Abstract

We reported on the study of the correlation between 193nm absorption under 1.5~5.0mJ/cm2 fluence irradiation and photoluminescence (PL) related defects for deep-ultraviolet (DUV) fused silica samples with different H2 and OH contents (0~1200ppm). Experimental results showed strong correlations between apparent nonlinear absorption at 193nm to 650nm PL band originated from a non-bridging oxygen hole center (NBOHC), and between apparent linear absorption at 193nm to 550nm PL band. In addition, only 650nm PL defects showed reversible concentration change under 193nm laser irradiation, indicating a possible link to the rapid damage process (RDP) under DUV irradiation. Experimental observation and theoretical calculations on the dependence of 650nm PL intensity on the laser fluence further demonstrated that the generation and annealing processes of NBOHC in these DUV fused silica samples are mainly due to two-photon excitation induced breakage of SiOH bond and combination of NBOHC with H2. These results give new insight into the influence of NBOHC and SiOH on fused silica’s DUV absorption and transmission properties, and therefore are helpful to the development of high-performance DUV fused silica materials.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Influence of neutron and gamma-ray irradiations on rad-hard optical fiber

A. Morana, S. Girard, M. Cannas, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, R. Boscaino, B. Nacir, A. Boukenter, and Y. Ouerdane
Opt. Mater. Express 5(4) 898-911 (2015)

Correlation between oxygen-deficient center formation and volume compaction in synthetic SiO2 glass upon ArF or F2 excimer-laser irradiation

Yoshiaki Ikuta, Koichi Kajihara, Masahiro Hirano, and Hideo Hosono
Appl. Opt. 43(11) 2332-2336 (2004)

