Abstract

Colloidal plasmonic metal nanoparticles are capable of surface-enhanced Raman scattering (SERS) for various analytical fields. Despite steady efforts to establish hot spots and obtain optimal SERS signals, it remains a challenge to ensure the accessibility and high density for enhancing Raman activity. Here, pyramid silicon was utilized as a template to fabricate the graphene oxide (GO)/silver nanoparticles (AgNPs)/pyramid polymethyl methacrylate (PMMA) three-dimension (3D) flexible structure. Micrographs displayed the hybrid structure inherited the periodic 3D nanostructure with the pyramid microstructure, and the results exhibited that the proposed substrate possesses superior SERS performance with high sensitivity, homogeneity and stability. The enhancement factor reached up to 8.1 × 109 using rhodamine 6G as the probe molecules. Besides, the in situ detection of the malachite green (MG) on the shrimp’s surface was carried out to achieve and detect surface analytes. This work can provide a novel assembled SERS substrate as SERS-based biological detection in practical applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles

Yu Guo, Jing Yu, Chonghui Li, Zhen Li, Jie Pan, Aihua Liu, Baoyuan Man, Tianfu Wu, Xianwu Xiu, and Chao Zhang
Opt. Express 26(17) 21784-21796 (2018)

SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure

C Zhang, S Z Jiang, Y Y Huo, A H Liu, S C Xu, X Y Liu, Z C Sun, Y Y Xu, Z Li, and B Y Man
Opt. Express 23(19) 24811-24821 (2015)

Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate

Xiaofei Zhao, Jing Yu, Zijing Zhang, Chonghui Li, Zhen Li, Shouzhen Jiang, Jie Pan, Aihua Liu, Chao Zhang, and Baoyuan Man
Opt. Express 26(18) 23831-23843 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
    [Crossref]
  2. M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Scattering of a Single Nanodumbbell: Dibenzyldithio-Linked Silver Nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
    [Crossref]
  3. M. Moskovits, “Persistent misconceptions regarding SERS,” Phys. Chem. Chem. Phys. 15(15), 5301–5311 (2013).
    [Crossref] [PubMed]
  4. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  5. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  6. D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
    [Crossref] [PubMed]
  7. P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. H. Xie, “Ultrasensitive Graphene-Plasmonic Hybrid Platform for Label-Free Detection,” Adv. Mater. 25(35), 4918–4924 (2013).
    [Crossref] [PubMed]
  8. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3(825), 825 (2012).
    [Crossref] [PubMed]
  9. M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
    [Crossref] [PubMed]
  10. M. Banik, V. A. Apkarian, T.-H. Park, and M. Galperin, “Raman Staircase in Charge Transfer SERS at the Junction of Fusing Nanospheres,” J. Phys. Chem. Lett. 4(1), 88–92 (2013).
    [Crossref] [PubMed]
  11. C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
    [Crossref] [PubMed]
  12. S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
    [Crossref]
  13. K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
    [Crossref]
  14. K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  15. K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
    [Crossref] [PubMed]
  16. D. Z. Lin, Y. P. Chen, P. J. Jhuang, J. Y. Chu, J. T. Yeh, and J. K. Wang, “Optimizing electromagnetic enhancement of flexible nano-imprinted hexagonally patterned surface-enhanced Raman scattering substrates,” Opt. Express 19(5), 4337–4345 (2011).
    [Crossref] [PubMed]
  17. C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat. Biol. Chem. 258, 163–171 (2018).
  18. X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
    [Crossref] [PubMed]
  19. Z. G. Dai, F. Mei, X. H. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. S. Guo, X. Y. Zhao, W. Li, F. Ren, and C. Jiang, “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
    [Crossref]
  20. C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
    [Crossref] [PubMed]
  21. C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
    [Crossref]
  22. Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
    [Crossref]
  23. B. Man, S. Xu, S. Jiang, A. Liu, S. Gao, C. Zhang, H. Qiu, and Z. Li, “Graphene-Based Flexible and Transparent Tunable Capacitors,” Nanoscale Res. Lett. 10(1), 279 (2015).
    [Crossref] [PubMed]
  24. S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, and T. Ryhänen, “Ultrafast graphene oxide humidity sensors,” ACS Nano 7(12), 11166–11173 (2013).
    [Crossref] [PubMed]
  25. A. M. Dimiev and J. M. Tour, “Mechanism of graphene oxide formation,” ACS Nano 8(3), 3060–3068 (2014).
    [Crossref] [PubMed]
  26. A. Johansson, P. Myllyperkiö, P. Koskinen, J. Aumanen, J. Koivistoinen, H. C. Tsai, C. H. Chen, L. Y. Chang, V. M. Hiltunen, J. J. Manninen, W. Y. Woon, and M. Pettersson, “Optical Forging of Graphene into Three-Dimensional Shapes,” Nano Lett. 17(10), 6469–6474 (2017).
    [Crossref] [PubMed]
  27. R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. Delville, and R. Oda, “Gold Nanoparticle Deposition on Silica Nanohelices: A New Controllable 3D Substrate in Aqueous Suspension for Optical Sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
    [Crossref]
  28. K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensor. Actuat. Biol. Chem. 207, 430–436 (2015).
  29. P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).
  30. C. P. Hagan, J. F. Orr, C. A. Mitchell, and N. J. Dunne, “Real time monitoring of the polymerisation of PMMA bone cement using Raman spectroscopy,” J. Mater. Sci. Mater. Med. 20(12), 2427–2431 (2009).
    [Crossref] [PubMed]
  31. L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of Nanostructures with Poly(methyl methacrylate)-Mediated Nanotransfer Printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
    [Crossref] [PubMed]
  32. M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, “Recent Advances in Tip-Enhanced Raman Spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
    [Crossref] [PubMed]
  33. F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
    [Crossref] [PubMed]
  34. C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
    [Crossref]
  35. C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sensor. Actuat. Biol. Chem. 251, 127–133 (2017).
  36. S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
    [Crossref] [PubMed]
  37. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [Crossref] [PubMed]
  38. C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
    [Crossref] [PubMed]
  39. O. Guselnikova, D. P. Postnikov, Y. Kalachyova, D. Z. Kolska, M. Libansky, P. J. Zima, P. V. Svorcik, and D. O. Lyutakov, “Large-Scale, Ultrasensitive, Highly Reproducible and Reusable Smart SERS Platform Based on PNIPAm-Grafted Gold Grating,” Chem. Nano Mat. 3(2), 135–144 (2017).
  40. D. He, B. Hu, Q. F. Yao, K. Wang, and S. H. Yu, “Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles,” ACS Nano 3(12), 3993–4002 (2009).
    [Crossref] [PubMed]
  41. Y. Kalachyova, D. Mares, V. Jerabek, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles,” Phys. Chem. Chem. Phys. 19(22), 14761–14769 (2017).
    [Crossref] [PubMed]
  42. C. Xu and X. Wang, “Fabrication of Flexible Metal-Nanoparticle Films Using Graphene Oxide Sheets as Substrates,” Small 5(19), 2212–2217 (2009).
    [Crossref] [PubMed]
  43. W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
    [Crossref] [PubMed]
  44. R. Ahmad and R. Kumar, “Adsorption studies of hazardous malachite green onto treated ginger waste,” J. Environ. Manage. 91(4), 1032–1038 (2010).
    [Crossref] [PubMed]
  45. L. B. Zhong, J. Yin, Y. M. Zheng, Q. Liu, X. X. Cheng, and F. H. Luo, “Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates,” Anal. Chem. 86(13), 6262–6267 (2014).
    [Crossref] [PubMed]

2018 (1)

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat. Biol. Chem. 258, 163–171 (2018).

