Abstract

Currently, most widely tunable lasers rely on an external diffraction grating to tune the laser wavelength. In this paper we present the realization of a chip-scale Vernier tunable racetrack resonator filter on the Ge-on-SOI waveguide platform that allows for wide tuning (108 nm free spectral range) in the 5 µm wavelength range without any moving parts. The fabricated racetrack resonators have a loaded Q-factor of 20000, resulting in a side-peak suppression of more than 20 dB, which is more than sufficient for wavelength selection in an external cavity laser.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared

Benedetto Troia, Ali Z. Khokhar, Milos Nedeljkovic, Jordi Soler Penades, Vittorio M. N. Passaro, and Goran Z. Mashanovich
Opt. Express 22(20) 23990-24003 (2014)

Efficient 5.2 µm wavelength fiber-to-chip grating couplers for the Ge-on-Si and Ge-on-SOI mid-infrared waveguide platform

Sanja Radosavljevic, Bart Kuyken, and Gunther Roelkens
Opt. Express 25(16) 19034-19042 (2017)

Thermally tunable quadruple Vernier racetrack resonators

Robert Boeck, Lukas Chrostowski, and Nicolas A. F. Jaeger
Opt. Lett. 38(14) 2440-2442 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” arXiv preprint arXiv: 1610.01121 (2016).
  2. L. Tombez, E. J. Zhang, J. S. Orcutt, S. Kamlapurkar, and W. M. J. Green, “Methane absorption spectroscopy on a silicon photonic chip,” Optica, 4(11), 1322–1325 (2017).
    [Crossref]
  3. P.A. Werle, “Review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Mol. Biomol. Spectrosc. 54(2), 197–236 (1998).
    [Crossref]
  4. J. Hodgkinson and R.P. Tatam, ”Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2012).
    [Crossref]
  5. M. Nedeljkovic, A.V. Velasco, A.Z. Khokhar, A. Delâge, P. Cheben, and G.Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
    [Crossref]
  6. F. Adler, P. Masłowski, A. Foltynowicz, K.C. Cossel, T.C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express,  18(21), 21861–21872 (2010).
    [Crossref] [PubMed]
  7. R.A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photon 4(8), 495–497 (2010).
    [Crossref]
  8. M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E.M.P. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Mashanovich, and G. Roelkens, “Demonstration of silicon on insulator midinfrared spectrometers operating at 3.8 um,” Opt. Express 21(10), 11659–11669 (2013).
    [Crossref] [PubMed]
  9. Z. Cheng, X. Chen, C.Y. Wong, K. Xu, and H.K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
    [Crossref]
  10. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express,  18(12), 12127–12135 (2010).
    [Crossref] [PubMed]
  11. J.M. Ramirez, V. Vakarin, C. Gilles, J. Frigerio, A. Ballabio, P. Chaisakul, X. Le Roux, C. Alonso-Ramos, G. Maisons, L. Vivien, M. Carras, G. Isella, and D. Marris-Morini, “Low-loss Ge-rich Si0.2Ge0.8 waveguides for mid-infrared photonics,” Opt. Lett. 42(1), 105–108 (2017).
    [Crossref] [PubMed]
  12. A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
    [Crossref]
  13. A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
    [Crossref]
  14. G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
    [Crossref]
  15. B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
    [Crossref] [PubMed]
  16. A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
    [Crossref] [PubMed]
  17. S. Radosavljevic, B. Kuyken, and G. Roelkens, “Efficient 5.2 µm wavelength fiber-to-chip grating couplers for the Ge-on-Si and Ge-on-SOI mid-infrared waveguide platform,” Opt. Express 25(16), 19034–19042 (2017).
    [Crossref] [PubMed]
  18. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
    [Crossref] [PubMed]
  19. I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New Journal of Physics 11(12), 125015 (2009).
    [Crossref]
  20. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” App. Phys. Lett. 97(23), 231119 (2010).
    [Crossref]
  21. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications 2, 585 (2011).
    [Crossref] [PubMed]
  22. Q. Yang, F. Fuchs, and J. Wagner, “Quantum cascade lasers (QCL) for active hyperspectral imaging,” Advanced Optical Technologies 3(2), 141–150 (2014).
    [Crossref]
  23. http://www.spectralcalc.com/spectral_browser/db_intensity.php
  24. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Reviews,  6(1), 47–73 (2012).
    [Crossref]
  25. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7062
  26. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature dependent refractive index of silicon and germanium,” arXiv preprint physics/0606168 (2006).