References

  • View by:
  • |
  • |
  • |

  1. U. Natura, R. Martin, G. Goenna, M. Kahlke, and G. Fasold, “Kinetics of laser induced changes of characteristic optical properties in lithosil with 193nm excimer laser exposure,” Proc. SPIE 5754, 1312–1319 (2005).
    [Crossref]
  2. C. Mühlig, W. Triebel, and S. Kufert, “Rapid lifetime testing of fused silica for DUV laser applications,” J. Non-Cryst. Solids 357(8-9), 1981–1984 (2011).
    [Crossref]
  3. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
    [Crossref]
  4. L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2,” Phys. Rev. B 84(20), 205206 (2011).
    [Crossref]
  5. C. Mühlig, S. Bublitz, and H. Bernitzki, “193 nm absorption behavior in medium-to-high OH containing fused silica — The role of the initial ODC, OH and H2 contents,” J. Non-Cryst. Solids 366, 42–47 (2013).
    [Crossref]
  6. C. Mühlig, S. Bublitz, and H. Bernitzki, “Comparative study of fused silica materials for ArF laser applications,” Proc. SPIE 8190, 81901Q (2011).
    [Crossref]
  7. A.-M. El-Sayed, M. B. Watkins, T. Grasser, V. V. Afanas’ev, and A. L. Shluger, “Hydrogen-induced rupture of strained Si─O bonds in amorphous silicon dioxide,” Phys. Rev. Lett. 114(11), 115503 (2015).
    [Crossref] [PubMed]
  8. H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
    [Crossref] [PubMed]
  9. S. R. George, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica: II. Neutral atom and molecule emission,” J. Appl. Phys. 107(3), 033108 (2010).
    [Crossref]
  10. U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2004).
    [Crossref]
  11. K. Mann, O. Apel, G. Eckert, C. Görling, U. Leinhos, and B. Schäfer, “Testing of optical components for microlithography at 193nm and 157nm,” Proc. SPIE 4346, 1340–1348 (2001).
    [Crossref]
  12. J. Zhou and B. Li, “Origins of a damage-induced green photoluminescence band in fused silica revealed by time-resolved photoluminescence spectroscopy,” Opt. Mater. Express 7(8), 2888 (2017).
    [Crossref]
  13. H. Ikeda, T. Murata, and S. Fujino, “Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO2-PVA nanocomposite,” Mater. Chem. Phys. 162, 431–435 (2015).
    [Crossref]
  14. K. M. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, “Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass,” J. Non-Cryst. Solids 203, 27–36 (1996).
    [Crossref]
  15. R. L. DeRosa, P. A. Schader, and J. E. Shelby, “Hydrophilic nature of silicate glass surfaces as a function of exposure condition,” J. Non-Cryst. Solids 331(1-3), 32–40 (2003).
    [Crossref]
  16. W. Liu and B. Li, “Repetition rate dependence of absorption of fused silica irradiated at 193 nm,” Chin. Opt. Lett. 11(5), 053002 (2013).
    [Crossref]
  17. L. Skuja, K. Kajihara, J. Grube, and H. Hosono, “Luminescence of non-bridging oxygen hole centers in crystalline SiO2,” AIP Conf. Proc. 1624, 130–134 (2014).
    [Crossref]
  18. M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, “SiO2:Ge photoluminescence: detailed mapping of the excitation-emission UV pattern,” Phys. Rev. B 57(7), 3718–3721 (1998).
    [Crossref]
  19. P. V. Sushko, S. Mukhopadhyay, A. S. Mysovsky, V. B. Sulimov, A. Taga, and A. L. Shluger, “Structure and properties of defects in amorphous silica: new insights from embedded cluster calculations,” J. Phys. Condens. Matter 17(21), S2115–S2140 (2005).
    [Crossref]
  20. A. N. Trukhin, “Luminescence of α-quartz crystal and silica glass under excitation of excimer lasers ArF (193 nm), KrF (248 nm),” J. Lumin. 188, 524–528 (2017).
    [Crossref]
  21. D. F. Swinehart, “The Beer-Lambert law,” J. Chem. Educ. 39(7), 333–335 (1962).
    [Crossref]
  22. M. Cannas and F. M. Gelardi, “Vacuum ultraviolet excitation of the 1.9-eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B 69(15), 153201 (2004).
    [Crossref]
  23. L. Skuja, H. Hosono, M. Hirano, and K. Kajihara, “Advances in silica-based glasses for UV and vacuum-UV laser optics,” Proc. SPIE 5122, 1–14 (2003).
  24. H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
    [Crossref]
  25. Y. Sakurai and K. Nagasawa, “Correlation between the green photoluminescence band and the peroxy radical in γ-irradiated silica glass,” J. Appl. Phys. 88(1), 168–171 (2000).
    [Crossref]
  26. Y. Sakurai, “Photoluminescence band near 2.2 eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids 342(1-3), 54–58 (2004).
    [Crossref]
  27. L. Vaccaro, A. Morana, V. Radzig, and M. Cannas, “Bright visible luminescence in silica nanoparticles,” J. Phys. Chem. C 115(40), 19476–19481 (2011).
    [Crossref]
  28. R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66(9), 4035–4040 (1989).
    [Crossref]
  29. K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of mobile interstitial oxygen atoms in defect processes in oxides: interconversion between oxygen-associated defects in SiO2 glass,” Phys. Rev. Lett. 92(1), 015504 (2004).
    [Crossref] [PubMed]
  30. K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: In situ observation using a pump and probe technique,” Appl. Phys. Lett. 79(12), 1757–1759 (2001).
    [Crossref]
  31. K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Diffusion and reactions of hydrogen in F2-laser-irradiated SiO2 glass,” Phys. Rev. Lett. 89(13), 135507 (2002).
    [Crossref] [PubMed]
  32. F. Messina and M. Cannas, “Character of the reaction between molecular hydrogen and a silicon dangling bond in amorphous SiO2,” J. Phys. Chem. C 111(18), 6663–6667 (2007).
    [Crossref]
  33. K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “In situ observation of the formation, diffusion, and reactions of hydrogenous species in F2-laser-irradiated SiO2 glass using a pump-and-probe technique,” Phys. Rev. B 74(9), 094202 (2006).
    [Crossref]

2017 (2)

J. Zhou and B. Li, “Origins of a damage-induced green photoluminescence band in fused silica revealed by time-resolved photoluminescence spectroscopy,” Opt. Mater. Express 7(8), 2888 (2017).
[Crossref]

A. N. Trukhin, “Luminescence of α-quartz crystal and silica glass under excitation of excimer lasers ArF (193 nm), KrF (248 nm),” J. Lumin. 188, 524–528 (2017).
[Crossref]

2015 (2)

H. Ikeda, T. Murata, and S. Fujino, “Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO2-PVA nanocomposite,” Mater. Chem. Phys. 162, 431–435 (2015).
[Crossref]