2017 (7)

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Y. Kalachyova, D. Mares, V. Jerabek, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles,” Phys. Chem. Chem. Phys. 19(22), 14761–14769 (2017).
[Crossref] [PubMed]

A. Johansson, P. Myllyperkiö, P. Koskinen, J. Aumanen, J. Koivistoinen, H. C. Tsai, C. H. Chen, L. Y. Chang, V. M. Hiltunen, J. J. Manninen, W. Y. Woon, and M. Pettersson, “Optical Forging of Graphene into Three-Dimensional Shapes,” Nano Lett. 17(10), 6469–6474 (2017).
[Crossref] [PubMed]

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sensor. Actuat. Biol. Chem. 251, 127–133 (2017).

O. Guselnikova, D. P. Postnikov, Y. Kalachyova, D. Z. Kolska, M. Libansky, P. J. Zima, P. V. Svorcik, and D. O. Lyutakov, “Large-Scale, Ultrasensitive, Highly Reproducible and Reusable Smart SERS Platform Based on PNIPAm-Grafted Gold Grating,” Chem. Nano Mat. 3(2), 135–144 (2017).

2016 (3)

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

2015 (7)

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

B. Man, S. Xu, S. Jiang, A. Liu, S. Gao, C. Zhang, H. Qiu, and Z. Li, “Graphene-Based Flexible and Transparent Tunable Capacitors,” Nanoscale Res. Lett. 10(1), 279 (2015).
[Crossref] [PubMed]

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensor. Actuat. Biol. Chem. 207, 430–436 (2015).

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

2014 (6)

L. B. Zhong, J. Yin, Y. M. Zheng, Q. Liu, X. X. Cheng, and F. H. Luo, “Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates,” Anal. Chem. 86(13), 6262–6267 (2014).
[Crossref] [PubMed]

Z. G. Dai, F. Mei, X. H. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. S. Guo, X. Y. Zhao, W. Li, F. Ren, and C. Jiang, “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, “Recent Advances in Tip-Enhanced Raman Spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref] [PubMed]

A. M. Dimiev and J. M. Tour, “Mechanism of graphene oxide formation,” ACS Nano 8(3), 3060–3068 (2014).
[Crossref] [PubMed]

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[Crossref] [PubMed]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

2013 (4)

S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, and T. Ryhänen, “Ultrafast graphene oxide humidity sensors,” ACS Nano 7(12), 11166–11173 (2013).
[Crossref] [PubMed]

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. H. Xie, “Ultrasensitive Graphene-Plasmonic Hybrid Platform for Label-Free Detection,” Adv. Mater. 25(35), 4918–4924 (2013).
[Crossref] [PubMed]

M. Moskovits, “Persistent misconceptions regarding SERS,” Phys. Chem. Chem. Phys. 15(15), 5301–5311 (2013).
[Crossref] [PubMed]

M. Banik, V. A. Apkarian, T.-H. Park, and M. Galperin, “Raman Staircase in Charge Transfer SERS at the Junction of Fusing Nanospheres,” J. Phys. Chem. Lett. 4(1), 88–92 (2013).
[Crossref] [PubMed]

2012 (5)

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. Delville, and R. Oda, “Gold Nanoparticle Deposition on Silica Nanohelices: A New Controllable 3D Substrate in Aqueous Suspension for Optical Sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[Crossref]

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Scattering of a Single Nanodumbbell: Dibenzyldithio-Linked Silver Nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3(825), 825 (2012).
[Crossref] [PubMed]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

R. Ahmad and R. Kumar, “Adsorption studies of hazardous malachite green onto treated ginger waste,” J. Environ. Manage. 91(4), 1032–1038 (2010).
[Crossref] [PubMed]

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

2009 (3)

C. P. Hagan, J. F. Orr, C. A. Mitchell, and N. J. Dunne, “Real time monitoring of the polymerisation of PMMA bone cement using Raman spectroscopy,” J. Mater. Sci. Mater. Med. 20(12), 2427–2431 (2009).
[Crossref] [PubMed]

D. He, B. Hu, Q. F. Yao, K. Wang, and S. H. Yu, “Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles,” ACS Nano 3(12), 3993–4002 (2009).
[Crossref] [PubMed]

C. Xu and X. Wang, “Fabrication of Flexible Metal-Nanoparticle Films Using Graphene Oxide Sheets as Substrates,” Small 5(19), 2212–2217 (2009).
[Crossref] [PubMed]

2008 (1)

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of Nanostructures with Poly(methyl methacrylate)-Mediated Nanotransfer Printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

2007 (2)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

1997 (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Ahmad, R.

R. Ahmad and R. Kumar, “Adsorption studies of hazardous malachite green onto treated ginger waste,” J. Environ. Manage. 91(4), 1032–1038 (2010).
[Crossref] [PubMed]

Aizpurua, J.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3(825), 825 (2012).
[Crossref] [PubMed]

Alfonso-Garcia, A.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

Apkarian, V. A.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

M. Banik, V. A. Apkarian, T.-H. Park, and M. Galperin, “Raman Staircase in Charge Transfer SERS at the Junction of Fusing Nanospheres,” J. Phys. Chem. Lett. 4(1), 88–92 (2013).
[Crossref] [PubMed]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Scattering of a Single Nanodumbbell: Dibenzyldithio-Linked Silver Nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

Astley, M.

S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, and T. Ryhänen, “Ultrafast graphene oxide humidity sensors,” ACS Nano 7(12), 11166–11173 (2013).
[Crossref] [PubMed]

Aumanen, J.

