Abstract

This paper presents a dynamic mechanical analysis (DMA) of polymer optical fibers (POFs) to obtain their Young modulus with respect to the variation of strain, temperature, humidity and frequency. The POFs tested are made of polymethyl methacrylate (PMMA), Topas grade 5013, Zeonex 480R and Polycarbonate (PC). In addition, a step index POF with a core composed of Topas 5013 and cladding of Zeonex 480R is also analyzed. Results show a tradeoff between the different fibers for different applications, where the Zeonex fiber shows the lowest Young modulus among the ones tested, which makes it suitable for high-sensitivity strain sensing applications. In addition, the fibers with Topas in their composition presented low temperature and humidity sensitivity, whereas PMMA fibers presented the highest Young modulus variation with different frequencies. The results presented here provide guidelines for the POF material choice for different applications and can pave the way for applications involving the combination of different polymer materials.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications

Arnaldo Leal-Junior, Anselmo Frizera, Maria José Pontes, Paulo Antunes, Nélia Alberto, Maria Fátima Domingues, Heeyoung Lee, Ryo Ishikawa, Yosuke Mizuno, Kentaro Nakamura, Paulo André, and Carlos Marques
Opt. Lett. 43(8) 1754-1757 (2018)

Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing

Getinet Woyessa, Andrea Fasano, Christos Markos, Alessio Stefani, Henrik K. Rasmussen, and Ole Bang
Opt. Mater. Express 7(1) 286-295 (2017)

Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang
Opt. Express 26(2) 2013-2022 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26(9), 092004 (2015).
    [Crossref]
  2. C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
    [Crossref]
  3. Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater. 1(1), 22–28 (2009).
    [Crossref]
  4. K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 013002 (2011).
    [Crossref]
  5. K. Makino, T. Kado, A. Inoue, and Y. Koike, “Low loss graded index polymer optical fiber with high stability under damp heat conditions,” Opt. Express 20(12), 12893–12898 (2012).
    [Crossref] [PubMed]
  6. W. Zhang, D. J. Webb, and G.-D. Peng, “Enhancing the sensitivity of poly(methyl methacrylate) based optical fiber Bragg grating temperature sensors,” Opt. Lett. 40(17), 4046–4049 (2015).
    [Crossref] [PubMed]
  7. G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
    [Crossref] [PubMed]
  8. A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
    [Crossref]
  9. A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
    [Crossref] [PubMed]
  10. C. A. F. Marques, G.-D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
    [Crossref] [PubMed]
  11. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
    [Crossref]
  12. H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16, 8483–8488 (2016).
  13. N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
    [Crossref] [PubMed]
  14. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [Crossref] [PubMed]
  15. C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
    [Crossref]
  16. G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etched singlemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
    [Crossref]
  17. W. Zhang and D. J. Webb, “PMMA Based Optical Fiber Bragg Grating for Measuring Moisture in Transformer Oil,” IEEE Photonics Technol. Lett. 28(21), 2427–2430 (2016).
    [Crossref]
  18. W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
    [Crossref]
  19. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
    [Crossref] [PubMed]
  20. G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
    [Crossref]
  21. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [Crossref] [PubMed]
  22. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [Crossref] [PubMed]
  23. M. C. J. Large, J. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20(3), 034014 (2009).
    [Crossref]
  24. O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (2008).
  25. R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
    [Crossref] [PubMed]
  26. M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-Host Fibers for Nonlinear Optics,” Appl. Phys. Lett. 59(8), 902–904 (1991).
    [Crossref]
  27. J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
    [Crossref]
  28. G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
    [Crossref] [PubMed]
  29. A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
    [Crossref]
  30. A. G. L. Junior, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).
    [Crossref]
  31. I.-L. Bundalo, K. Nielsen, G. Woyessa, and O. Bang, “Long-term strain response of polymer optical fiber FBG sensors,” Opt. Mater. Express 7(3), 967–976 (2017).
    [Crossref]
  32. I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
    [Crossref] [PubMed]
  33. M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2008).
  34. A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
    [Crossref]
  35. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
    [Crossref]
  36. N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
    [Crossref] [PubMed]
  37. N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
    [Crossref] [PubMed]
  38. P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
    [Crossref]
  39. A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
    [Crossref]
  40. A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
    [Crossref]
  41. C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
    [PubMed]
  42. G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 575 (2017).
    [Crossref]
  43. K. Bhowmik, G.-D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “Etching Process Related Changes and Effects on Solid-Core Single-Mode Polymer Optical Fiber Grating,” IEEE Photonics J. 8(1), 1–9 (2016).
    [Crossref]
  44. E. Riande, R. Diaz-Calleja, M. Prolongo, R. Masegosa, and C. Salom, Polymer Viscoelasticity : Stress and Strain in Practice. (Marcel Dekker, 2000).
  45. R. J. Gaymans, M. J. J. Hamberg, and J. P. F. Inberg, “Brittle-ductile transition temperature of polycarbonate as a function of test speed,” Polym. Eng. Sci. 40(1), 256–262 (2000).
    [Crossref]
  46. K. Menard, Dynamic Mechanical Analysis: A Practical Introduction (CRC Press, 1999).
  47. F. P. Incropera and D. P. DeWitt, Fundaments of Heat and Mass Transfer (J. Wiley, 2011).
  48. A. G. Leal-Junior, A. Frizera, and M. J. Pontes, “Dynamic Compensation Technique for POF Curvature Sensors,” J. Lightwave Technol. 8724, 1–7 (2017).
  49. R. Lakes, Viscoelastic Materials (Cambridge University Press, 2009).
  50. G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
    [Crossref] [PubMed]

