Abstract

In this paper, a facile and cost effective hydrothermal method was employed to fabricate high performance ZnO/β-Ga2O3 core-shell heterostructures. A highly sensitive ultraviolet (UV) sensor was fabricated based on vertically aligned β-Ga2O3 decorated ZnO core-shell nanorod arrays (NRs). The ZnO/β-Ga2O3 heterostructures showed an excellent improvement in UV response characteristics comparing with bare ZnO NRs. It can be attributed to the lower interface barrier and larger surface area-to-volume ratio for the ZnO/β-Ga2O3 heterostructures. Meanwhile, a higher concentration of surface oxygen vacancies has been observed in ZnO/β-Ga2O3 heterostructures, which helps to increase the charge separation efficiency for the UV detector. The results suggested that the ZnO/β-Ga2O3 core-shell heterostructure should be suitable for practical applications of UV photodetectors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Extended photo-response of ZnO/CdS core/shell nanorods fabricated by hydrothermal reaction and pulsed laser deposition

Qin Yang, Yanli Li, Zhigao Hu, Zhihua Duan, Peipei Liang, Jian Sun, Ning Xu, and Jiada Wu
Opt. Express 22(7) 8617-8623 (2014)

Luminescence enhancement of ZnO-core/a-SiNx:H-shell nanorod arrays

Rui Huang, Shuigang Xu, Yanqing Guo, Wenhao Guo, Xiang Wang, Chao Song, Jie Song, Lin Wang, Kin Ming Ho, and Ning Wang
Opt. Express 21(5) 5891-5896 (2013)

High performance Cu2O/ZnO core-shell nanorod arrays synthesized using a nanoimprint GaN template by the hydrothermal growth technique

Yung-Sheng Chen, Che-Hao Liao, Yu-Lun Chueh, Chih-Chung Lai, Li-Yin Chen, Ann-Kuo Chu, Chie-Tong Kuo, and Hsiang-Chen Wang
Opt. Mater. Express 4(7) 1473-1486 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors,” Appl. Phys. Lett. 85(26), 6389–6391 (2004).
    [Crossref]
  2. G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
    [Crossref]
  3. J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, and Z. Ren, “Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 404 (2011).
    [Crossref] [PubMed]
  4. J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
    [Crossref] [PubMed]
  5. L. Binet, G. Gauthier, C. Vigreux, and D. Gourier, “Electron magnetic resonance and optical properties of Ga2−2xIn2xO3 solid solutions,” J. Phys. Chem. Solids 60(10), 1755–1762 (1999).
    [Crossref]
  6. E. Wongrat and S. Choopun, “Sensitivity improvement of ethanol sensor based on ZnO nanostructure by metal impregnation,” Sens. Lett. 9(2), 936–939 (2011).
    [Crossref]
  7. J. Q. Hu, Y. Bando, J. H. Zhan, X. L. Yuan, T. Sekiguchi, and D. Golberg, “Self-assembly of SiO2 nanowires and Si microwires into hierarchical heterostructures on a large scale,” Adv. Mater. 17(8), 971–975 (2005).
    [Crossref]
  8. Y. N. Xia, P. D. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “Synthesis, characterization and applications,” Adv. Mater. 15(5), 353–389 (2003).
    [Crossref]
  9. B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
    [Crossref] [PubMed]
  10. L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. 15(5), 464–466 (2003).
    [Crossref]
  11. Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions,” Chem. Mater. 17(5), 1001–1006 (2005).
    [Crossref]
  12. N. S. Yu, B. Dong, W. W. Yu, B. Y. Hu, Y. Q. Zhang, and Y. Cong, “Investigations of ZnO nanostructures grown on patterned sapphire using different precursors in aqueous solutions,” Appl. Surf. Sci. 258(15), 5729–5732 (2012).
    [Crossref]
  13. G. Sinha, K. Adhikary, and S. Chaudhuri, “Effect of annealing temperature on structural transformation of gallium based nanocrystalline oxide thin films and their optical properties,” Opt. Mater. 29(6), 718–722 (2007).
    [Crossref]
  14. L. Q. Jing, Z. L. Xu, J. Shang, X. J. Sun, W. M. Cai, and H. C. Guo, “The preparation and characterization of ZnO ultrafine particles,” Mater. Sci. Eng. A 332(1-2), 356–361 (2002).
    [Crossref]
  15. R. Jangir, S. Porwal, P. Tiwari, P. Mondal, S. K. Rai, T. Ganguli, S. M. Oak, and S. K. Deb, “Photoluminescence study of β-Ga2O3 nanostructures annealed in different environments,” J. Appl. Phys. 112(3), 034307 (2012).
    [Crossref]
  16. L. Binet and D. Gourier, “Origin of the blue luminescence of β-Ga2O3,” J. Phys. Chem. Solids 59(8), 1241–1249 (1998).
    [Crossref]
  17. H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, “Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium,” Appl. Phys. Lett. 86(21), 211918 (2005).
    [Crossref]
  18. S. Dhara and P. Giri, “Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires,” Nanoscale Res. Lett. 6(1), 504 (2011).
    [Crossref] [PubMed]
  19. Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009).
    [Crossref] [PubMed]
  20. S. Dhara and P. Giri, “Rapid thermal annealing induced enhanced band-edge emission from ZnO nanowires, nanorods and nanoribbons,” Funct. Mater. Lett. (Singap.) 04(01), 25–29 (2011).
    [Crossref]
  21. Y. H. Li, J. Gong, and Y. L. Deng, “Hierarchical structured ZnO nanorods on ZnO nanofibers and their photoresponse to UV and visible lights,” Sens. Actuators A Phys. 158(2), 176–182 (2010).
    [Crossref]
  22. M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
    [Crossref] [PubMed]
  23. Y. H. Lv, C. S. Pan, X. G. Ma, R. L. Zong, X. J. Bai, and Y. F. Zhu, “Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation,” Appl. Catal. B 138-139(28), 26–32 (2013).
    [Crossref]
  24. L. Karthikeyan, M. V. Akshaya, and K. B. Palash, “Microwave assisted synthesis of ZnO and Pd-ZnO nanospheres for UV photodetector,” Sens. Actuators A Phys. 264, 90–95 (2017).
    [Crossref]