A. Johansson, P. Myllyperkiö, P. Koskinen, J. Aumanen, J. Koivistoinen, H. C. Tsai, C. H. Chen, L. Y. Chang, V. M. Hiltunen, J. J. Manninen, W. Y. Woon, and M. Pettersson, “Optical Forging of Graphene into Three-Dimensional Shapes,” Nano Lett. 17(10), 6469–6474 (2017).
[Crossref] [PubMed]

Bai, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Banik, M.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

M. Banik, V. A. Apkarian, T.-H. Park, and M. Galperin, “Raman Staircase in Charge Transfer SERS at the Junction of Fusing Nanospheres,” J. Phys. Chem. Lett. 4(1), 88–92 (2013).
[Crossref] [PubMed]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Scattering of a Single Nanodumbbell: Dibenzyldithio-Linked Silver Nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

Bazan, G. C.

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Scattering of a Single Nanodumbbell: Dibenzyldithio-Linked Silver Nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Blackie, E.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Borini, S.

S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, and T. Ryhänen, “Ultrafast graphene oxide humidity sensors,” ACS Nano 7(12), 11166–11173 (2013).
[Crossref] [PubMed]

Borisov, A. G.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3(825), 825 (2012).
[Crossref] [PubMed]

Braun, G. B.

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Chang, L. Y.

A. Johansson, P. Myllyperkiö, P. Koskinen, J. Aumanen, J. Koivistoinen, H. C. Tsai, C. H. Chen, L. Y. Chang, V. M. Hiltunen, J. J. Manninen, W. Y. Woon, and M. Pettersson, “Optical Forging of Graphene into Three-Dimensional Shapes,” Nano Lett. 17(10), 6469–6474 (2017).
[Crossref] [PubMed]

Chen, C. H.

A. Johansson, P. Myllyperkiö, P. Koskinen, J. Aumanen, J. Koivistoinen, H. C. Tsai, C. H. Chen, L. Y. Chang, V. M. Hiltunen, J. J. Manninen, W. Y. Woon, and M. Pettersson, “Optical Forging of Graphene into Three-Dimensional Shapes,” Nano Lett. 17(10), 6469–6474 (2017).
[Crossref] [PubMed]

Chen, C. S.

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Chen, Y. P.

Cheng, X. X.

L. B. Zhong, J. Yin, Y. M. Zheng, Q. Liu, X. X. Cheng, and F. H. Luo, “Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates,” Anal. Chem. 86(13), 6262–6267 (2014).
[Crossref] [PubMed]

Chi, M.

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[Crossref] [PubMed]

Chu, J. Y.

Crampton, K. T.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

Dai, Z.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Dai, Z. G.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Z. G. Dai, F. Mei, X. H. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. S. Guo, X. Y. Zhao, W. Li, F. Ren, and C. Jiang, “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Delville, M.

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. Delville, and R. Oda, “Gold Nanoparticle Deposition on Silica Nanohelices: A New Controllable 3D Substrate in Aqueous Suspension for Optical Sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[Crossref]

Deva, D.

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Dey, S.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Dimiev, A. M.

A. M. Dimiev and J. M. Tour, “Mechanism of graphene oxide formation,” ACS Nano 8(3), 3060–3068 (2014).
[Crossref] [PubMed]

Dresselhaus, M. S.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Dunne, N. J.

C. P. Hagan, J. F. Orr, C. A. Mitchell, and N. J. Dunne, “Real time monitoring of the polymerisation of PMMA bone cement using Raman spectroscopy,” J. Mater. Sci. Mater. Med. 20(12), 2427–2431 (2009).
[Crossref] [PubMed]

El-Khoury, P. Z.

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Scattering of a Single Nanodumbbell: Dibenzyldithio-Linked Silver Nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Ersen, O.

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. Delville, and R. Oda, “Gold Nanoparticle Deposition on Silica Nanohelices: A New Controllable 3D Substrate in Aqueous Suspension for Optical Sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[Crossref]

Esteban, R.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3(825), 825 (2012).
[Crossref] [PubMed]

Etchegoin, P. G.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Fan, B.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of Nanostructures with Poly(methyl methacrylate)-Mediated Nanotransfer Printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Fan, Q.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Fast, A. S.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Ferrari, A. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Fishman, D. A.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Fu, L.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Z. G. Dai, F. Mei, X. H. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. S. Guo, X. Y. Zhao, W. Li, F. Ren, and C. Jiang, “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Galperin, M.

M. Banik, V. A. Apkarian, T.-H. Park, and M. Galperin, “Raman Staircase in Charge Transfer SERS at the Junction of Fusing Nanospheres,” J. Phys. Chem. Lett. 4(1), 88–92 (2013).
[Crossref] [PubMed]

Gao, C.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[Crossref] [PubMed]

Gao, S.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

B. Man, S. Xu, S. Jiang, A. Liu, S. Gao, C. Zhang, H. Qiu, and Z. Li, “Graphene-Based Flexible and Transparent Tunable Capacitors,” Nanoscale Res. Lett. 10(1), 279 (2015).
[Crossref] [PubMed]

Gao, S. S.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Gao, X. G.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat. Biol. Chem. 258, 163–171 (2018).

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Geim, A. K.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Ghosh, A.

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

Guarrottxena, N.

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Guarrotxena, N.

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Scattering of a Single Nanodumbbell: Dibenzyldithio-Linked Silver Nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

Guo, S. S.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Z. G. Dai, F. Mei, X. H. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. S. Guo, X. Y. Zhao, W. Li, F. Ren, and C. Jiang, “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Guselnikova, O.

O. Guselnikova, D. P. Postnikov, Y. Kalachyova, D. Z. Kolska, M. Libansky, P. J. Zima, P. V. Svorcik, and D. O. Lyutakov, “Large-Scale, Ultrasensitive, Highly Reproducible and Reusable Smart SERS Platform Based on PNIPAm-Grafted Gold Grating,” Chem. Nano Mat. 3(2), 135–144 (2017).

Hagan, C. P.

C. P. Hagan, J. F. Orr, C. A. Mitchell, and N. J. Dunne, “Real time monitoring of the polymerisation of PMMA bone cement using Raman spectroscopy,” J. Mater. Sci. Mater. Med. 20(12), 2427–2431 (2009).
[Crossref] [PubMed]

Haque, S.

S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, and T. Ryhänen, “Ultrafast graphene oxide humidity sensors,” ACS Nano 7(12), 11166–11173 (2013).
[Crossref] [PubMed]

Harris, N.

S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, and T. Ryhänen, “Ultrafast graphene oxide humidity sensors,” ACS Nano 7(12), 11166–11173 (2013).
[Crossref] [PubMed]

He, D.

D. He, B. Hu, Q. F. Yao, K. Wang, and S. H. Yu, “Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles,” ACS Nano 3(12), 3993–4002 (2009).
[Crossref] [PubMed]

Hersam, M. C.

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, “Recent Advances in Tip-Enhanced Raman Spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref] [PubMed]

Hiltunen, V. M.

