng, H. Zhang, S. Ning, B. Lan, and S. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8 μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
[Crossref]

Norris, D. J.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[Crossref] [PubMed]

Norwood, R. A.

Ogale, S. B.

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanetkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58(3), 238–241 (1987).
[Crossref] [PubMed]

S. B. Ogale, P. P. Patil, D. M. Phase, Y. V. Bhandarkar, S. K. Kulkarni, S. Kulkarni, S. V. Ghaisas, S. M. Kanetkar, V. G. Bhide, and S. Guha, “Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces,” Phys. Rev. B Condens. Matter 36(16), 8237–8250 (1987).
[Crossref] [PubMed]

Ogata, Y. H.

T. Sakka, K. Saito, and Y. H. Ogata, “Confinement effect of laser ablation plume in liquids probed by self-absorption of C2 Swan band emission,” J. Appl. Phys. 97(1), 014902 (2005).
[Crossref]

Okhotnikov, O. G.

Page, R. H.

J. J. Adams, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, and S. A. Payne, “4.0-4.5-mum lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material,” Opt. Lett. 24(23), 1720–1722 (1999).
[Crossref] [PubMed]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Park, J. S.

Patel, F. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Patil, P. P.

S. B. Ogale, P. P. Patil, D. M. Phase, Y. V. Bhandarkar, S. K. Kulkarni, S. Kulkarni, S. V. Ghaisas, S. M. Kanetkar, V. G. Bhide, and S. Guha, “Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces,” Phys. Rev. B Condens. Matter 36(16), 8237–8250 (1987).
[Crossref] [PubMed]

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanetkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58(3), 238–241 (1987).
[Crossref] [PubMed]

Payne, S. A.

J. J. Adams, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, and S. A. Payne, “4.0-4.5-mum lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material,” Opt. Lett. 24(23), 1720–1722 (1999).
[Crossref] [PubMed]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Peng, J.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Peppers, J.

Peyghambarian, N.

Phase, D. M.

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanetkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58(3), 238–241 (1987).
[Crossref] [PubMed]

S. B. Ogale, P. P. Patil, D. M. Phase, Y. V. Bhandarkar, S. K. Kulkarni, S. Kulkarni, S. V. Ghaisas, S. M. Kanetkar, V. G. Bhide, and S. Guha, “Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces,” Phys. Rev. B Condens. Matter 36(16), 8237–8250 (1987).
[Crossref] [PubMed]

Polushkin, V. G.

A. A. Voronov, I. K. Vladimir, V. K. Yurii, I. L. Aleksandr, P. P. Yu, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

Povarnitsyn, M. E.

M. E. Povarnitsyn, T. E. Itina, P. R. Levashov, and K. V. Khishchenko, “Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment,” Phys. Chem. Chem. Phys. 15(9), 3108–3114 (2013).
[Crossref] [PubMed]

Qiu, J.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” PrMS 76, 154–228 (2016).

D. Tan, B. Xu, P. Chen, Y. Dai, S. Zhou, G. Ma, and J. Qiu, “One-pot synthesis of luminescent hydrophilic silicon nanocrystals,” RSC Advances 2(22), 8254–8257 (2012).
[Crossref]

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys. 13(45), 20255–20261 (2011).
[Crossref] [PubMed]

Russo, P.

P. Russo, A. Hu, G. Compagnini, W. W. Duley, and N. Y. Zhou, “Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots,” Nanoscale 6(4), 2381–2389 (2014).
[Crossref] [PubMed]

Sacher, E.

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

Saito, K.

T. Sakka, K. Saito, and Y. H. Ogata, “Confinement effect of laser ablation plume in liquids probed by self-absorption of C2 Swan band emission,” J. Appl. Phys. 97(1), 014902 (2005).
[Crossref]

Sakka, T.