2017 (1)

L. Karthikeyan, M. V. Akshaya, and K. B. Palash, “Microwave assisted synthesis of ZnO and Pd-ZnO nanospheres for UV photodetector,” Sens. Actuators A Phys. 264, 90–95 (2017).
[Crossref]

2015 (1)

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

2013 (1)

Y. H. Lv, C. S. Pan, X. G. Ma, R. L. Zong, X. J. Bai, and Y. F. Zhu, “Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation,” Appl. Catal. B 138-139(28), 26–32 (2013).
[Crossref]

2012 (2)

N. S. Yu, B. Dong, W. W. Yu, B. Y. Hu, Y. Q. Zhang, and Y. Cong, “Investigations of ZnO nanostructures grown on patterned sapphire using different precursors in aqueous solutions,” Appl. Surf. Sci. 258(15), 5729–5732 (2012).
[Crossref]

R. Jangir, S. Porwal, P. Tiwari, P. Mondal, S. K. Rai, T. Ganguli, S. M. Oak, and S. K. Deb, “Photoluminescence study of β-Ga2O3 nanostructures annealed in different environments,” J. Appl. Phys. 112(3), 034307 (2012).
[Crossref]

2011 (6)

S. Dhara and P. Giri, “Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires,” Nanoscale Res. Lett. 6(1), 504 (2011).
[Crossref] [PubMed]

E. Wongrat and S. Choopun, “Sensitivity improvement of ethanol sensor based on ZnO nanostructure by metal impregnation,” Sens. Lett. 9(2), 936–939 (2011).
[Crossref]

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[Crossref]

J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, and Z. Ren, “Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 404 (2011).
[Crossref] [PubMed]

S. Dhara and P. Giri, “Rapid thermal annealing induced enhanced band-edge emission from ZnO nanowires, nanorods and nanoribbons,” Funct. Mater. Lett. (Singap.) 04(01), 25–29 (2011).
[Crossref]

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

2010 (1)

Y. H. Li, J. Gong, and Y. L. Deng, “Hierarchical structured ZnO nanorods on ZnO nanofibers and their photoresponse to UV and visible lights,” Sens. Actuators A Phys. 158(2), 176–182 (2010).
[Crossref]

2009 (2)

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009).
[Crossref] [PubMed]

2007 (1)

G. Sinha, K. Adhikary, and S. Chaudhuri, “Effect of annealing temperature on structural transformation of gallium based nanocrystalline oxide thin films and their optical properties,” Opt. Mater. 29(6), 718–722 (2007).
[Crossref]

2005 (3)

Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions,” Chem. Mater. 17(5), 1001–1006 (2005).
[Crossref]

J. Q. Hu, Y. Bando, J. H. Zhan, X. L. Yuan, T. Sekiguchi, and D. Golberg, “Self-assembly of SiO2 nanowires and Si microwires into hierarchical heterostructures on a large scale,” Adv. Mater. 17(8), 971–975 (2005).
[Crossref]