A. Johansson, P. Myllyperkiö, P. Koskinen, J. Aumanen, J. Koivistoinen, H. C. Tsai, C. H. Chen, L. Y. Chang, V. M. Hiltunen, J. J. Manninen, W. Y. Woon, and M. Pettersson, “Optical Forging of Graphene into Three-Dimensional Shapes,” Nano Lett. 17(10), 6469–6474 (2017).
[Crossref] [PubMed]

Hu, B.

D. He, B. Hu, Q. F. Yao, K. Wang, and S. H. Yu, “Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles,” ACS Nano 3(12), 3993–4002 (2009).
[Crossref] [PubMed]

Hu, Y.

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[Crossref] [PubMed]

Hulkko, E.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Huo, Y. Y.

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jerabek, V.

Y. Kalachyova, D. Mares, V. Jerabek, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles,” Phys. Chem. Chem. Phys. 19(22), 14761–14769 (2017).
[Crossref] [PubMed]

Jhuang, P. J.

Jiang, C.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Z. G. Dai, F. Mei, X. H. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. S. Guo, X. Y. Zhao, W. Li, F. Ren, and C. Jiang, “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Jiang, C. Z.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Jiang, N.

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, “Recent Advances in Tip-Enhanced Raman Spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref] [PubMed]

Jiang, S.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

B. Man, S. Xu, S. Jiang, A. Liu, S. Gao, C. Zhang, H. Qiu, and Z. Li, “Graphene-Based Flexible and Transparent Tunable Capacitors,” Nanoscale Res. Lett. 10(1), 279 (2015).
[Crossref] [PubMed]

Jiang, S. Z.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat. Biol. Chem. 258, 163–171 (2018).

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sensor. Actuat. Biol. Chem. 251, 127–133 (2017).

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Jiao, L.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of Nanostructures with Poly(methyl methacrylate)-Mediated Nanotransfer Printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Johansson, A.

A. Johansson, P. Myllyperkiö, P. Koskinen, J. Aumanen, J. Koivistoinen, H. C. Tsai, C. H. Chen, L. Y. Chang, V. M. Hiltunen, J. J. Manninen, W. Y. Woon, and M. Pettersson, “Optical Forging of Graphene into Three-Dimensional Shapes,” Nano Lett. 17(10), 6469–6474 (2017).
[Crossref] [PubMed]

Kalachyova, Y.

Y. Kalachyova, D. Mares, V. Jerabek, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles,” Phys. Chem. Chem. Phys. 19(22), 14761–14769 (2017).
[Crossref] [PubMed]

O. Guselnikova, D. P. Postnikov, Y. Kalachyova, D. Z. Kolska, M. Libansky, P. J. Zima, P. V. Svorcik, and D. O. Lyutakov, “Large-Scale, Ultrasensitive, Highly Reproducible and Reusable Smart SERS Platform Based on PNIPAm-Grafted Gold Grating,” Chem. Nano Mat. 3(2), 135–144 (2017).

Khosla, R.

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Kivioja, J.

S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, and T. Ryhänen, “Ultrafast graphene oxide humidity sensors,” ACS Nano 7(12), 11166–11173 (2013).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Koivistoinen, J.

A. Johansson, P. Myllyperkiö, P. Koskinen, J. Aumanen, J. Koivistoinen, H. C. Tsai, C. H. Chen, L. Y. Chang, V. M. Hiltunen, J. J. Manninen, W. Y. Woon, and M. Pettersson, “Optical Forging of Graphene into Three-Dimensional Shapes,” Nano Lett. 17(10), 6469–6474 (2017).
[Crossref] [PubMed]

Kolska, D. Z.

O. Guselnikova, D. P. Postnikov, Y. Kalachyova, D. Z. Kolska, M. Libansky, P. J. Zima, P. V. Svorcik, and D. O. Lyutakov, “Large-Scale, Ultrasensitive, Highly Reproducible and Reusable Smart SERS Platform Based on PNIPAm-Grafted Gold Grating,” Chem. Nano Mat. 3(2), 135–144 (2017).

Kong, J.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Koskinen, P.

A. Johansson, P. Myllyperkiö, P. Koskinen, J. Aumanen, J. Koivistoinen, H. C. Tsai, C. H. Chen, L. Y. Chang, V. M. Hiltunen, J. J. Manninen, W. Y. Woon, and M. Pettersson, “Optical Forging of Graphene into Three-Dimensional Shapes,” Nano Lett. 17(10), 6469–6474 (2017).
[Crossref] [PubMed]

Kumar, P.

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Kumar, R.

R. Ahmad and R. Kumar, “Adsorption studies of hazardous malachite green onto treated ginger waste,” J. Environ. Manage. 91(4), 1032–1038 (2010).
[Crossref] [PubMed]

Kumar, S.

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

Ladani, F. T.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

Lapcak, L.

Y. Kalachyova, D. Mares, V. Jerabek, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles,” Phys. Chem. Chem. Phys. 19(22), 14761–14769 (2017).
[Crossref] [PubMed]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Le Ru, E. C.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Lecomte, S.

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. Delville, and R. Oda, “Gold Nanoparticle Deposition on Silica Nanohelices: A New Controllable 3D Substrate in Aqueous Suspension for Optical Sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[Crossref]

Li, C. H.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat. Biol. Chem. 258, 163–171 (2018).

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sensor. Actuat. Biol. Chem. 251, 127–133 (2017).

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Li, H.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Li, W.

Z. G. Dai, F. Mei, X. H. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. S. Guo, X. Y. Zhao, W. Li, F. Ren, and C. Jiang, “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Li, Z.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sensor. Actuat. Biol. Chem. 251, 127–133 (2017).

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sensor. Actuat. Biol. Chem. 251, 127–133 (2017).

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

B. Man, S. Xu, S. Jiang, A. Liu, S. Gao, C. Zhang, H. Qiu, and Z. Li, “Graphene-Based Flexible and Transparent Tunable Capacitors,” Nanoscale Res. Lett. 10(1), 279 (2015).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liang, O.

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. H. Xie, “Ultrasensitive Graphene-Plasmonic Hybrid Platform for Label-Free Detection,” Adv. Mater. 25(35), 4918–4924 (2013).
[Crossref] [PubMed]

Liao, J. D.

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensor. Actuat. Biol. Chem. 207, 430–436 (2015).

Liao, L.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Z. G. Dai, F. Mei, X. H. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. S. Guo, X. Y. Zhao, W. Li, F. Ren, and C. Jiang, “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Libansky, M.

O. Guselnikova, D. P. Postnikov, Y. Kalachyova, D. Z. Kolska, M. Libansky, P. J. Zima, P. V. Svorcik, and D. O. Lyutakov, “Large-Scale, Ultrasensitive, Highly Reproducible and Reusable Smart SERS Platform Based on PNIPAm-Grafted Gold Grating,” Chem. Nano Mat. 3(2), 135–144 (2017).