A.-M. El-Sayed, M. B. Watkins, T. Grasser, V. V. Afanas’ev, and A. L. Shluger, “Hydrogen-induced rupture of strained Si─O bonds in amorphous silicon dioxide,” Phys. Rev. Lett. 114(11), 115503 (2015).
[Crossref] [PubMed]

2014 (1)

L. Skuja, K. Kajihara, J. Grube, and H. Hosono, “Luminescence of non-bridging oxygen hole centers in crystalline SiO2,” AIP Conf. Proc. 1624, 130–134 (2014).
[Crossref]

2013 (2)

W. Liu and B. Li, “Repetition rate dependence of absorption of fused silica irradiated at 193 nm,” Chin. Opt. Lett. 11(5), 053002 (2013).
[Crossref]

C. Mühlig, S. Bublitz, and H. Bernitzki, “193 nm absorption behavior in medium-to-high OH containing fused silica — The role of the initial ODC, OH and H2 contents,” J. Non-Cryst. Solids 366, 42–47 (2013).
[Crossref]

2011 (4)

C. Mühlig, S. Bublitz, and H. Bernitzki, “Comparative study of fused silica materials for ArF laser applications,” Proc. SPIE 8190, 81901Q (2011).
[Crossref]

C. Mühlig, W. Triebel, and S. Kufert, “Rapid lifetime testing of fused silica for DUV laser applications,” J. Non-Cryst. Solids 357(8-9), 1981–1984 (2011).
[Crossref]

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2,” Phys. Rev. B 84(20), 205206 (2011).
[Crossref]

L. Vaccaro, A. Morana, V. Radzig, and M. Cannas, “Bright visible luminescence in silica nanoparticles,” J. Phys. Chem. C 115(40), 19476–19481 (2011).
[Crossref]

2010 (1)

S. R. George, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica: II. Neutral atom and molecule emission,” J. Appl. Phys. 107(3), 033108 (2010).
[Crossref]

2007 (1)

F. Messina and M. Cannas, “Character of the reaction between molecular hydrogen and a silicon dangling bond in amorphous SiO2,” J. Phys. Chem. C 111(18), 6663–6667 (2007).
[Crossref]

2006 (1)

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “In situ observation of the formation, diffusion, and reactions of hydrogenous species in F2-laser-irradiated SiO2 glass using a pump-and-probe technique,” Phys. Rev. B 74(9), 094202 (2006).
[Crossref]

2005 (2)

P. V. Sushko, S. Mukhopadhyay, A. S. Mysovsky, V. B. Sulimov, A. Taga, and A. L. Shluger, “Structure and properties of defects in amorphous silica: new insights from embedded cluster calculations,” J. Phys. Condens. Matter 17(21), S2115–S2140 (2005).
[Crossref]

U. Natura, R. Martin, G. Goenna, M. Kahlke, and G. Fasold, “Kinetics of laser induced changes of characteristic optical properties in lithosil with 193nm excimer laser exposure,” Proc. SPIE 5754, 1312–1319 (2005).
[Crossref]

2004 (4)

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2004).
[Crossref]

Y. Sakurai, “Photoluminescence band near 2.2 eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids 342(1-3), 54–58 (2004).
[Crossref]

M. Cannas and F. M. Gelardi, “Vacuum ultraviolet excitation of the 1.9-eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B 69(15), 153201 (2004).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of mobile interstitial oxygen atoms in defect processes in oxides: interconversion between oxygen-associated defects in SiO2 glass,” Phys. Rev. Lett. 92(1), 015504 (2004).
[Crossref] [PubMed]

2003 (2)

L. Skuja, H. Hosono, M. Hirano, and K. Kajihara, “Advances in silica-based glasses for UV and vacuum-UV laser optics,” Proc. SPIE 5122, 1–14 (2003).