2017 (12)

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
[Crossref] [PubMed]

C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

A. G. L. Junior, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).
[Crossref]

I.-L. Bundalo, K. Nielsen, G. Woyessa, and O. Bang, “Long-term strain response of polymer optical fiber FBG sensors,” Opt. Mater. Express 7(3), 967–976 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[PubMed]

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 575 (2017).
[Crossref]

A. G. Leal-Junior, A. Frizera, and M. J. Pontes, “Dynamic Compensation Technique for POF Curvature Sensors,” J. Lightwave Technol. 8724, 1–7 (2017).

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref] [PubMed]

2016 (9)

K. Bhowmik, G.-D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “Etching Process Related Changes and Effects on Solid-Core Single-Mode Polymer Optical Fiber Grating,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
[Crossref] [PubMed]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

W. Zhang and D. J. Webb, “PMMA Based Optical Fiber Bragg Grating for Measuring Moisture in Transformer Oil,” IEEE Photonics Technol. Lett. 28(21), 2427–2430 (2016).
[Crossref]

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16, 8483–8488 (2016).

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

2015 (5)

2014 (1)

2013 (2)

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etched singlemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
[Crossref]

2012 (5)

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

K. Makino, T. Kado, A. Inoue, and Y. Koike, “Low loss graded index polymer optical fiber with high stability under damp heat conditions,” Opt. Express 20(12), 12893–12898 (2012).
[Crossref] [PubMed]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

2011 (3)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

2009 (3)

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater. 1(1), 22–28 (2009).
[Crossref]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

M. C. J. Large, J. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20(3), 034014 (2009).
[Crossref]

2005 (1)

2001 (1)

J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

2000 (1)

R. J. Gaymans, M. J. J. Hamberg, and J. P. F. Inberg, “Brittle-ductile transition temperature of polycarbonate as a function of test speed,” Polym. Eng. Sci. 40(1), 256–262 (2000).
[Crossref]

1991 (1)

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-Host Fibers for Nonlinear Optics,” Appl. Phys. Lett. 59(8), 902–904 (1991).
[Crossref]

Aasmul, S.

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16, 8483–8488 (2016).

Abdolvand, A.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Adam, A. J.

Ambikairaja, E.

G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etched singlemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
[Crossref]

Ambikairajah, E.

K. Bhowmik, G.-D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “Etching Process Related Changes and Effects on Solid-Core Single-Mode Polymer Optical Fiber Grating,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Andre, P.