H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, “Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium,” Appl. Phys. Lett. 86(21), 211918 (2005).
[Crossref]

2004 (1)

Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors,” Appl. Phys. Lett. 85(26), 6389–6391 (2004).
[Crossref]

2003 (2)

Y. N. Xia, P. D. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “Synthesis, characterization and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. 15(5), 464–466 (2003).
[Crossref]

2002 (1)

L. Q. Jing, Z. L. Xu, J. Shang, X. J. Sun, W. M. Cai, and H. C. Guo, “The preparation and characterization of ZnO ultrafine particles,” Mater. Sci. Eng. A 332(1-2), 356–361 (2002).
[Crossref]

1999 (1)

L. Binet, G. Gauthier, C. Vigreux, and D. Gourier, “Electron magnetic resonance and optical properties of Ga2−2xIn2xO3 solid solutions,” J. Phys. Chem. Solids 60(10), 1755–1762 (1999).
[Crossref]

1998 (1)

L. Binet and D. Gourier, “Origin of the blue luminescence of β-Ga2O3,” J. Phys. Chem. Solids 59(8), 1241–1249 (1998).
[Crossref]

Adhikary, K.

G. Sinha, K. Adhikary, and S. Chaudhuri, “Effect of annealing temperature on structural transformation of gallium based nanocrystalline oxide thin films and their optical properties,” Opt. Mater. 29(6), 718–722 (2007).
[Crossref]

Akshaya, M. V.

L. Karthikeyan, M. V. Akshaya, and K. B. Palash, “Microwave assisted synthesis of ZnO and Pd-ZnO nanospheres for UV photodetector,” Sens. Actuators A Phys. 264, 90–95 (2017).
[Crossref]

Bai, X. J.

Y. H. Lv, C. S. Pan, X. G. Ma, R. L. Zong, X. J. Bai, and Y. F. Zhu, “Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation,” Appl. Catal. B 138-139(28), 26–32 (2013).
[Crossref]

Bando, Y.

J. Q. Hu, Y. Bando, J. H. Zhan, X. L. Yuan, T. Sekiguchi, and D. Golberg, “Self-assembly of SiO2 nanowires and Si microwires into hierarchical heterostructures on a large scale,” Adv. Mater. 17(8), 971–975 (2005).
[Crossref]

Bao, G.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Bao, J.

J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, and Z. Ren, “Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 404 (2011).
[Crossref] [PubMed]

Binet, L.

L. Binet, G. Gauthier, C. Vigreux, and D. Gourier, “Electron magnetic resonance and optical properties of Ga2−2xIn2xO3 solid solutions,” J. Phys. Chem. Solids 60(10), 1755–1762 (1999).
[Crossref]

L. Binet and D. Gourier, “Origin of the blue luminescence of β-Ga2O3,” J. Phys. Chem. Solids 59(8), 1241–1249 (1998).
[Crossref]

Cai, A. L.

H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, “Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium,” Appl. Phys. Lett. 86(21), 211918 (2005).
[Crossref]

Cai, W. M.

L. Q. Jing, Z. L. Xu, J. Shang, X. J. Sun, W. M. Cai, and H. C. Guo, “The preparation and characterization of ZnO ultrafine particles,” Mater. Sci. Eng. A 332(1-2), 356–361 (2002).
[Crossref]

Capasso, F.

J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, and Z. Ren, “Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 404 (2011).
[Crossref] [PubMed]

Chang, R. P. H.

Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions,” Chem. Mater. 17(5), 1001–1006 (2005).
[Crossref]

Chaudhuri, S.

G. Sinha, K. Adhikary, and S. Chaudhuri, “Effect of annealing temperature on structural transformation of gallium based nanocrystalline oxide thin films and their optical properties,” Opt. Mater. 29(6), 718–722 (2007).
[Crossref]

Chen, H.

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

Chen, X.

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

Cheng, G.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[Crossref]

Choopun, S.

E. Wongrat and S. Choopun, “Sensitivity improvement of ethanol sensor based on ZnO nanostructure by metal impregnation,” Sens. Lett. 9(2), 936–939 (2011).
[Crossref]

Cong, Y.

N. S. Yu, B. Dong, W. W. Yu, B. Y. Hu, Y. Q. Zhang, and Y. Cong, “Investigations of ZnO nanostructures grown on patterned sapphire using different precursors in aqueous solutions,” Appl. Surf. Sci. 258(15), 5729–5732 (2012).
[Crossref]

Deb, S. K.