R. L. DeRosa, P. A. Schader, and J. E. Shelby, “Hydrophilic nature of silicate glass surfaces as a function of exposure condition,” J. Non-Cryst. Solids 331(1-3), 32–40 (2003).
[Crossref]

2002 (2)

H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Diffusion and reactions of hydrogen in F2-laser-irradiated SiO2 glass,” Phys. Rev. Lett. 89(13), 135507 (2002).
[Crossref] [PubMed]

2001 (3)

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: In situ observation using a pump and probe technique,” Appl. Phys. Lett. 79(12), 1757–1759 (2001).
[Crossref]

K. Mann, O. Apel, G. Eckert, C. Görling, U. Leinhos, and B. Schäfer, “Testing of optical components for microlithography at 193nm and 157nm,” Proc. SPIE 4346, 1340–1348 (2001).
[Crossref]

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

2000 (1)

Y. Sakurai and K. Nagasawa, “Correlation between the green photoluminescence band and the peroxy radical in γ-irradiated silica glass,” J. Appl. Phys. 88(1), 168–171 (2000).
[Crossref]

1998 (2)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, “SiO2:Ge photoluminescence: detailed mapping of the excitation-emission UV pattern,” Phys. Rev. B 57(7), 3718–3721 (1998).
[Crossref]

1996 (1)

K. M. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, “Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass,” J. Non-Cryst. Solids 203, 27–36 (1996).
[Crossref]

1989 (1)

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66(9), 4035–4040 (1989).
[Crossref]

1962 (1)

D. F. Swinehart, “The Beer-Lambert law,” J. Chem. Educ. 39(7), 333–335 (1962).
[Crossref]

Afanas’ev, V. V.

A.-M. El-Sayed, M. B. Watkins, T. Grasser, V. V. Afanas’ev, and A. L. Shluger, “Hydrogen-induced rupture of strained Si─O bonds in amorphous silicon dioxide,” Phys. Rev. Lett. 114(11), 115503 (2015).
[Crossref] [PubMed]

Agarwal, A.

K. M. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, “Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass,” J. Non-Cryst. Solids 203, 27–36 (1996).
[Crossref]

Apel, O.

K. Mann, O. Apel, G. Eckert, C. Görling, U. Leinhos, and B. Schäfer, “Testing of optical components for microlithography at 193nm and 157nm,” Proc. SPIE 4346, 1340–1348 (2001).
[Crossref]

Bernitzki, H.

C. Mühlig, S. Bublitz, and H. Bernitzki, “193 nm absorption behavior in medium-to-high OH containing fused silica — The role of the initial ODC, OH and H2 contents,” J. Non-Cryst. Solids 366, 42–47 (2013).
[Crossref]

C. Mühlig, S. Bublitz, and H. Bernitzki, “Comparative study of fused silica materials for ArF laser applications,” Proc. SPIE 8190, 81901Q (2011).
[Crossref]

Brimacombe, R. K.

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66(9), 4035–4040 (1989).
[Crossref]

Bublitz, S.

C. Mühlig, S. Bublitz, and H. Bernitzki, “193 nm absorption behavior in medium-to-high OH containing fused silica — The role of the initial ODC, OH and H2 contents,” J. Non-Cryst. Solids 366, 42–47 (2013).
[Crossref]

C. Mühlig, S. Bublitz, and H. Bernitzki, “Comparative study of fused silica materials for ArF laser applications,” Proc. SPIE 8190, 81901Q (2011).
[Crossref]

Cannas, M.

L. Vaccaro, A. Morana, V. Radzig, and M. Cannas, “Bright visible luminescence in silica nanoparticles,” J. Phys. Chem. C 115(40), 19476–19481 (2011).
[Crossref]

F. Messina and M. Cannas, “Character of the reaction between molecular hydrogen and a silicon dangling bond in amorphous SiO2,” J. Phys. Chem. C 111(18), 6663–6667 (2007).
[Crossref]

M. Cannas and F. M. Gelardi, “Vacuum ultraviolet excitation of the 1.9-eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B 69(15), 153201 (2004).
[Crossref]

Davis, K. M.

K. M. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, “Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass,” J. Non-Cryst. Solids 203, 27–36 (1996).
[Crossref]

DeRosa, R. L.

R. L. DeRosa, P. A. Schader, and J. E. Shelby, “Hydrophilic nature of silicate glass surfaces as a function of exposure condition,” J. Non-Cryst. Solids 331(1-3), 32–40 (2003).
[Crossref]

Dickinson, J. T.

S. R. George, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica: II. Neutral atom and molecule emission,” J. Appl. Phys. 107(3), 033108 (2010).
[Crossref]

Eckert, G.