2017 (4)

2016 (2)

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

M. Nedeljkovic, A.V. Velasco, A.Z. Khokhar, A. Delâge, P. Cheben, and G.Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
[Crossref]

2015 (1)

2014 (2)

2013 (3)

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E.M.P. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Mashanovich, and G. Roelkens, “Demonstration of silicon on insulator midinfrared spectrometers operating at 3.8 um,” Opt. Express 21(10), 11659–11669 (2013).
[Crossref] [PubMed]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

2012 (3)

J. Hodgkinson and R.P. Tatam, ”Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2012).
[Crossref]

Z. Cheng, X. Chen, C.Y. Wong, K. Xu, and H.K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Reviews,  6(1), 47–73 (2012).
[Crossref]

2011 (1)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications 2, 585 (2011).
[Crossref] [PubMed]

2010 (4)

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” App. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express,  18(12), 12127–12135 (2010).
[Crossref] [PubMed]

F. Adler, P. Masłowski, A. Foltynowicz, K.C. Cossel, T.C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express,  18(21), 21861–21872 (2010).
[Crossref] [PubMed]

R.A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photon 4(8), 495–497 (2010).
[Crossref]

2009 (1)

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New Journal of Physics 11(12), 125015 (2009).
[Crossref]

1998 (1)

P.A. Werle, “Review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Mol. Biomol. Spectrosc. 54(2), 197–236 (1998).
[Crossref]

Abell, J.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New Journal of Physics 11(12), 125015 (2009).
[Crossref]

Adler, F.

Alonso-Ramos, C.

Asher, W.

Baehr-Jones, T.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Reviews,  6(1), 47–73 (2012).
[Crossref]

Bai, Y.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” App. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

Ballabio, A.

Bandyopadhyay, N.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” App. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

Ben Masaud, T.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

Bewley, W. W.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New Journal of Physics 11(12), 125015 (2009).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Reviews,  6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Reviews,  6(1), 47–73 (2012).
[Crossref]

Briles, T.C.

Canedy, C. L.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New Journal of Physics 11(12), 125015 (2009).
[Crossref]

Cao, W.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

Carras, M.

Chaisakul, P.

Cheben, P.

M. Nedeljkovic, A.V. Velasco, A.Z. Khokhar, A. Delâge, P. Cheben, and G.Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
[Crossref]

Chen, X.

Cheng, Z.

Z. Cheng, X. Chen, C.Y. Wong, K. Xu, and H.K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

Chong, H. M. H.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Reviews,  6(1), 47–73 (2012).
[Crossref]

Cossel, K.C.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Reviews,  6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Reviews,  6(1), 47–73 (2012).
[Crossref]

Delâge, A.

M. Nedeljkovic, A.V. Velasco, A.Z. Khokhar, A. Delâge, P. Cheben, and G.Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Reviews,  6(1), 47–73 (2012).
[Crossref]

Dwivedi, S.

Foltynowicz, A.

Frey, B. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature dependent refractive index of silicon and germanium,” arXiv preprint physics/0606168 (2006).

Frigerio, J.

Fuchs, F.

Q. Yang, F. Fuchs, and J. Wagner, “Quantum cascade lasers (QCL) for active hyperspectral imaging,” Advanced Optical Technologies 3(2), 141–150 (2014).
[Crossref]

Gaeta, A. L.