Lin, D. Z.

Ling, X.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Liu, A.

B. Man, S. Xu, S. Jiang, A. Liu, S. Gao, C. Zhang, H. Qiu, and Z. Li, “Graphene-Based Flexible and Transparent Tunable Capacitors,” Nanoscale Res. Lett. 10(1), 279 (2015).
[Crossref] [PubMed]

Liu, A. H.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sensor. Actuat. Biol. Chem. 251, 127–133 (2017).

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liu, B. H.

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensor. Actuat. Biol. Chem. 207, 430–436 (2015).

Liu, H.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Liu, K.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Liu, M.

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Liu, Q.

L. B. Zhong, J. Yin, Y. M. Zheng, Q. Liu, X. X. Cheng, and F. H. Luo, “Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates,” Anal. Chem. 86(13), 6262–6267 (2014).
[Crossref] [PubMed]

Liu, X. Y.

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liu, Y. J.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat. Biol. Chem. 258, 163–171 (2018).

Liu, Z.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of Nanostructures with Poly(methyl methacrylate)-Mediated Nanotransfer Printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Luo, F. H.

L. B. Zhong, J. Yin, Y. M. Zheng, Q. Liu, X. X. Cheng, and F. H. Luo, “Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates,” Anal. Chem. 86(13), 6262–6267 (2014).
[Crossref] [PubMed]

Luo, S. C.

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensor. Actuat. Biol. Chem. 207, 430–436 (2015).

Lyutakov, D. O.

O. Guselnikova, D. P. Postnikov, Y. Kalachyova, D. Z. Kolska, M. Libansky, P. J. Zima, P. V. Svorcik, and D. O. Lyutakov, “Large-Scale, Ultrasensitive, Highly Reproducible and Reusable Smart SERS Platform Based on PNIPAm-Grafted Gold Grating,” Chem. Nano Mat. 3(2), 135–144 (2017).

Lyutakov, O.

Y. Kalachyova, D. Mares, V. Jerabek, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles,” Phys. Chem. Chem. Phys. 19(22), 14761–14769 (2017).
[Crossref] [PubMed]

Man, B.

B. Man, S. Xu, S. Jiang, A. Liu, S. Gao, C. Zhang, H. Qiu, and Z. Li, “Graphene-Based Flexible and Transparent Tunable Capacitors,” Nanoscale Res. Lett. 10(1), 279 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Man, B. Y.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat. Biol. Chem. 258, 163–171 (2018).

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sensor. Actuat. Biol. Chem. 251, 127–133 (2017).

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Manninen, J. J.

A. Johansson, P. Myllyperkiö, P. Koskinen, J. Aumanen, J. Koivistoinen, H. C. Tsai, C. H. Chen, L. Y. Chang, V. M. Hiltunen, J. J. Manninen, W. Y. Woon, and M. Pettersson, “Optical Forging of Graphene into Three-Dimensional Shapes,” Nano Lett. 17(10), 6469–6474 (2017).
[Crossref] [PubMed]

Mares, D.

Y. Kalachyova, D. Mares, V. Jerabek, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles,” Phys. Chem. Chem. Phys. 19(22), 14761–14769 (2017).
[Crossref] [PubMed]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Mei, F.

Z. G. Dai, F. Mei, X. H. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. S. Guo, X. Y. Zhao, W. Li, F. Ren, and C. Jiang, “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Meyer, M.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Mitchell, C. A.

C. P. Hagan, J. F. Orr, C. A. Mitchell, and N. J. Dunne, “Real time monitoring of the polymerisation of PMMA bone cement using Raman spectroscopy,” J. Mater. Sci. Mater. Med. 20(12), 2427–2431 (2009).
[Crossref] [PubMed]

Moldovan, S.

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. Delville, and R. Oda, “Gold Nanoparticle Deposition on Silica Nanohelices: A New Controllable 3D Substrate in Aqueous Suspension for Optical Sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[Crossref]

Moskovits, M.

M. Moskovits, “Persistent misconceptions regarding SERS,” Phys. Chem. Chem. Phys. 15(15), 5301–5311 (2013).
[Crossref] [PubMed]

Myllyperkiö, P.

A. Johansson, P. Myllyperkiö, P. Koskinen, J. Aumanen, J. Koivistoinen, H. C. Tsai, C. H. Chen, L. Y. Chang, V. M. Hiltunen, J. J. Manninen, W. Y. Woon, and M. Pettersson, “Optical Forging of Graphene into Three-Dimensional Shapes,” Nano Lett. 17(10), 6469–6474 (2017).
[Crossref] [PubMed]

Nag, A.

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Scattering of a Single Nanodumbbell: Dibenzyldithio-Linked Silver Nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nordlander, P.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3(825), 825 (2012).
[Crossref] [PubMed]

Novoselov, K. S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Oda, R.

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. Delville, and R. Oda, “Gold Nanoparticle Deposition on Silica Nanohelices: A New Controllable 3D Substrate in Aqueous Suspension for Optical Sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[Crossref]

Orr, J. F.

C. P. Hagan, J. F. Orr, C. A. Mitchell, and N. J. Dunne, “Real time monitoring of the polymerisation of PMMA bone cement using Raman spectroscopy,” J. Mater. Sci. Mater. Med. 20(12), 2427–2431 (2009).
[Crossref] [PubMed]

Paria, D.

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

Park, T.-H.

M. Banik, V. A. Apkarian, T.-H. Park, and M. Galperin, “Raman Staircase in Charge Transfer SERS at the Junction of Fusing Nanospheres,” J. Phys. Chem. Lett. 4(1), 88–92 (2013).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Pettersson, M.

A. Johansson, P. Myllyperkiö, P. Koskinen, J. Aumanen, J. Koivistoinen, H. C. Tsai, C. H. Chen, L. Y. Chang, V. M. Hiltunen, J. J. Manninen, W. Y. Woon, and M. Pettersson, “Optical Forging of Graphene into Three-Dimensional Shapes,” Nano Lett. 17(10), 6469–6474 (2017).
[Crossref] [PubMed]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Postnikov, D. P.

O. Guselnikova, D. P. Postnikov, Y. Kalachyova, D. Z. Kolska, M. Libansky, P. J. Zima, P. V. Svorcik, and D. O. Lyutakov, “Large-Scale, Ultrasensitive, Highly Reproducible and Reusable Smart SERS Platform Based on PNIPAm-Grafted Gold Grating,” Chem. Nano Mat. 3(2), 135–144 (2017).

Potma, E. O.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Pozzi, E. A.