K. Mann, O. Apel, G. Eckert, C. Görling, U. Leinhos, and B. Schäfer, “Testing of optical components for microlithography at 193nm and 157nm,” Proc. SPIE 4346, 1340–1348 (2001).
[Crossref]

El-Sayed, A.-M.

A.-M. El-Sayed, M. B. Watkins, T. Grasser, V. V. Afanas’ev, and A. L. Shluger, “Hydrogen-induced rupture of strained Si─O bonds in amorphous silicon dioxide,” Phys. Rev. Lett. 114(11), 115503 (2015).
[Crossref] [PubMed]

Fasold, G.

U. Natura, R. Martin, G. Goenna, M. Kahlke, and G. Fasold, “Kinetics of laser induced changes of characteristic optical properties in lithosil with 193nm excimer laser exposure,” Proc. SPIE 5754, 1312–1319 (2005).
[Crossref]

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2004).
[Crossref]

Fujino, S.

H. Ikeda, T. Murata, and S. Fujino, “Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO2-PVA nanocomposite,” Mater. Chem. Phys. 162, 431–435 (2015).
[Crossref]

Gelardi, F. M.

M. Cannas and F. M. Gelardi, “Vacuum ultraviolet excitation of the 1.9-eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B 69(15), 153201 (2004).
[Crossref]

George, S. R.

S. R. George, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica: II. Neutral atom and molecule emission,” J. Appl. Phys. 107(3), 033108 (2010).
[Crossref]

Goenna, G.

U. Natura, R. Martin, G. Goenna, M. Kahlke, and G. Fasold, “Kinetics of laser induced changes of characteristic optical properties in lithosil with 193nm excimer laser exposure,” Proc. SPIE 5754, 1312–1319 (2005).
[Crossref]

Görling, C.

K. Mann, O. Apel, G. Eckert, C. Görling, U. Leinhos, and B. Schäfer, “Testing of optical components for microlithography at 193nm and 157nm,” Proc. SPIE 4346, 1340–1348 (2001).
[Crossref]

Grasser, T.

A.-M. El-Sayed, M. B. Watkins, T. Grasser, V. V. Afanas’ev, and A. L. Shluger, “Hydrogen-induced rupture of strained Si─O bonds in amorphous silicon dioxide,” Phys. Rev. Lett. 114(11), 115503 (2015).
[Crossref] [PubMed]

Grube, J.

L. Skuja, K. Kajihara, J. Grube, and H. Hosono, “Luminescence of non-bridging oxygen hole centers in crystalline SiO2,” AIP Conf. Proc. 1624, 130–134 (2014).
[Crossref]

Hirano, M.

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2,” Phys. Rev. B 84(20), 205206 (2011).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “In situ observation of the formation, diffusion, and reactions of hydrogenous species in F2-laser-irradiated SiO2 glass using a pump-and-probe technique,” Phys. Rev. B 74(9), 094202 (2006).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of mobile interstitial oxygen atoms in defect processes in oxides: interconversion between oxygen-associated defects in SiO2 glass,” Phys. Rev. Lett. 92(1), 015504 (2004).
[Crossref] [PubMed]

L. Skuja, H. Hosono, M. Hirano, and K. Kajihara, “Advances in silica-based glasses for UV and vacuum-UV laser optics,” Proc. SPIE 5122, 1–14 (2003).

H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Diffusion and reactions of hydrogen in F2-laser-irradiated SiO2 glass,” Phys. Rev. Lett. 89(13), 135507 (2002).
[Crossref] [PubMed]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: In situ observation using a pump and probe technique,” Appl. Phys. Lett. 79(12), 1757–1759 (2001).
[Crossref]

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

Hirao, K.

K. M. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, “Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass,” J. Non-Cryst. Solids 203, 27–36 (1996).
[Crossref]

Hosono, H.

L. Skuja, K. Kajihara, J. Grube, and H. Hosono, “Luminescence of non-bridging oxygen hole centers in crystalline SiO2,” AIP Conf. Proc. 1624, 130–134 (2014).
[Crossref]

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2,” Phys. Rev. B 84(20), 205206 (2011).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “In situ observation of the formation, diffusion, and reactions of hydrogenous species in F2-laser-irradiated SiO2 glass using a pump-and-probe technique,” Phys. Rev. B 74(9), 094202 (2006).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of mobile interstitial oxygen atoms in defect processes in oxides: interconversion between oxygen-associated defects in SiO2 glass,” Phys. Rev. Lett. 92(1), 015504 (2004).
[Crossref] [PubMed]

L. Skuja, H. Hosono, M. Hirano, and K. Kajihara, “Advances in silica-based glasses for UV and vacuum-UV laser optics,” Proc. SPIE 5122, 1–14 (2003).