T. Sakka, K. Saito, and Y. H. Ogata, “Confinement effect of laser ablation plume in liquids probed by self-absorption of C2 Swan band emission,” J. Appl. Phys. 97(1), 014902 (2005).
[Crossref]

Sanchez-Royo, J. F.

P. Blandin, K. A. Maximova, M. B. Gongalsky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, and A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B Mater. Biol. Med. 1(19), 2489–2495 (2013).
[Crossref]

Savinova, S. A.

S. D. Velikanov, N. A. Zaretskiy, E. A. Zotov, V. I. Kozlovsky, V. K. Yu, O. N. Krokhin, A. A. Maneshkin, P. P. Yu, S. A. Savinova, K. S. Ya, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes,” Quantum Electron. 45(1), 1–7 (2015).
[Crossref]

Schaffers, K. I.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Sennaroglu, A.

U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28(3), 231–240 (2006).
[Crossref]

Sentis, M.

P. Blandin, K. A. Maximova, M. B. Gongalsky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, and A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B Mater. Biol. Med. 1(19), 2489–2495 (2013).
[Crossref]

Sharafudeen, K. N.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” PrMS 76, 154–228 (2016).

Shenyu, D.

Z. Tao, F. Guoying, Z. Hong, Y. Xianheng, D. Shenyu, and Z. Shouhuan, “2.78 μ m passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13(7), 075102 (2016).
[Crossref]

Shi, H.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W Passively Q-Switched Mid-Infrared Fiber Laser With a Wide Continuous Wavelength Tuning Range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

Shouhuan, Z.

Z. Tao, F. Guoying, Z. Hong, Y. Xianheng, D. Shenyu, and Z. Shouhuan, “2.78 μ m passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13(7), 075102 (2016).
[Crossref]

Somer, M.

U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28(3), 231–240 (2006).
[Crossref]

Sun, Z.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Sylvestre, J.-P.

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

Tan, D.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” PrMS 76, 154–228 (2016).

D. Tan, B. Xu, P. Chen, Y. Dai, S. Zhou, G. Ma, and J. Qiu, “One-pot synthesis of luminescent hydrophilic silicon nanocrystals,” RSC Advances 2(22), 8254–8257 (2012).
[Crossref]

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys. 13(45), 20255–20261 (2011).
[Crossref] [PubMed]

Tao, Z.

Z. Tao, F. Guoying, Z. Hong, Y. Xianheng, D. Shenyu, and Z. Shouhuan, “2.78 μ m passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13(7), 075102 (2016).
[Crossref]

Tassano, J. B.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Timoshenko, V. Y.

P. Blandin, K. A. Maximova, M. B. Gongalsky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, and A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B Mater. Biol. Med. 1(19), 2489–2495 (2013).
[Crossref]

Tong, M.

Vasilyev, S.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Velikanov, S. D.

S. D. Velikanov, N. A. Zaretskiy, E. A. Zotov, V. I. Kozlovsky, V. K. Yu, O. N. Krokhin, A. A. Maneshkin, P. P. Yu, S. A. Savinova, K. S. Ya, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes,” Quantum Electron. 45(1), 1–7 (2015).
[Crossref]

Vladimir, I. K.

A. A. Voronov, I. K. Vladimir, V. K. Yurii, I. L. Aleksandr, P. P. Yu, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

Voronov, A. A.

A. A. Voronov, I. K. Vladimir, V. K. Yurii, I. L. Aleksandr, P. P. Yu, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

Wang, F.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Wang, J.

Wang, L.

Wei, C.

X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm [Invited],” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W Passively Q-Switched Mid-Infrared Fiber Laser With a Wide Continuous Wavelength Tuning Range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8-μm Nanosecond Fiber Laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 37(18), 3849–3851 (2012).
[Crossref] [PubMed]

Weng, J.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Wilke, G. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Williams, L.

Wu, D.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Xianheng, Y.