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, “Recent Advances in Tip-Enhanced Raman Spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref] [PubMed]

Qiu, H.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

B. Man, S. Xu, S. Jiang, A. Liu, S. Gao, C. Zhang, H. Qiu, and Z. Li, “Graphene-Based Flexible and Transparent Tunable Capacitors,” Nanoscale Res. Lett. 10(1), 279 (2015).
[Crossref] [PubMed]

Qiu, H. W.

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Raghavan, S.

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

Reich, N. O.

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

Ren, F.

Z. G. Dai, F. Mei, X. H. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. S. Guo, X. Y. Zhao, W. Li, F. Ren, and C. Jiang, “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Rodriguez Perez, A.

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Scattering of a Single Nanodumbbell: Dibenzyldithio-Linked Silver Nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

Rodriguez-Perez, A.

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Roy, K.

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

Ryhänen, T.

S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, and T. Ryhänen, “Ultrafast graphene oxide humidity sensors,” ACS Nano 7(12), 11166–11173 (2013).
[Crossref] [PubMed]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Schroeder, T.

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. H. Xie, “Ultrasensitive Graphene-Plasmonic Hybrid Platform for Label-Free Detection,” Adv. Mater. 25(35), 4918–4924 (2013).
[Crossref] [PubMed]

Shan, C. X.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Sharma, S. K.

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Shi, Y.

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

Si, S.

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. Delville, and R. Oda, “Gold Nanoparticle Deposition on Silica Nanohelices: A New Controllable 3D Substrate in Aqueous Suspension for Optical Sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[Crossref]

Singh, H. J.

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

Sivashanmugan, K.

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensor. Actuat. Biol. Chem. 207, 430–436 (2015).

Soni, M.

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Sonntag, M. D.

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, “Recent Advances in Tip-Enhanced Raman Spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref] [PubMed]

Spigone, E.

S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, and T. Ryhänen, “Ultrafast graphene oxide humidity sensors,” ACS Nano 7(12), 11166–11173 (2013).
[Crossref] [PubMed]

Stucky, G.

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

Sun, M. T.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Sun, X.

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

Sun, Z. C.

Svorcik, P. V.

O. Guselnikova, D. P. Postnikov, Y. Kalachyova, D. Z. Kolska, M. Libansky, P. J. Zima, P. V. Svorcik, and D. O. Lyutakov, “Large-Scale, Ultrasensitive, Highly Reproducible and Reusable Smart SERS Platform Based on PNIPAm-Grafted Gold Grating,” Chem. Nano Mat. 3(2), 135–144 (2017).

Svorcik, V.

Y. Kalachyova, D. Mares, V. Jerabek, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles,” Phys. Chem. Chem. Phys. 19(22), 14761–14769 (2017).
[Crossref] [PubMed]

Tamoto, R.

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. Delville, and R. Oda, “Gold Nanoparticle Deposition on Silica Nanohelices: A New Controllable 3D Substrate in Aqueous Suspension for Optical Sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[Crossref]

Tour, J. M.

A. M. Dimiev and J. M. Tour, “Mechanism of graphene oxide formation,” ACS Nano 8(3), 3060–3068 (2014).
[Crossref] [PubMed]

Tsai, H. C.

A. Johansson, P. Myllyperkiö, P. Koskinen, J. Aumanen, J. Koivistoinen, H. C. Tsai, C. H. Chen, L. Y. Chang, V. M. Hiltunen, J. J. Manninen, W. Y. Woon, and M. Pettersson, “Optical Forging of Graphene into Three-Dimensional Shapes,” Nano Lett. 17(10), 6469–6474 (2017).
[Crossref] [PubMed]

Ulbrich, P.

Y. Kalachyova, D. Mares, V. Jerabek, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles,” Phys. Chem. Chem. Phys. 19(22), 14761–14769 (2017).
[Crossref] [PubMed]

Van Duyne, R. P.

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, “Recent Advances in Tip-Enhanced Raman Spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Wang, J.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Z. G. Dai, F. Mei, X. H. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. S. Guo, X. Y. Zhao, W. Li, F. Ren, and C. Jiang, “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Wang, J. K.

Wang, K.

D. He, B. Hu, Q. F. Yao, K. Wang, and S. H. Yu, “Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles,” ACS Nano 3(12), 3993–4002 (2009).
[Crossref] [PubMed]

Wang, M.

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[Crossref] [PubMed]

Wang, M. H.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sensor. Actuat. Biol. Chem. 251, 127–133 (2017).

Wang, P.

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. H. Xie, “Ultrasensitive Graphene-Plasmonic Hybrid Platform for Label-Free Detection,” Adv. Mater. 25(35), 4918–4924 (2013).
[Crossref] [PubMed]

Wang, X.

C. Xu and X. Wang, “Fabrication of Flexible Metal-Nanoparticle Films Using Graphene Oxide Sheets as Substrates,” Small 5(19), 2212–2217 (2009).
[Crossref] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wei, D.

S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, and T. Ryhänen, “Ultrafast graphene oxide humidity sensors,” ACS Nano 7(12), 11166–11173 (2013).
[Crossref] [PubMed]

Wei, J.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Wei, Q.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

White, R.

S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, and T. Ryhänen, “Ultrafast graphene oxide humidity sensors,” ACS Nano 7(12), 11166–11173 (2013).
[Crossref] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Woon, W. Y.

A. Johansson, P. Myllyperkiö, P. Koskinen, J. Aumanen, J. Koivistoinen, H. C. Tsai, C. H. Chen, L. Y. Chang, V. M. Hiltunen, J. J. Manninen, W. Y. Woon, and M. Pettersson, “Optical Forging of Graphene into Three-Dimensional Shapes,” Nano Lett. 17(10), 6469–6474 (2017).
[Crossref] [PubMed]

Wu, W.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Z. G. Dai, F. Mei, X. H. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. S. Guo, X. Y. Zhao, W. Li, F. Ren, and C. Jiang, “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Wu, Z.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of Nanostructures with Poly(methyl methacrylate)-Mediated Nanotransfer Printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Xian, X.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of Nanostructures with Poly(methyl methacrylate)-Mediated Nanotransfer Printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Xiao, J.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Xiao, X.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Xiao, X. H.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Z. G. Dai, F. Mei, X. H. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. S. Guo, X. Y. Zhao, W. Li, F. Ren, and C. Jiang, “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Xie, Y. H.

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. H. Xie, “Ultrasensitive Graphene-Plasmonic Hybrid Platform for Label-Free Detection,” Adv. Mater. 25(35), 4918–4924 (2013).
[Crossref] [PubMed]

Xu, C.

C. Xu and X. Wang, “Fabrication of Flexible Metal-Nanoparticle Films Using Graphene Oxide Sheets as Substrates,” Small 5(19), 2212–2217 (2009).
[Crossref] [PubMed]

Xu, H.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Xu, S.