R. Jangir, S. Porwal, P. Tiwari, P. Mondal, S. K. Rai, T. Ganguli, S. M. Oak, and S. K. Deb, “Photoluminescence study of β-Ga2O3 nanostructures annealed in different environments,” J. Appl. Phys. 112(3), 034307 (2012).
[Crossref]

Delaunay, J. J.

Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009).
[Crossref] [PubMed]

Della Valle, F.

Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009).
[Crossref] [PubMed]

Deng, Y. L.

Y. H. Li, J. Gong, and Y. L. Deng, “Hierarchical structured ZnO nanorods on ZnO nanofibers and their photoresponse to UV and visible lights,” Sens. Actuators A Phys. 158(2), 176–182 (2010).
[Crossref]

Dhara, S.

S. Dhara and P. Giri, “Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires,” Nanoscale Res. Lett. 6(1), 504 (2011).
[Crossref] [PubMed]

S. Dhara and P. Giri, “Rapid thermal annealing induced enhanced band-edge emission from ZnO nanowires, nanorods and nanoribbons,” Funct. Mater. Lett. (Singap.) 04(01), 25–29 (2011).
[Crossref]

Dong, B.

N. S. Yu, B. Dong, W. W. Yu, B. Y. Hu, Y. Q. Zhang, and Y. Cong, “Investigations of ZnO nanostructures grown on patterned sapphire using different precursors in aqueous solutions,” Appl. Surf. Sci. 258(15), 5729–5732 (2012).
[Crossref]

Du, Z.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[Crossref]

Fang, P.

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

Fang, X.

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

Ganguli, T.

R. Jangir, S. Porwal, P. Tiwari, P. Mondal, S. K. Rai, T. Ganguli, S. M. Oak, and S. K. Deb, “Photoluminescence study of β-Ga2O3 nanostructures annealed in different environments,” J. Appl. Phys. 112(3), 034307 (2012).
[Crossref]

Gates, B.

Y. N. Xia, P. D. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “Synthesis, characterization and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Gauthier, G.

L. Binet, G. Gauthier, C. Vigreux, and D. Gourier, “Electron magnetic resonance and optical properties of Ga2−2xIn2xO3 solid solutions,” J. Phys. Chem. Solids 60(10), 1755–1762 (1999).
[Crossref]

Giri, P.

S. Dhara and P. Giri, “Rapid thermal annealing induced enhanced band-edge emission from ZnO nanowires, nanorods and nanoribbons,” Funct. Mater. Lett. (Singap.) 04(01), 25–29 (2011).
[Crossref]

S. Dhara and P. Giri, “Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires,” Nanoscale Res. Lett. 6(1), 504 (2011).
[Crossref] [PubMed]

Golberg, D.

J. Q. Hu, Y. Bando, J. H. Zhan, X. L. Yuan, T. Sekiguchi, and D. Golberg, “Self-assembly of SiO2 nanowires and Si microwires into hierarchical heterostructures on a large scale,” Adv. Mater. 17(8), 971–975 (2005).
[Crossref]

Gong, J.

Y. H. Li, J. Gong, and Y. L. Deng, “Hierarchical structured ZnO nanorods on ZnO nanofibers and their photoresponse to UV and visible lights,” Sens. Actuators A Phys. 158(2), 176–182 (2010).
[Crossref]

Gourier, D.

L. Binet, G. Gauthier, C. Vigreux, and D. Gourier, “Electron magnetic resonance and optical properties of Ga2−2xIn2xO3 solid solutions,” J. Phys. Chem. Solids 60(10), 1755–1762 (1999).
[Crossref]

L. Binet and D. Gourier, “Origin of the blue luminescence of β-Ga2O3,” J. Phys. Chem. Solids 59(8), 1241–1249 (1998).
[Crossref]

Gu, Y.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Guo, H. C.

L. Q. Jing, Z. L. Xu, J. Shang, X. J. Sun, W. M. Cai, and H. C. Guo, “The preparation and characterization of ZnO ultrafine particles,” Mater. Sci. Eng. A 332(1-2), 356–361 (2002).
[Crossref]

Gurwitz, R.

J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, and Z. Ren, “Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 404 (2011).
[Crossref] [PubMed]

Hu, B. Y.

N. S. Yu, B. Dong, W. W. Yu, B. Y. Hu, Y. Q. Zhang, and Y. Cong, “Investigations of ZnO nanostructures grown on patterned sapphire using different precursors in aqueous solutions,” Appl. Surf. Sci. 258(15), 5729–5732 (2012).
[Crossref]

Hu, J. Q.