Z. Tao, F. Guoying, Z. Hong, Y. Xianheng, D. Shenyu, and Z. Shouhuan, “2.78 μ m passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13(7), 075102 (2016).
[Crossref]

Xiao, D.

L. Yang, J. Zhu, and D. Xiao, “Synthesis and characterization of ZnSe:Fe/ZnSe core/shell nanocrystals,” J. Lumin. 148, 129–133 (2014).
[Crossref]

Xu, B.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

D. Tan, B. Xu, P. Chen, Y. Dai, S. Zhou, G. Ma, and J. Qiu, “One-pot synthesis of luminescent hydrophilic silicon nanocrystals,” RSC Advances 2(22), 8254–8257 (2012).
[Crossref]

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys. 13(45), 20255–20261 (2011).
[Crossref] [PubMed]

Xu, H.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Xu, S.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Ya, K. S.

S. D. Velikanov, N. A. Zaretskiy, E. A. Zotov, V. I. Kozlovsky, V. K. Yu, O. N. Krokhin, A. A. Maneshkin, P. P. Yu, S. A. Savinova, K. S. Ya, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes,” Quantum Electron. 45(1), 1–7 (2015).
[Crossref]

Yang, C.

G. Feng, C. Yang, and S. Zhou, “Nanocrystalline Cr2+-doped ZnSe nanowires laser,” Nano Lett. 13(1), 272–275 (2013).
[Crossref] [PubMed]

Yang, L.

L. Yang, J. Zhu, and D. Xiao, “Synthesis and characterization of ZnSe:Fe/ZnSe core/shell nanocrystals,” J. Lumin. 148, 129–133 (2014).
[Crossref]

Yim, S.-Y.

Yu, P. P.

S. D. Velikanov, N. A. Zaretskiy, E. A. Zotov, V. I. Kozlovsky, V. K. Yu, O. N. Krokhin, A. A. Maneshkin, P. P. Yu, S. A. Savinova, K. S. Ya, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes,” Quantum Electron. 45(1), 1–7 (2015).
[Crossref]

A. A. Voronov, I. K. Vladimir, V. K. Yurii, I. L. Aleksandr, P. P. Yu, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

Yu, V. K.

S. D. Velikanov, N. A. Zaretskiy, E. A. Zotov, V. I. Kozlovsky, V. K. Yu, O. N. Krokhin, A. A. Maneshkin, P. P. Yu, S. A. Savinova, K. S. Ya, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes,” Quantum Electron. 45(1), 1–7 (2015).
[Crossref]

Yue, Y.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” PrMS 76, 154–228 (2016).

Yurii, V. K.

A. A. Voronov, I. K. Vladimir, V. K. Yurii, I. L. Aleksandr, P. P. Yu, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

Yutkin, I. M.

S. D. Velikanov, N. A. Zaretskiy, E. A. Zotov, V. I. Kozlovsky, V. K. Yu, O. N. Krokhin, A. A. Maneshkin, P. P. Yu, S. A. Savinova, K. S. Ya, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes,” Quantum Electron. 45(1), 1–7 (2015).
[Crossref]

Zaretskiy, N. A.

S. D. Velikanov, N. A. Zaretskiy, E. A. Zotov, V. I. Kozlovsky, V. K. Yu, O. N. Krokhin, A. A. Maneshkin, P. P. Yu, S. A. Savinova, K. S. Ya, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes,” Quantum Electron. 45(1), 1–7 (2015).
[Crossref]

Zhai, B.

Zhang, H.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W Passively Q-Switched Mid-Infrared Fiber Laser With a Wide Continuous Wavelength Tuning Range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

T. Zhang, G. Feng, H. Zhang, S. Ning, B. Lan, and S. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8 μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
[Crossref]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Zhang, T.

T. Zhang, G. Feng, H. Zhang, S. Ning, B. Lan, and S. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8 μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
[Crossref]

Zhou, N. Y.