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Diffusion and reactions of hydrogen in F2-laser-irradiated SiO2 glass,” Phys. Rev. Lett. 89(13), 135507 (2002).
[Crossref] [PubMed]

H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
[Crossref]

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: In situ observation using a pump and probe technique,” Appl. Phys. Lett. 79(12), 1757–1759 (2001).
[Crossref]

Ikeda, H.

H. Ikeda, T. Murata, and S. Fujino, “Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO2-PVA nanocomposite,” Mater. Chem. Phys. 162, 431–435 (2015).
[Crossref]

Ikuta, Y.

H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
[Crossref]

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

Kahlke, M.

U. Natura, R. Martin, G. Goenna, M. Kahlke, and G. Fasold, “Kinetics of laser induced changes of characteristic optical properties in lithosil with 193nm excimer laser exposure,” Proc. SPIE 5754, 1312–1319 (2005).
[Crossref]

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2004).
[Crossref]

Kajihara, K.

L. Skuja, K. Kajihara, J. Grube, and H. Hosono, “Luminescence of non-bridging oxygen hole centers in crystalline SiO2,” AIP Conf. Proc. 1624, 130–134 (2014).
[Crossref]

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2,” Phys. Rev. B 84(20), 205206 (2011).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “In situ observation of the formation, diffusion, and reactions of hydrogenous species in F2-laser-irradiated SiO2 glass using a pump-and-probe technique,” Phys. Rev. B 74(9), 094202 (2006).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of mobile interstitial oxygen atoms in defect processes in oxides: interconversion between oxygen-associated defects in SiO2 glass,” Phys. Rev. Lett. 92(1), 015504 (2004).
[Crossref] [PubMed]

L. Skuja, H. Hosono, M. Hirano, and K. Kajihara, “Advances in silica-based glasses for UV and vacuum-UV laser optics,” Proc. SPIE 5122, 1–14 (2003).

H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Diffusion and reactions of hydrogen in F2-laser-irradiated SiO2 glass,” Phys. Rev. Lett. 89(13), 135507 (2002).
[Crossref] [PubMed]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: In situ observation using a pump and probe technique,” Appl. Phys. Lett. 79(12), 1757–1759 (2001).
[Crossref]

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

Kinoshita, T.

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

Kufert, S.

C. Mühlig, W. Triebel, and S. Kufert, “Rapid lifetime testing of fused silica for DUV laser applications,” J. Non-Cryst. Solids 357(8-9), 1981–1984 (2011).
[Crossref]

Langford, S. C.

S. R. George, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica: II. Neutral atom and molecule emission,” J. Appl. Phys. 107(3), 033108 (2010).
[Crossref]

Leinhos, U.

K. Mann, O. Apel, G. Eckert, C. Görling, U. Leinhos, and B. Schäfer, “Testing of optical components for microlithography at 193nm and 157nm,” Proc. SPIE 4346, 1340–1348 (2001).
[Crossref]

Leopold, K. E.

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66(9), 4035–4040 (1989).
[Crossref]

Li, B.

Liu, W.

Mann, K.

K. Mann, O. Apel, G. Eckert, C. Görling, U. Leinhos, and B. Schäfer, “Testing of optical components for microlithography at 193nm and 157nm,” Proc. SPIE 4346, 1340–1348 (2001).
[Crossref]

Martin, R.

U. Natura, R. Martin, G. Goenna, M. Kahlke, and G. Fasold, “Kinetics of laser induced changes of characteristic optical properties in lithosil with 193nm excimer laser exposure,” Proc. SPIE 5754, 1312–1319 (2005).
[Crossref]

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2004).
[Crossref]

Martini, M.

M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, “SiO2:Ge photoluminescence: detailed mapping of the excitation-emission UV pattern,” Phys. Rev. B 57(7), 3718–3721 (1998).
[Crossref]

Meinardi, F.

M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, “SiO2:Ge photoluminescence: detailed mapping of the excitation-emission UV pattern,” Phys. Rev. B 57(7), 3718–3721 (1998).
[Crossref]

Messina, F.