J. Q. Hu, Y. Bando, J. H. Zhan, X. L. Yuan, T. Sekiguchi, and D. Golberg, “Self-assembly of SiO2 nanowires and Si microwires into hierarchical heterostructures on a large scale,” Adv. Mater. 17(8), 971–975 (2005).
[Crossref]

Hu, Y.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Jangir, R.

R. Jangir, S. Porwal, P. Tiwari, P. Mondal, S. K. Rai, T. Ganguli, S. M. Oak, and S. K. Deb, “Photoluminescence study of β-Ga2O3 nanostructures annealed in different environments,” J. Appl. Phys. 112(3), 034307 (2012).
[Crossref]

Jiang, M.

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

Jing, L. Q.

L. Q. Jing, Z. L. Xu, J. Shang, X. J. Sun, W. M. Cai, and H. C. Guo, “The preparation and characterization of ZnO ultrafine particles,” Mater. Sci. Eng. A 332(1-2), 356–361 (2002).
[Crossref]

Karthikeyan, L.

L. Karthikeyan, M. V. Akshaya, and K. B. Palash, “Microwave assisted synthesis of ZnO and Pd-ZnO nanospheres for UV photodetector,” Sens. Actuators A Phys. 264, 90–95 (2017).
[Crossref]

Kim, F.

Y. N. Xia, P. D. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “Synthesis, characterization and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Kong, M.

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

Kumar, V.

Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions,” Chem. Mater. 17(5), 1001–1006 (2005).
[Crossref]

Li, B.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[Crossref]

Li, Q.

Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions,” Chem. Mater. 17(5), 1001–1006 (2005).
[Crossref]

Li, Q. H.

Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors,” Appl. Phys. Lett. 85(26), 6389–6391 (2004).
[Crossref]

Li, Y.

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009).
[Crossref] [PubMed]

Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions,” Chem. Mater. 17(5), 1001–1006 (2005).
[Crossref]

Li, Y. H.

Y. H. Li, J. Gong, and Y. L. Deng, “Hierarchical structured ZnO nanorods on ZnO nanofibers and their photoresponse to UV and visible lights,” Sens. Actuators A Phys. 158(2), 176–182 (2010).
[Crossref]

Liang, Y. X.

Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors,” Appl. Phys. Lett. 85(26), 6389–6391 (2004).
[Crossref]

Liu, B.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[Crossref]

Lv, Y. H.

Y. H. Lv, C. S. Pan, X. G. Ma, R. L. Zong, X. J. Bai, and Y. F. Zhu, “Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation,” Appl. Catal. B 138-139(28), 26–32 (2013).
[Crossref]

Ma, X. G.

Y. H. Lv, C. S. Pan, X. G. Ma, R. L. Zong, X. J. Bai, and Y. F. Zhu, “Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation,” Appl. Catal. B 138-139(28), 26–32 (2013).
[Crossref]

Mai, W.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Marks, T. J.

Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions,” Chem. Mater. 17(5), 1001–1006 (2005).
[Crossref]

Mayers, B.

Y. N. Xia, P. D. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “Synthesis, characterization and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Mondal, P.

R. Jangir, S. Porwal, P. Tiwari, P. Mondal, S. K. Rai, T. Ganguli, S. M. Oak, and S. K. Deb, “Photoluminescence study of β-Ga2O3 nanostructures annealed in different environments,” J. Appl. Phys. 112(3), 034307 (2012).
[Crossref]

Muth, J. F.

H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, “Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium,” Appl. Phys. Lett. 86(21), 211918 (2005).
[Crossref]

Narayan, J.

H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, “Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium,” Appl. Phys. Lett. 86(21), 211918 (2005).
[Crossref]

Oak, S. M.

R. Jangir, S. Porwal, P. Tiwari, P. Mondal, S. K. Rai, T. Ganguli, S. M. Oak, and S. K. Deb, “Photoluminescence study of β-Ga2O3 nanostructures annealed in different environments,” J. Appl. Phys. 112(3), 034307 (2012).
[Crossref]

Palash, K. B.

L. Karthikeyan, M. V. Akshaya, and K. B. Palash, “Microwave assisted synthesis of ZnO and Pd-ZnO nanospheres for UV photodetector,” Sens. Actuators A Phys. 264, 90–95 (2017).
[Crossref]

Pan, C. S.

Y. H. Lv, C. S. Pan, X. G. Ma, R. L. Zong, X. J. Bai, and Y. F. Zhu, “Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation,” Appl. Catal. B 138-139(28), 26–32 (2013).
[Crossref]

Polla, D. L.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Porter, H. L.

H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, “Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium,” Appl. Phys. Lett. 86(21), 211918 (2005).
[Crossref]

Porwal, S.