P. Russo, A. Hu, G. Compagnini, W. W. Duley, and N. Y. Zhou, “Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots,” Nanoscale 6(4), 2381–2389 (2014).
[Crossref] [PubMed]

Zhou, S.

T. Zhang, G. Feng, H. Zhang, S. Ning, B. Lan, and S. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8 μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
[Crossref]

G. Feng, C. Yang, and S. Zhou, “Nanocrystalline Cr2+-doped ZnSe nanowires laser,” Nano Lett. 13(1), 272–275 (2013).
[Crossref] [PubMed]

D. Tan, B. Xu, P. Chen, Y. Dai, S. Zhou, G. Ma, and J. Qiu, “One-pot synthesis of luminescent hydrophilic silicon nanocrystals,” RSC Advances 2(22), 8254–8257 (2012).
[Crossref]

Zhu, C.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Zhu, G.

Zhu, J.

L. Yang, J. Zhu, and D. Xiao, “Synthesis and characterization of ZnSe:Fe/ZnSe core/shell nanocrystals,” J. Lumin. 148, 129–133 (2014).
[Crossref]

Zhu, X.

Zotov, E. A.

S. D. Velikanov, N. A. Zaretskiy, E. A. Zotov, V. I. Kozlovsky, V. K. Yu, O. N. Krokhin, A. A. Maneshkin, P. P. Yu, S. A. Savinova, K. S. Ya, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes,” Quantum Electron. 45(1), 1–7 (2015).
[Crossref]

Zu, L.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[Crossref] [PubMed]

Appl. Phys., A Mater. Sci. Process. (1)

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

IEEE J. Quantum Electron. (2)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W Passively Q-Switched Mid-Infrared Fiber Laser With a Wide Continuous Wavelength Tuning Range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8-μm Nanosecond Fiber Laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

J. Appl. Phys. (1)

T. Sakka, K. Saito, and Y. H. Ogata, “Confinement effect of laser ablation plume in liquids probed by self-absorption of C2 Swan band emission,” J. Appl. Phys. 97(1), 014902 (2005).
[Crossref]

J. Lumin. (1)

L. Yang, J. Zhu, and D. Xiao, “Synthesis and characterization of ZnSe:Fe/ZnSe core/shell nanocrystals,” J. Lumin. 148, 129–133 (2014).
[Crossref]

J. Mater. Chem. B Mater. Biol. Med. (1)

P. Blandin, K. A. Maximova, M. B. Gongalsky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, and A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B Mater. Biol. Med. 1(19), 2489–2495 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong, “Fabrication and Characterization of Gold Nanoparticles by Femtosecond Laser Ablation in an Aqueous Solution of Cyclodextrins,” J. Phys. Chem. B 107(19), 4527–4531 (2003).
[Crossref]

Laser Phys. Lett. (1)

Z. Tao, F. Guoying, Z. Hong, Y. Xianheng, D. Shenyu, and Z. Shouhuan, “2.78 μ m passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13(7), 075102 (2016).
[Crossref]

Nano Lett. (1)

G. Feng, C. Yang, and S. Zhou, “Nanocrystalline Cr2+-doped ZnSe nanowires laser,” Nano Lett. 13(1), 272–275 (2013).
[Crossref] [PubMed]

Nanoscale (2)

P. Russo, A. Hu, G. Compagnini, W. W. Duley, and N. Y. Zhou, “Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots,” Nanoscale 6(4), 2381–2389 (2014).
[Crossref] [PubMed]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Nature (1)

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[Crossref] [PubMed]

Opt. Eng. (1)

T. Zhang, G. Feng, H. Zhang, S. Ning, B. Lan, and S. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8 μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55(8), 086106 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. (1)

U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28(3), 231–240 (2006).
[Crossref]

Opt. Mater. Express (4)

Phys. Chem. Chem. Phys. (3)

S. Barcikowski and G. Compagnini, “Advanced nanoparticle generation and excitation by lasers in liquids,” Phys. Chem. Chem. Phys. 15(9), 3022–3026 (2013).
[Crossref] [PubMed]