B. Man, S. Xu, S. Jiang, A. Liu, S. Gao, C. Zhang, H. Qiu, and Z. Li, “Graphene-Based Flexible and Transparent Tunable Capacitors,” Nanoscale Res. Lett. 10(1), 279 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Xu, S. C.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat. Biol. Chem. 258, 163–171 (2018).

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sensor. Actuat. Biol. Chem. 251, 127–133 (2017).

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Xu, W.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Xu, Y. Y.

Yampolsky, S.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Yang, C.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat. Biol. Chem. 258, 163–171 (2018).

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Yang, Z.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Yao, C. K.

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensor. Actuat. Biol. Chem. 207, 430–436 (2015).

Yao, Q. F.

D. He, B. Hu, Q. F. Yao, K. Wang, and S. H. Yu, “Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles,” ACS Nano 3(12), 3993–4002 (2009).
[Crossref] [PubMed]

Yeh, J. T.

Yin, J.

L. B. Zhong, J. Yin, Y. M. Zheng, Q. Liu, X. X. Cheng, and F. H. Luo, “Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates,” Anal. Chem. 86(13), 6262–6267 (2014).
[Crossref] [PubMed]

Yin, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[Crossref] [PubMed]

Ying, J. J.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Yu, J.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat. Biol. Chem. 258, 163–171 (2018).

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sensor. Actuat. Biol. Chem. 251, 127–133 (2017).

Yu, S. H.

D. He, B. Hu, Q. F. Yao, K. Wang, and S. H. Yu, “Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles,” ACS Nano 3(12), 3993–4002 (2009).
[Crossref] [PubMed]

Zeytunyan, A.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

Zhang, C.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat. Biol. Chem. 258, 163–171 (2018).

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sensor. Actuat. Biol. Chem. 251, 127–133 (2017).

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

B. Man, S. Xu, S. Jiang, A. Liu, S. Gao, C. Zhang, H. Qiu, and Z. Li, “Graphene-Based Flexible and Transparent Tunable Capacitors,” Nanoscale Res. Lett. 10(1), 279 (2015).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

Zhang, J.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of Nanostructures with Poly(methyl methacrylate)-Mediated Nanotransfer Printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Zhang, L.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Zhang, W.

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. H. Xie, “Ultrasensitive Graphene-Plasmonic Hybrid Platform for Label-Free Detection,” Adv. Mater. 25(35), 4918–4924 (2013).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Zhang, Y.

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

Zhang, Y. P.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Zhao, D.

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

Zhao, X. Y.

Z. G. Dai, F. Mei, X. H. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. S. Guo, X. Y. Zhao, W. Li, F. Ren, and C. Jiang, “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Zheng, H.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Zheng, Y. M.

L. B. Zhong, J. Yin, Y. M. Zheng, Q. Liu, X. X. Cheng, and F. H. Luo, “Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates,” Anal. Chem. 86(13), 6262–6267 (2014).
[Crossref] [PubMed]

Zhong, L. B.

L. B. Zhong, J. Yin, Y. M. Zheng, Q. Liu, X. X. Cheng, and F. H. Luo, “Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates,” Anal. Chem. 86(13), 6262–6267 (2014).
[Crossref] [PubMed]

Zima, P. J.

O. Guselnikova, D. P. Postnikov, Y. Kalachyova, D. Z. Kolska, M. Libansky, P. J. Zima, P. V. Svorcik, and D. O. Lyutakov, “Large-Scale, Ultrasensitive, Highly Reproducible and Reusable Smart SERS Platform Based on PNIPAm-Grafted Gold Grating,” Chem. Nano Mat. 3(2), 135–144 (2017).

ACS Appl. Mater. Interfaces (1)

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

ACS Nano (4)

S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, and T. Ryhänen, “Ultrafast graphene oxide humidity sensors,” ACS Nano 7(12), 11166–11173 (2013).
[Crossref] [PubMed]

A. M. Dimiev and J. M. Tour, “Mechanism of graphene oxide formation,” ACS Nano 8(3), 3060–3068 (2014).
[Crossref] [PubMed]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

D. He, B. Hu, Q. F. Yao, K. Wang, and S. H. Yu, “Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles,” ACS Nano 3(12), 3993–4002 (2009).
[Crossref] [PubMed]

Adv. Mater. (2)

D. Paria, K. Roy, H. J. Singh, S. Kumar, S. Raghavan, A. Ghosh, and A. Ghosh, “Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers,” Adv. Mater. 27(10), 1751–1758 (2015).
[Crossref] [PubMed]

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. H. Xie, “Ultrasensitive Graphene-Plasmonic Hybrid Platform for Label-Free Detection,” Adv. Mater. 25(35), 4918–4924 (2013).
[Crossref] [PubMed]

Anal. Chem. (1)

L. B. Zhong, J. Yin, Y. M. Zheng, Q. Liu, X. X. Cheng, and F. H. Luo, “Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates,” Anal. Chem. 86(13), 6262–6267 (2014).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Z. G. Dai, F. Mei, X. H. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. S. Guo, X. Y. Zhao, W. Li, F. Ren, and C. Jiang, “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering,” Appl. Phys. Lett. 105(3), 033515 (2014).
[Crossref]

Appl. Surf. Sci. (1)

C. Zhang, B. Y. Man, S. Z. Jiang, C. Yang, M. Liu, C. S. Chen, S. C. Xu, H. W. Qiu, and Z. Li, “SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure,” Appl. Surf. Sci. 347, 668–672 (2015).
[Crossref]

Chem. Nano Mat. (1)

O. Guselnikova, D. P. Postnikov, Y. Kalachyova, D. Z. Kolska, M. Libansky, P. J. Zima, P. V. Svorcik, and D. O. Lyutakov, “Large-Scale, Ultrasensitive, Highly Reproducible and Reusable Smart SERS Platform Based on PNIPAm-Grafted Gold Grating,” Chem. Nano Mat. 3(2), 135–144 (2017).