C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
[Crossref]

André, P.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[PubMed]

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Antunes, P.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[PubMed]

Arrue, J.

J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

Asai, M.

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater. 1(1), 22–28 (2009).
[Crossref]

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Bang, O.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[PubMed]

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 575 (2017).
[Crossref]

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

I.-L. Bundalo, K. Nielsen, G. Woyessa, and O. Bang, “Long-term strain response of polymer optical fiber FBG sensors,” Opt. Mater. Express 7(3), 967–976 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16, 8483–8488 (2016).

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

Bhowmik, K.

K. Bhowmik, G.-D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “Etching Process Related Changes and Effects on Solid-Core Single-Mode Polymer Optical Fiber Grating,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Bilro, L.

Bjarklev, A.

Bundalo, I.-L.

Cetinkaya, O.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Çetinkaya, O.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[PubMed]

Chen, R.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
[Crossref] [PubMed]

Daum, W.

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (2008).

de Sena, G. L.

Demirci, G.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[PubMed]

Dirk, C. W.

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-Host Fibers for Nonlinear Optics,” Appl. Phys. Lett. 59(8), 902–904 (1991).
[Crossref]

Eggleton, B. J.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Emiliyanov, G.

Fasano, A.

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 575 (2017).
[Crossref]

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

Frizera, A.

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
[Crossref] [PubMed]

A. G. L. Junior, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).
[Crossref]

A. G. Leal-Junior, A. Frizera, and M. J. Pontes, “Dynamic Compensation Technique for POF Curvature Sensors,” J. Lightwave Technol. 8724, 1–7 (2017).

Gawdzik, B.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[PubMed]

Gaymans, R. J.

R. J. Gaymans, M. J. J. Hamberg, and J. P. F. Inberg, “Brittle-ductile transition temperature of polycarbonate as a function of test speed,” Polym. Eng. Sci. 40(1), 256–262 (2000).
[Crossref]

Hamberg, M. J. J.

R. J. Gaymans, M. J. J. Hamberg, and J. P. F. Inberg, “Brittle-ductile transition temperature of polycarbonate as a function of test speed,” Polym. Eng. Sci. 40(1), 256–262 (2000).
[Crossref]

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Hassan, H. U.

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16, 8483–8488 (2016).

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Hoiby, P.

Huang, Y.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
[Crossref] [PubMed]

Inberg, J. P. F.

R. J. Gaymans, M. J. J. Hamberg, and J. P. F. Inberg, “Brittle-ductile transition temperature of polycarbonate as a function of test speed,” Polym. Eng. Sci. 40(1), 256–262 (2000).
[Crossref]

Inoue, A.

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Janting, J.

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16, 8483–8488 (2016).

Jensen, J.

Jepsen, P. U.

Junior, A. G. L.

A. G. L. Junior, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).
[Crossref]

Kado, T.

Kalli, K.

Khan, L.

Koike, Y.

Krauser, J.

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (2008).

Krebber, K.

Kuzyk, M. G.

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-Host Fibers for Nonlinear Optics,” Appl. Phys. Lett. 59(8), 902–904 (1991).
[Crossref]

Large, M. C. J.

M. C. J. Large, J. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20(3), 034014 (2009).
[Crossref]

Leal-Junior, A. G.

Leite, S.

Li, Y.

N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
[Crossref] [PubMed]

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref] [PubMed]

Liao, Q.

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref] [PubMed]

N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
[Crossref] [PubMed]

Liu, B.

G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etched singlemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
[Crossref]

Lovric, V.

K. Bhowmik, G.-D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “Etching Process Related Changes and Effects on Solid-Core Single-Mode Polymer Optical Fiber Grating,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Luo, B.

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref] [PubMed]

Luo, Y.

K. Bhowmik, G.-D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “Etching Process Related Changes and Effects on Solid-Core Single-Mode Polymer Optical Fiber Grating,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Machado, L. C.

Makino, K.

Markos, C.

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 575 (2017).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

Marques, C.