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” arXiv preprint arXiv: 1610.01121 (2016).

Gardes, F. Y.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

Gilles, C.

Green, W. M. J.

Griffith, A. G.

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” arXiv preprint arXiv: 1610.01121 (2016).

Hartl, I.

Heydari, D.

Hochberg, M.

Hodgkinson, J.

J. Hodgkinson and R.P. Tatam, ”Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2012).
[Crossref]

Ilic, R.

Isella, G.

Kamlapurkar, S.

Khokhar, A. Z.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

Khokhar, A.Z.

M. Nedeljkovic, A.V. Velasco, A.Z. Khokhar, A. Delâge, P. Cheben, and G.Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
[Crossref]

Kim, C. S.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New Journal of Physics 11(12), 125015 (2009).
[Crossref]

Kim, M.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New Journal of Physics 11(12), 125015 (2009).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Reviews,  6(1), 47–73 (2012).
[Crossref]

Kuyken, B.

Le Roux, X.

Lepage, G.

Leviton, D. B.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature dependent refractive index of silicon and germanium,” arXiv preprint physics/0606168 (2006).

Lindle, J. R.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New Journal of Physics 11(12), 125015 (2009).
[Crossref]

Lipson, M.

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” arXiv preprint arXiv: 1610.01121 (2016).

Littlejohns, C. G.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

Loo, R.

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Lu, Q. Y.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” App. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

Madison, T. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature dependent refractive index of silicon and germanium,” arXiv preprint physics/0606168 (2006).

Maisons, G.

Malik, A.

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E.M.P. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Mashanovich, and G. Roelkens, “Demonstration of silicon on insulator midinfrared spectrometers operating at 3.8 um,” Opt. Express 21(10), 11659–11669 (2013).
[Crossref] [PubMed]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Marris-Morini, D.

Mashanovich, G.

Mashanovich, G. Z.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

Mashanovich, G.Z.

M. Nedeljkovic, A.V. Velasco, A.Z. Khokhar, A. Delâge, P. Cheben, and G.Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
[Crossref]

Maslowski, P.

Merritt, C. D.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications 2, 585 (2011).
[Crossref] [PubMed]

Meyer, J. R.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New Journal of Physics 11(12), 125015 (2009).
[Crossref]

Mitchell, C. J.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

Mittal, V.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

Muneeb, M.

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E.M.P. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Mashanovich, and G. Roelkens, “Demonstration of silicon on insulator midinfrared spectrometers operating at 3.8 um,” Opt. Express 21(10), 11659–11669 (2013).
[Crossref] [PubMed]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Nedeljkovic, M.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

M. Nedeljkovic, A.V. Velasco, A.Z. Khokhar, A. Delâge, P. Cheben, and G.Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
[Crossref]

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E.M.P. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Mashanovich, and G. Roelkens, “Demonstration of silicon on insulator midinfrared spectrometers operating at 3.8 um,” Opt. Express 21(10), 11659–11669 (2013).
[Crossref] [PubMed]

Okawachi, Y.

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” arXiv preprint arXiv: 1610.01121 (2016).

Orcutt, J. S.

Passaro, V. M.

Pathak, S.

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E.M.P. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Mashanovich, and G. Roelkens, “Demonstration of silicon on insulator midinfrared spectrometers operating at 3.8 um,” Opt. Express 21(10), 11659–11669 (2013).
[Crossref] [PubMed]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Peacock, A. C.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

Penades, J. S.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

Penkov, B.

Picqué, N.

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” arXiv preprint arXiv: 1610.01121 (2016).

Qu, Z.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

Radosavljevic, S.

Ramirez, J.M.

Razeghi, M.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” App. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

Roelkens, G.

Ryckeboer, E.M.P.

Senthil Murugan, G.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

Shimura, Y.

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Slivken, S.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” App. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

Soref, R.A.