R. Jangir, S. Porwal, P. Tiwari, P. Mondal, S. K. Rai, T. Ganguli, S. M. Oak, and S. K. Deb, “Photoluminescence study of β-Ga2O3 nanostructures annealed in different environments,” J. Appl. Phys. 112(3), 034307 (2012).
[Crossref]

Rai, S. K.

R. Jangir, S. Porwal, P. Tiwari, P. Mondal, S. K. Rai, T. Ganguli, S. M. Oak, and S. K. Deb, “Photoluminescence study of β-Ga2O3 nanostructures annealed in different environments,” J. Appl. Phys. 112(3), 034307 (2012).
[Crossref]

Ren, Z.

J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, and Z. Ren, “Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 404 (2011).
[Crossref] [PubMed]

Sekiguchi, T.

J. Q. Hu, Y. Bando, J. H. Zhan, X. L. Yuan, T. Sekiguchi, and D. Golberg, “Self-assembly of SiO2 nanowires and Si microwires into hierarchical heterostructures on a large scale,” Adv. Mater. 17(8), 971–975 (2005).
[Crossref]

Shalish, I.

J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, and Z. Ren, “Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 404 (2011).
[Crossref] [PubMed]

Shang, J.

L. Q. Jing, Z. L. Xu, J. Shang, X. J. Sun, W. M. Cai, and H. C. Guo, “The preparation and characterization of ZnO ultrafine particles,” Mater. Sci. Eng. A 332(1-2), 356–361 (2002).
[Crossref]

Simonnet, M.

Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009).
[Crossref] [PubMed]

Sinha, G.

G. Sinha, K. Adhikary, and S. Chaudhuri, “Effect of annealing temperature on structural transformation of gallium based nanocrystalline oxide thin films and their optical properties,” Opt. Mater. 29(6), 718–722 (2007).
[Crossref]

Sood, A. K.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Su, Z.

J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, and Z. Ren, “Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 404 (2011).
[Crossref] [PubMed]

Sun, X. J.

L. Q. Jing, Z. L. Xu, J. Shang, X. J. Sun, W. M. Cai, and H. C. Guo, “The preparation and characterization of ZnO ultrafine particles,” Mater. Sci. Eng. A 332(1-2), 356–361 (2002).
[Crossref]

Sun, Y.

Y. N. Xia, P. D. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “Synthesis, characterization and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Tian, T.

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

Tiwari, P.

R. Jangir, S. Porwal, P. Tiwari, P. Mondal, S. K. Rai, T. Ganguli, S. M. Oak, and S. K. Deb, “Photoluminescence study of β-Ga2O3 nanostructures annealed in different environments,” J. Appl. Phys. 112(3), 034307 (2012).
[Crossref]

Vayssieres, L.

L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. 15(5), 464–466 (2003).
[Crossref]

Vigreux, C.

L. Binet, G. Gauthier, C. Vigreux, and D. Gourier, “Electron magnetic resonance and optical properties of Ga2−2xIn2xO3 solid solutions,” J. Phys. Chem. Solids 60(10), 1755–1762 (1999).
[Crossref]

Wan, Q.

Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors,” Appl. Phys. Lett. 85(26), 6389–6391 (2004).
[Crossref]

Wang, F.

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

Wang, T. H.

Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors,” Appl. Phys. Lett. 85(26), 6389–6391 (2004).
[Crossref]

Wang, X.

J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, and Z. Ren, “Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 404 (2011).
[Crossref] [PubMed]

Wang, Y.

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

Wang, Z. L.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Wongrat, E.

E. Wongrat and S. Choopun, “Sensitivity improvement of ethanol sensor based on ZnO nanostructure by metal impregnation,” Sens. Lett. 9(2), 936–939 (2011).
[Crossref]

Wu, X.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[Crossref]

Wu, Y.

Y. N. Xia, P. D. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “Synthesis, characterization and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Xia, Y. N.

Y. N. Xia, P. D. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “Synthesis, characterization and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Xu, Z. L.

L. Q. Jing, Z. L. Xu, J. Shang, X. J. Sun, W. M. Cai, and H. C. Guo, “The preparation and characterization of ZnO ultrafine particles,” Mater. Sci. Eng. A 332(1-2), 356–361 (2002).
[Crossref]

Yamada, I.

Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009).
[Crossref] [PubMed]

Yan, H.

Y. N. Xia, P. D. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “Synthesis, characterization and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Yang, P. D.

Y. N. Xia, P. D. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “Synthesis, characterization and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Yeh, P. H.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Yin, Y.