D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, “Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution,” Phys. Chem. Chem. Phys. 13(45), 20255–20261 (2011).
[Crossref] [PubMed]

M. E. Povarnitsyn, T. E. Itina, P. R. Levashov, and K. V. Khishchenko, “Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment,” Phys. Chem. Chem. Phys. 15(9), 3108–3114 (2013).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter (1)

S. B. Ogale, P. P. Patil, D. M. Phase, Y. V. Bhandarkar, S. K. Kulkarni, S. Kulkarni, S. V. Ghaisas, S. M. Kanetkar, V. G. Bhide, and S. Guha, “Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces,” Phys. Rev. B Condens. Matter 36(16), 8237–8250 (1987).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanetkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58(3), 238–241 (1987).
[Crossref] [PubMed]

PrMS (1)

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” PrMS 76, 154–228 (2016).

Quantum Electron. (2)

S. D. Velikanov, N. A. Zaretskiy, E. A. Zotov, V. I. Kozlovsky, V. K. Yu, O. N. Krokhin, A. A. Maneshkin, P. P. Yu, S. A. Savinova, K. S. Ya, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes,” Quantum Electron. 45(1), 1–7 (2015).
[Crossref]

A. A. Voronov, I. K. Vladimir, V. K. Yurii, I. L. Aleksandr, P. P. Yu, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

RSC Advances (1)

D. Tan, B. Xu, P. Chen, Y. Dai, S. Zhou, G. Ma, and J. Qiu, “One-pot synthesis of luminescent hydrophilic silicon nanocrystals,” RSC Advances 2(22), 8254–8257 (2012).
[Crossref]

Other (1)

N. S. Myoung, V. V. Fedorov, and S. B. Mirov, “Optically dense Fe:ZnSe crystals for energy scaled gain switched lasing,” Proceedings of SPIE - The International Society for Optical Engineering 7578, 75781H–75781H–75788 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The schematic diagram of the FLAS experimental setup. Inset: the photograph of Fe2+:ZnSe NCs’ DIW dispersion solution.
Fig. 2
Fig. 2 XRD patterns of Fe2+:ZnSe NCs and Fe2+:ZnSe target micron powers.
Fig. 3
Fig. 3 SEM image of Fe2+:ZnSe target micron powers (a), Fe2+:ZnSe NCs (b) and (c), inset: the photograph of Fe2+:ZnSe NCs solution for SEM characterization, particle size distribution of Fe2+:ZnSe NCs (d).
Fig. 4
Fig. 4 (a) The surface profile of three typical position. (b), (c) and (d) The corresponding marked height curve of Fe2+:ZnSe NCs on the sapphire substrate.
Fig. 5
Fig. 5 (a) The transmission of sapphire substrate, Fe2+:ZnSe NCs on sapphire substrate and ZnSe bulk material, (b) a multiple-layer dielectric film and Fe2+:ZnSe NCs SA. Inset: the photograph of Fe2+:ZnSe NCs SA.
Fig. 6
Fig. 6 Schematic diagram of the Q-switched Er3+:ZBLAN fiber laser using Fe2+:ZnSe NCs SA.
Fig. 7
Fig. 7 The experimental results of the Fe2+:ZnSe NCs Q-switched fiber laser. (a)Record pulse train at an incident pump power of 2.53 W, (b) record pulse train at an incident pump power of 8.27 W, (c) single pulse waveform, and (d) average output power as a function of incident pump power.
Fig. 8
Fig. 8 (a) Output optical spectrum and (b) the SNR spectrum of the Fe2+:ZnSe NCs based fiber laser. (Inset: the broad-band RF output spectrum.)
Fig. 9
Fig. 9 (a) The repetition rate and pulse width versus incident pump power, (b) the power and single-pulse energy as a function of the incident pump power.

Metrics