J. Alloys Compd. (1)

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

J. Am. Chem. Soc. (3)

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of Nanostructures with Poly(methyl methacrylate)-Mediated Nanotransfer Printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[Crossref] [PubMed]

F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao, and G. Stucky, “Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles,” J. Am. Chem. Soc. 132(9), 2850–2851 (2010).
[Crossref] [PubMed]

J. Environ. Manage. (1)

R. Ahmad and R. Kumar, “Adsorption studies of hazardous malachite green onto treated ginger waste,” J. Environ. Manage. 91(4), 1032–1038 (2010).
[Crossref] [PubMed]

J. Mater. Sci. Mater. Med. (1)

C. P. Hagan, J. F. Orr, C. A. Mitchell, and N. J. Dunne, “Real time monitoring of the polymerisation of PMMA bone cement using Raman spectroscopy,” J. Mater. Sci. Mater. Med. 20(12), 2427–2431 (2009).
[Crossref] [PubMed]

J. Phys. Chem. C (4)

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. Delville, and R. Oda, “Gold Nanoparticle Deposition on Silica Nanohelices: A New Controllable 3D Substrate in Aqueous Suspension for Optical Sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[Crossref]

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Scattering of a Single Nanodumbbell: Dibenzyldithio-Linked Silver Nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

J. Phys. Chem. Lett. (2)

M. Banik, V. A. Apkarian, T.-H. Park, and M. Galperin, “Raman Staircase in Charge Transfer SERS at the Junction of Fusing Nanospheres,” J. Phys. Chem. Lett. 4(1), 88–92 (2013).
[Crossref] [PubMed]

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, “Recent Advances in Tip-Enhanced Raman Spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref] [PubMed]

Light Sci. Appl. (1)

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4(10), e342 (2015).
[Crossref]

Nano Lett. (2)

A. Johansson, P. Myllyperkiö, P. Koskinen, J. Aumanen, J. Koivistoinen, H. C. Tsai, C. H. Chen, L. Y. Chang, V. M. Hiltunen, J. J. Manninen, W. Y. Woon, and M. Pettersson, “Optical Forging of Graphene into Three-Dimensional Shapes,” Nano Lett. 17(10), 6469–6474 (2017).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Nanoscale (1)

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

B. Man, S. Xu, S. Jiang, A. Liu, S. Gao, C. Zhang, H. Qiu, and Z. Li, “Graphene-Based Flexible and Transparent Tunable Capacitors,” Nanoscale Res. Lett. 10(1), 279 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3(825), 825 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Opt. Express (2)

Phys. Chem. Chem. Phys. (2)

M. Moskovits, “Persistent misconceptions regarding SERS,” Phys. Chem. Chem. Phys. 15(15), 5301–5311 (2013).
[Crossref] [PubMed]

Y. Kalachyova, D. Mares, V. Jerabek, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, “Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles,” Phys. Chem. Chem. Phys. 19(22), 14761–14769 (2017).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Sensor. Actuat. Biol. Chem. (4)

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sensor. Actuat. Biol. Chem. 258, 163–171 (2018).

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sensor. Actuat. Biol. Chem. 251, 127–133 (2017).

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensor. Actuat. Biol. Chem. 207, 430–436 (2015).

P. Kumar, R. Khosla, M. Soni, D. Deva, and S. K. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Small (1)

C. Xu and X. Wang, “Fabrication of Flexible Metal-Nanoparticle Films Using Graphene Oxide Sheets as Substrates,” Small 5(19), 2212–2217 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 A diagram illustrating the synthesis procedure of GO/AgNPs/pyramid PMMA 3D flexible SERS substrate.
Fig. 2
Fig. 2 (a) and (b) are the SEM image of PSi substrate and PMMA/PSi substrate respectively. (c) SEM image of Ag nanoparticles deposited on the silicon wafer. (d) The size distribution of AgNPs. (e) and (f) are respectively the SEM of the AgNPs/pyramid PMMA substrate and GO/AgNPs/pyramid PMMA substrate. The insert of (f) is SERS spectrum of the GO film on the GO/AgNPs/ pyramid PMMA substrate.
Fig. 3
Fig. 3 (a-f) SEM image of AgNPs with different concentrations at 0.2, 0.8, 1.0, 1.1, 1.15 g/ml respectively on the PMMA/PSi substrate. The insert of (a-f) is respectively the photo of the corresponding colloid concentration.
Fig. 4
Fig. 4 (a) SERS spectra of R6G (10−7 M) on the AgNPs/PMMA/PSi substrates fabricated with different colloidal concentrations. (b) The intensity of R6G peak at 613 cm−1 changes as a function of colloidal concentration.
Fig. 5
Fig. 5 (a) SERS spectra of R6G with concentrations from 10−8 to 10−16 M on the AgNPs/PMMA/PSi substrates. (b) The intensity of R6G peak at 613 cm−1 changes as a function of R6G molecule concentration on the AgNPs/PMMA/PSi substrates. (c) SERS spectra of R6G with concentrations from 10−5 to 10−13 M on the AgNPs/ pyramid PMMA substrates. (d) The intensity of R6G peak at 613 cm−1 changes as a function of R6G molecule concentration on the AgNPs/pyramid PMMA substrates. (e) The Raman spectra of R6G molecule with 10−8 M on the AgNPs/PMMA/PSi substrate and the AgNPs/pyramid PMMA substrate. (f) The average value of the intensity of R6G peaks at 613 cm−1 on these two kinds of substrates.
Fig. 6
Fig. 6 (a) SERS spectra of R6G with concentrations from 10−5 to 10−13 M on the GO/AgNPs/pyramid PMMA substrates. (b) The intensity of R6G peak at 613 cm−1 changes as a function of R6G molecule concentration on the GO/AgNPs/pyramid PMMA substrates. (c) and (e) are respectively the SERS spectra of R6G (10−6 M) from 15 spots dispensed on three AgNPs/pyramid PMMA substrates and three GO/AgNPs/pyramid PMMA substrates. (d) and (f) are respectively illustrate the intensity distribution of R6G peaks from 15 spots. The red lines represent the average intensity of R6G peaks at 613 cm−1 from 15 spots.
Fig. 7
Fig. 7 Measured Raman spectra from freshly fabricated (a) AgNPs/pyramid PMMA substrate and (b) GO/AgNPs/pyramid PMMA substrate and those exposed to ambient air for a month. (c) Average value of the intensity of R6G peaks at 613 cm−1 from freshly fabricated two samples and those exposed to ambient air for a month.
Fig. 8
Fig. 8 (a) and (b) are the photos of the in situ detection of the MG on shrimp surface. (c) SERS spectra of MG on shrimp surface.
Fig. 9
Fig. 9 (a) SERS spectrum of the GO film on the silicon wafer. (b) SERS spectra of R6G (10−16 M) on the AgNPs/PMMA/PSi substrate. (c) SERS spectra of R6G (10−13 M) on the AgNPs/pyramid PMMA substrate. (d) SERS spectra of R6G with concentrations from 10−10 to 10−13 M on the GO/AgNPs/pyramid PMMA substrate.
Fig. 10
Fig. 10 (a) Raman spectra of CV with concentrations from 10−5 to 10−9 M on the GO/AgNPs/pyramid PMMA substrates. (b) The intensity of CV peak at 915 cm−1 changes as a function of concentration on the GO/AgNPs/pyramid PMMA substrates.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EF= I SERS / N SERS I RS / N RS

Metrics