Y. N. Xia, P. D. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “Synthesis, characterization and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Yu, N. S.

N. S. Yu, B. Dong, W. W. Yu, B. Y. Hu, Y. Q. Zhang, and Y. Cong, “Investigations of ZnO nanostructures grown on patterned sapphire using different precursors in aqueous solutions,” Appl. Surf. Sci. 258(15), 5729–5732 (2012).
[Crossref]

Yu, W. W.

N. S. Yu, B. Dong, W. W. Yu, B. Y. Hu, Y. Q. Zhang, and Y. Cong, “Investigations of ZnO nanostructures grown on patterned sapphire using different precursors in aqueous solutions,” Appl. Surf. Sci. 258(15), 5729–5732 (2012).
[Crossref]

Yuan, X. L.

J. Q. Hu, Y. Bando, J. H. Zhan, X. L. Yuan, T. Sekiguchi, and D. Golberg, “Self-assembly of SiO2 nanowires and Si microwires into hierarchical heterostructures on a large scale,” Adv. Mater. 17(8), 971–975 (2005).
[Crossref]

Zhan, J. H.

J. Q. Hu, Y. Bando, J. H. Zhan, X. L. Yuan, T. Sekiguchi, and D. Golberg, “Self-assembly of SiO2 nanowires and Si microwires into hierarchical heterostructures on a large scale,” Adv. Mater. 17(8), 971–975 (2005).
[Crossref]

Zhang, H.

Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions,” Chem. Mater. 17(5), 1001–1006 (2005).
[Crossref]

Zhang, X.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[Crossref]

Zhang, Y. Q.

N. S. Yu, B. Dong, W. W. Yu, B. Y. Hu, Y. Q. Zhang, and Y. Cong, “Investigations of ZnO nanostructures grown on patterned sapphire using different precursors in aqueous solutions,” Appl. Surf. Sci. 258(15), 5729–5732 (2012).
[Crossref]

Zhao, B.

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

Zhao, D.

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

Zhao, X.

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

Zheng, F.

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

Zhu, Y. F.

Y. H. Lv, C. S. Pan, X. G. Ma, R. L. Zong, X. J. Bai, and Y. F. Zhu, “Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation,” Appl. Catal. B 138-139(28), 26–32 (2013).
[Crossref]

Zong, R. L.

Y. H. Lv, C. S. Pan, X. G. Ma, R. L. Zong, X. J. Bai, and Y. F. Zhu, “Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation,” Appl. Catal. B 138-139(28), 26–32 (2013).
[Crossref]

Adv. Mater. (3)

J. Q. Hu, Y. Bando, J. H. Zhan, X. L. Yuan, T. Sekiguchi, and D. Golberg, “Self-assembly of SiO2 nanowires and Si microwires into hierarchical heterostructures on a large scale,” Adv. Mater. 17(8), 971–975 (2005).
[Crossref]

Y. N. Xia, P. D. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “Synthesis, characterization and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. 15(5), 464–466 (2003).
[Crossref]

Appl. Catal. B (1)

Y. H. Lv, C. S. Pan, X. G. Ma, R. L. Zong, X. J. Bai, and Y. F. Zhu, “Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation,” Appl. Catal. B 138-139(28), 26–32 (2013).
[Crossref]

Appl. Phys. Lett. (4)

Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors,” Appl. Phys. Lett. 85(26), 6389–6391 (2004).
[Crossref]

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[Crossref]

J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref] [PubMed]

H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, “Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium,” Appl. Phys. Lett. 86(21), 211918 (2005).
[Crossref]

Appl. Surf. Sci. (1)

N. S. Yu, B. Dong, W. W. Yu, B. Y. Hu, Y. Q. Zhang, and Y. Cong, “Investigations of ZnO nanostructures grown on patterned sapphire using different precursors in aqueous solutions,” Appl. Surf. Sci. 258(15), 5729–5732 (2012).
[Crossref]

Chem. Mater. (1)

Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions,” Chem. Mater. 17(5), 1001–1006 (2005).
[Crossref]

Funct. Mater. Lett. (Singap.) (1)

S. Dhara and P. Giri, “Rapid thermal annealing induced enhanced band-edge emission from ZnO nanowires, nanorods and nanoribbons,” Funct. Mater. Lett. (Singap.) 04(01), 25–29 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

R. Jangir, S. Porwal, P. Tiwari, P. Mondal, S. K. Rai, T. Ganguli, S. M. Oak, and S. K. Deb, “Photoluminescence study of β-Ga2O3 nanostructures annealed in different environments,” J. Appl. Phys. 112(3), 034307 (2012).
[Crossref]