R.A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photon 4(8), 495–497 (2010).
[Crossref]

Spott, A.

Stankovic, S.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

Tatam, R.P.

J. Hodgkinson and R.P. Tatam, ”Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2012).
[Crossref]

Tombez, L.

Troia, B.

Tsang, H.K.

Z. Cheng, X. Chen, C.Y. Wong, K. Xu, and H.K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

Vakarin, V.

Van Campenhout, J.

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E.M.P. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Mashanovich, and G. Roelkens, “Demonstration of silicon on insulator midinfrared spectrometers operating at 3.8 um,” Opt. Express 21(10), 11659–11669 (2013).
[Crossref] [PubMed]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

Van Landschoot, L.

Van Opstal, T.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Reviews,  6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Reviews,  6(1), 47–73 (2012).
[Crossref]

Vanherle, W.

Velasco, A.V.

M. Nedeljkovic, A.V. Velasco, A.Z. Khokhar, A. Delâge, P. Cheben, and G.Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
[Crossref]

Verheyen, P.

Vivien, L.

Vurgaftman, I.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications 2, 585 (2011).
[Crossref] [PubMed]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New Journal of Physics 11(12), 125015 (2009).
[Crossref]

Wagner, J.

Q. Yang, F. Fuchs, and J. Wagner, “Quantum cascade lasers (QCL) for active hyperspectral imaging,” Advanced Optical Technologies 3(2), 141–150 (2014).
[Crossref]

Werle, P.A.

P.A. Werle, “Review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Mol. Biomol. Spectrosc. 54(2), 197–236 (1998).
[Crossref]

Wilkinson, J. S.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

Wong, C.Y.

Z. Cheng, X. Chen, C.Y. Wong, K. Xu, and H.K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

Xu, K.

Z. Cheng, X. Chen, C.Y. Wong, K. Xu, and H.K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

Yang, Q.

Q. Yang, F. Fuchs, and J. Wagner, “Quantum cascade lasers (QCL) for active hyperspectral imaging,” Advanced Optical Technologies 3(2), 141–150 (2014).
[Crossref]

Ye, J.

Yu, M.

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” arXiv preprint arXiv: 1610.01121 (2016).

Zhang, E. J.

Zhou, W.

Advanced Optical Technologies (1)

Q. Yang, F. Fuchs, and J. Wagner, “Quantum cascade lasers (QCL) for active hyperspectral imaging,” Advanced Optical Technologies 3(2), 141–150 (2014).
[Crossref]

App. Phys. Lett. (1)

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” App. Phys. Lett. 97(23), 231119 (2010).
[Crossref]

Appl. Phys. Lett. (1)

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

IEEE Photon. J. (1)

Z. Cheng, X. Chen, C.Y. Wong, K. Xu, and H.K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4(5), 1510–1519 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

M. Nedeljkovic, A.V. Velasco, A.Z. Khokhar, A. Delâge, P. Cheben, and G.Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28(4), 528–531 (2016).
[Crossref]

Journal of Lightwave Technology (1)

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. Ben Masaud, H. M. H. Chong, V. Mittal, G. Senthil Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” Journal of Lightwave Technology 35(4), 624–630 (2017).
[Crossref]

Laser Photonics Reviews (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Reviews,  6(1), 47–73 (2012).
[Crossref]

Meas. Sci. Technol. (1)

J. Hodgkinson and R.P. Tatam, ”Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2012).
[Crossref]

Nat. Photon (1)

R.A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photon 4(8), 495–497 (2010).
[Crossref]

Nature Communications (1)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications 2, 585 (2011).
[Crossref] [PubMed]

New Journal of Physics (1)

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New Journal of Physics 11(12), 125015 (2009).
[Crossref]

Opt. Express (6)