Marques, C. A. F.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[PubMed]

C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

C. A. F. Marques, G.-D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref] [PubMed]

Mergo, P.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[PubMed]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Moran, J.

M. C. J. Large, J. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20(3), 034014 (2009).
[Crossref]

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Nielsen, K.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, G. Woyessa, and O. Bang, “Long-term strain response of polymer optical fiber FBG sensors,” Opt. Mater. Express 7(3), 967–976 (2017).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

Nogueira, R.

Noor, Y. M.

G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etched singlemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
[Crossref]

Oliveira, R.

Paek, U. C.

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-Host Fibers for Nonlinear Optics,” Appl. Phys. Lett. 59(8), 902–904 (1991).
[Crossref]

Pedersen, J. K. M.

Pedersen, L.

Peng, G. D.

G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etched singlemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
[Crossref]

Peng, G.-D.

Peters, K.

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Planken, P. C.

Pontes, M. J.

A. G. Leal-Junior, A. Frizera, and M. J. Pontes, “Dynamic Compensation Technique for POF Curvature Sensors,” J. Lightwave Technol. 8724, 1–7 (2017).

A. G. L. Junior, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).
[Crossref]

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
[Crossref] [PubMed]

Pospori, A.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[PubMed]

Prado, A. R.

Rajan, G.

K. Bhowmik, G.-D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “Etching Process Related Changes and Effects on Solid-Core Single-Mode Polymer Optical Fiber Grating,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etched singlemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
[Crossref]

Rasmussen, H.

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 575 (2017).
[Crossref]

Rasmussen, H. K.

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

Ribeiro, M. R. N.

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Sáez-Rodríguez, D.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

Schukar, M.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Sørensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Stajanca, P.

Stefani, A.

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Travers, J. C.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Walsh, W. R.

K. Bhowmik, G.-D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “Etching Process Related Changes and Effects on Solid-Core Single-Mode Polymer Optical Fiber Grating,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Webb, D. J.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[PubMed]

C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

W. Zhang and D. J. Webb, “PMMA Based Optical Fiber Bragg Grating for Measuring Moisture in Transformer Oil,” IEEE Photonics Technol. Lett. 28(21), 2427–2430 (2016).
[Crossref]

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

C. A. F. Marques, G.-D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref] [PubMed]

W. Zhang, D. J. Webb, and G.-D. Peng, “Enhancing the sensitivity of poly(methyl methacrylate) based optical fiber Bragg grating temperature sensors,” Opt. Lett. 40(17), 4046–4049 (2015).
[Crossref] [PubMed]

G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etched singlemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Woyessa, G.

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 575 (2017).
[Crossref]

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

I.-L. Bundalo, K. Nielsen, G. Woyessa, and O. Bang, “Long-term strain response of polymer optical fiber FBG sensors,” Opt. Mater. Express 7(3), 967–976 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

Xiong, Z.

Ye, L.

M. C. J. Large, J. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20(3), 034014 (2009).
[Crossref]

Yuan, W.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Zamzow, P. E.

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (2008).

Zhang, W.

W. Zhang and D. J. Webb, “PMMA Based Optical Fiber Bragg Grating for Measuring Moisture in Transformer Oil,” IEEE Photonics Technol. Lett. 28(21), 2427–2430 (2016).
[Crossref]

W. Zhang, D. J. Webb, and G.-D. Peng, “Enhancing the sensitivity of poly(methyl methacrylate) based optical fiber Bragg grating temperature sensors,” Opt. Lett. 40(17), 4046–4049 (2015).
[Crossref] [PubMed]

Zhao, M.

N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
[Crossref] [PubMed]

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
[Crossref] [PubMed]

Zhong, L.

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref] [PubMed]

Zhong, N.

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref] [PubMed]

N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
[Crossref] [PubMed]

Zhu, X.

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref] [PubMed]

N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
[Crossref] [PubMed]

Ziemann, O.

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (2008).

Zubia, J.