J. Phys. Chem. Solids (2)

L. Binet and D. Gourier, “Origin of the blue luminescence of β-Ga2O3,” J. Phys. Chem. Solids 59(8), 1241–1249 (1998).
[Crossref]

L. Binet, G. Gauthier, C. Vigreux, and D. Gourier, “Electron magnetic resonance and optical properties of Ga2−2xIn2xO3 solid solutions,” J. Phys. Chem. Solids 60(10), 1755–1762 (1999).
[Crossref]

Mater. Sci. Eng. A (1)

L. Q. Jing, Z. L. Xu, J. Shang, X. J. Sun, W. M. Cai, and H. C. Guo, “The preparation and characterization of ZnO ultrafine particles,” Mater. Sci. Eng. A 332(1-2), 356–361 (2002).
[Crossref]

Nano Lett. (1)

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

Nanoscale Res. Lett. (2)

J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, and Z. Ren, “Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 404 (2011).
[Crossref] [PubMed]

S. Dhara and P. Giri, “Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires,” Nanoscale Res. Lett. 6(1), 504 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009).
[Crossref] [PubMed]

Opt. Mater. (1)

G. Sinha, K. Adhikary, and S. Chaudhuri, “Effect of annealing temperature on structural transformation of gallium based nanocrystalline oxide thin films and their optical properties,” Opt. Mater. 29(6), 718–722 (2007).
[Crossref]

Sens. Actuators A Phys. (2)

Y. H. Li, J. Gong, and Y. L. Deng, “Hierarchical structured ZnO nanorods on ZnO nanofibers and their photoresponse to UV and visible lights,” Sens. Actuators A Phys. 158(2), 176–182 (2010).
[Crossref]

L. Karthikeyan, M. V. Akshaya, and K. B. Palash, “Microwave assisted synthesis of ZnO and Pd-ZnO nanospheres for UV photodetector,” Sens. Actuators A Phys. 264, 90–95 (2017).
[Crossref]

Sens. Lett. (1)

E. Wongrat and S. Choopun, “Sensitivity improvement of ethanol sensor based on ZnO nanostructure by metal impregnation,” Sens. Lett. 9(2), 936–939 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Fabrication scheme used to obtain the β-Ga2O3/ZnO NRs.
Fig. 2
Fig. 2 (a) Plan view SEM image of ZnO/β-Ga2O3 core-shell heterostructures. (b) Tilt view SEM image of the ZnO/β-Ga2O3 core-shell heterostructures. (c) Tilt view SEM image of the ZnO/β-Ga2O3 core-shell heterostructures with high magnification. (d) EDS spectra of the β-Ga2O3/ZnO structure.
Fig. 3
Fig. 3 (a) TEM image of typical individual β-Ga2O3/ZnO structure. (b) lattice-resolved TEM image enlarging an area near the interface. (c) EDX line scan of a single ZnO nanorods covered with β-Ga2O3 nanocrystals. (d) Elemental maps Ga and Zn elements taken across an individual core-shell nanorod.
Fig. 4
Fig. 4 XPS spectrum of β-Ga2O3/ZnO structures: (a) Ga2p, (b) Ga3d, (c) Zn2p, (d) O1s and ZnO NRs:(e) Zn2p, (f) O1s.
Fig. 5
Fig. 5 PL spectra of (a) ZnO NRs (b) β-Ga2O3 nanostructures (c) β-Ga2O3/ZnO heterostructures.
Fig. 6
Fig. 6 (a) The schematic structure of β-Ga2O3/ZnO photodetector. (b) Photo-response spectra of the device based on p β-Ga2O3/ZnO heterostructures and ZnO NRs. (c) I-V curve of β-Ga2O3/ZnO heterostructures with and without UV illumination (d) I-V curve of ZnO NRs with and without UV illumination.
Fig. 7
Fig. 7 The time-resolved photocurrent at 5 V bias with multiple UV on/off cycles of (a) β-Ga2O3/ZnO (b) ZnO NRs. The experimental curve and fitted rising and decaying process curve of (c) β-Ga2O3/ZnO heterostructures (d) ZnO NRs.
Fig. 8
Fig. 8 The energy band diagram of β-Ga2O3/ZnO heterostructure.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

(C H 2 ) 6 N 4 +6 H 2 O 6HCHO+4N H 3
N H 3 + H 2 O N H 4 + +O H
 3O H +G a Ga ( OH ) 3
Ga ( OH ) 3 GaOOH+ H 2 O
 I= I 0 + A e t/τ1 + B e t/τ2

Metrics