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

S. Radosavljevic, B. Kuyken, and G. Roelkens, “Efficient 5.2 µm wavelength fiber-to-chip grating couplers for the Ge-on-Si and Ge-on-SOI mid-infrared waveguide platform,” Opt. Express 25(16), 19034–19042 (2017).
[Crossref] [PubMed]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express,  18(12), 12127–12135 (2010).
[Crossref] [PubMed]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E.M.P. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Mashanovich, and G. Roelkens, “Demonstration of silicon on insulator midinfrared spectrometers operating at 3.8 um,” Opt. Express 21(10), 11659–11669 (2013).
[Crossref] [PubMed]

F. Adler, P. Masłowski, A. Foltynowicz, K.C. Cossel, T.C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express,  18(21), 21861–21872 (2010).
[Crossref] [PubMed]

Opt. Lett. (2)

Optica (1)

Spectrochim. Acta Mol. Biomol. Spectrosc. (1)

P.A. Werle, “Review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Mol. Biomol. Spectrosc. 54(2), 197–236 (1998).
[Crossref]

Other (4)

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” arXiv preprint arXiv: 1610.01121 (2016).

http://www.spectralcalc.com/spectral_browser/db_intensity.php

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7062

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature dependent refractive index of silicon and germanium,” arXiv preprint physics/0606168 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 A widely tunable external cavity QCL/ICL without any moving parts: the rotating grating is replaced by a tunable reflector on a chip. The tunable filter consists of a beam combiner/splitter and a Vernier ring resonator filter in a loop configuration (a), a tunable Vernier filter based on racetrack resonators that was used in the experiment (b).
Fig. 2
Fig. 2 The simulated transmission spectra Td of individual racetrack resonators (a) and the transmission of the Vernier filter built with these racetracks (b). Simulation of a larger FSRV Vernier filter (c).
Fig. 3
Fig. 3 Coupling to the racetrack resonator as a function of the coupler length (a) and the radiative losses per 90° bend (b).
Fig. 4
Fig. 4 The simulations of forward and backward coupling to the waveguide by the grating coupler.
Fig. 5
Fig. 5 Top view of the fabrication scheme for combining partially etched gratings and a fully etched waveguide circuit, by combining electron beam and optical lithography.
Fig. 6
Fig. 6 The fabrication process for defining heaters for thermal tuning.
Fig. 7
Fig. 7 The chip layout: the two racetrack resonators in a Vernier configuration with ports that allow to measure the response of each individual resonator (a, b). The coupling section of a racetrack with its cross-section in the straight part of the coupler (c). The cladding-like structure on the cross-section image is platinum that was deposited to protect the waveguides while making a focused ion beam cross-section of the waveguide.
Fig. 8
Fig. 8 The measurement setup.
Fig. 9
Fig. 9 Measured and fitted transmission of through and drop port of the individual racetrack resonators when not heated (a), and of the Vernier filter when aligned by heating one of the racetracks (b).
Fig. 10
Fig. 10 The discrete tuning of the Vernier filter. By thermally tuning resonator 2, one can tune the resonant wavelength of the filter in steps of the FSRs of the resonator1 that is not tuned (a). The fine tuning of the Vernier filter by tuning both racetrack resonators together such that we have maximum transmission at the wavelength of choice. Here we show the fine tuning for a few wavelengths with a step of approximately 2FWHM over the FSR of the individual racetrack (b).
Fig. 11
Fig. 11 The resonant wavelength shift as a function of ambient temperature (a). Measurement data and fitting of the tuning speed of the resonator (b).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T p = t 2 a 2 2 t 2 a cos ϕ + t 2 1 2 t 2 a cos ϕ + t 4 a 2
T d = ( 1 t 2 ) 2 a 1 2 t 2 a cos ϕ + t 4 a 2
F S R V = F S R 1 F S R 2 F S R 1 F S R 2
Δ λ = d n d T λ n g Δ T
I N = 1 1 + ( 2 * Δ λ * ( 1 e t / τ ) F W H M ) 2

Metrics