J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

Appl. Phys. Lett. (1)

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-Host Fibers for Nonlinear Optics,” Appl. Phys. Lett. 59(8), 902–904 (1991).
[Crossref]

Biosens. Bioelectron. (1)

N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, and Y. Li, “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosens. Bioelectron. 85, 876–882 (2016).
[Crossref] [PubMed]

IEEE Photonics J. (1)

K. Bhowmik, G.-D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “Etching Process Related Changes and Effects on Solid-Core Single-Mode Polymer Optical Fiber Grating,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (5)

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, H. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 575 (2017).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Zhang and D. J. Webb, “PMMA Based Optical Fiber Bragg Grating for Measuring Moisture in Transformer Oil,” IEEE Photonics Technol. Lett. 28(21), 2427–2430 (2016).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

IEEE Sens. J. (2)

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16, 8483–8488 (2016).

J. Lightwave Technol. (1)

A. G. Leal-Junior, A. Frizera, and M. J. Pontes, “Dynamic Compensation Technique for POF Curvature Sensors,” J. Lightwave Technol. 8724, 1–7 (2017).

Meas. Sci. Technol. (2)

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

M. C. J. Large, J. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20(3), 034014 (2009).
[Crossref]

NPG Asia Mater. (1)

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater. 1(1), 22–28 (2009).
[Crossref]

Opt. Commun. (2)

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Opt. Express (12)

N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
[Crossref] [PubMed]

K. Makino, T. Kado, A. Inoue, and Y. Koike, “Low loss graded index polymer optical fiber with high stability under damp heat conditions,” Opt. Express 20(12), 12893–12898 (2012).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
[Crossref] [PubMed]

C. A. F. Marques, G.-D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

Opt. Fiber Technol. (4)

J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
[Crossref]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

Opt. Laser Technol. (1)

A. G. L. Junior, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (3)

Polym. Eng. Sci. (1)

R. J. Gaymans, M. J. J. Hamberg, and J. P. F. Inberg, “Brittle-ductile transition temperature of polycarbonate as a function of test speed,” Polym. Eng. Sci. 40(1), 256–262 (2000).
[Crossref]

Rev. Mod. Phys. (1)

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Sci. Rep. (1)

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etched singlemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
[Crossref]

Sensors (Basel) (1)

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[PubMed]

Smart Mater. Struct. (1)

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Other (6)

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (2008).

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2008).

E. Riande, R. Diaz-Calleja, M. Prolongo, R. Masegosa, and C. Salom, Polymer Viscoelasticity : Stress and Strain in Practice. (Marcel Dekker, 2000).

K. Menard, Dynamic Mechanical Analysis: A Practical Introduction (CRC Press, 1999).

F. P. Incropera and D. P. DeWitt, Fundaments of Heat and Mass Transfer (J. Wiley, 2011).

R. Lakes, Viscoelastic Materials (Cambridge University Press, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Cross-sectional view of the POFs employed in this work: (a) 3-ring PMMA, (b) 3-ring PC, (c) 3-ring Topas grade 5013, (d) 3-ring Zeonex and (e) Topas-Zeonex step index.
Fig. 2
Fig. 2 Schematic view of the POF sample positioning in the DMA.
Fig. 3
Fig. 3 Stress-strain cycles and Young’s Modulus for the PMMA (blue), Topas (red), Topas-Zeonex (black), Zeonex (purple) and Polycarbonate (green) POF.
Fig. 4
Fig. 4 Young Modulus variation with the temperature increase for the different POF materials tested.
Fig. 5
Fig. 5 Young Modulus variation in the frequency interval of 0.01 Hz to 10 Hz for different POF materials.
Fig. 6
Fig. 6 Young Modulus variation with respect to the humidity variation for the different POF samples analyzed.

Tables (2)

Tables Icon

Table 1 Geometrical parameters of the POFs employed in DMA

Tables Icon

Table 2 The annealing parameters applied for the POFs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E * = E 0 cos(δ)+i E 0 sin(δ),
E fiber = E c A c + E cl A cl A c + A cl ,
R T = r c A c + k c + r cl A cl + k cl ,

Metrics