F. Messina and M. Cannas, “Character of the reaction between molecular hydrogen and a silicon dangling bond in amorphous SiO2,” J. Phys. Chem. C 111(18), 6663–6667 (2007).
[Crossref]

Morana, A.

L. Vaccaro, A. Morana, V. Radzig, and M. Cannas, “Bright visible luminescence in silica nanoparticles,” J. Phys. Chem. C 115(40), 19476–19481 (2011).
[Crossref]

Mühlig, C.

C. Mühlig, S. Bublitz, and H. Bernitzki, “193 nm absorption behavior in medium-to-high OH containing fused silica — The role of the initial ODC, OH and H2 contents,” J. Non-Cryst. Solids 366, 42–47 (2013).
[Crossref]

C. Mühlig, S. Bublitz, and H. Bernitzki, “Comparative study of fused silica materials for ArF laser applications,” Proc. SPIE 8190, 81901Q (2011).
[Crossref]

C. Mühlig, W. Triebel, and S. Kufert, “Rapid lifetime testing of fused silica for DUV laser applications,” J. Non-Cryst. Solids 357(8-9), 1981–1984 (2011).
[Crossref]

Mukhopadhyay, S.

P. V. Sushko, S. Mukhopadhyay, A. S. Mysovsky, V. B. Sulimov, A. Taga, and A. L. Shluger, “Structure and properties of defects in amorphous silica: new insights from embedded cluster calculations,” J. Phys. Condens. Matter 17(21), S2115–S2140 (2005).
[Crossref]

Murata, T.

H. Ikeda, T. Murata, and S. Fujino, “Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO2-PVA nanocomposite,” Mater. Chem. Phys. 162, 431–435 (2015).
[Crossref]

Mysovsky, A. S.

P. V. Sushko, S. Mukhopadhyay, A. S. Mysovsky, V. B. Sulimov, A. Taga, and A. L. Shluger, “Structure and properties of defects in amorphous silica: new insights from embedded cluster calculations,” J. Phys. Condens. Matter 17(21), S2115–S2140 (2005).
[Crossref]

Nagasawa, K.

Y. Sakurai and K. Nagasawa, “Correlation between the green photoluminescence band and the peroxy radical in γ-irradiated silica glass,” J. Appl. Phys. 88(1), 168–171 (2000).
[Crossref]

Natura, U.

U. Natura, R. Martin, G. Goenna, M. Kahlke, and G. Fasold, “Kinetics of laser induced changes of characteristic optical properties in lithosil with 193nm excimer laser exposure,” Proc. SPIE 5754, 1312–1319 (2005).
[Crossref]

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2004).
[Crossref]

Paleari, A.

M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, “SiO2:Ge photoluminescence: detailed mapping of the excitation-emission UV pattern,” Phys. Rev. B 57(7), 3718–3721 (1998).
[Crossref]

Radzig, V.

L. Vaccaro, A. Morana, V. Radzig, and M. Cannas, “Bright visible luminescence in silica nanoparticles,” J. Phys. Chem. C 115(40), 19476–19481 (2011).
[Crossref]

Sakurai, Y.

Y. Sakurai, “Photoluminescence band near 2.2 eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids 342(1-3), 54–58 (2004).
[Crossref]

Y. Sakurai and K. Nagasawa, “Correlation between the green photoluminescence band and the peroxy radical in γ-irradiated silica glass,” J. Appl. Phys. 88(1), 168–171 (2000).
[Crossref]

Schader, P. A.

R. L. DeRosa, P. A. Schader, and J. E. Shelby, “Hydrophilic nature of silicate glass surfaces as a function of exposure condition,” J. Non-Cryst. Solids 331(1-3), 32–40 (2003).
[Crossref]

Schäfer, B.

K. Mann, O. Apel, G. Eckert, C. Görling, U. Leinhos, and B. Schäfer, “Testing of optical components for microlithography at 193nm and 157nm,” Proc. SPIE 4346, 1340–1348 (2001).
[Crossref]

Shelby, J. E.

R. L. DeRosa, P. A. Schader, and J. E. Shelby, “Hydrophilic nature of silicate glass surfaces as a function of exposure condition,” J. Non-Cryst. Solids 331(1-3), 32–40 (2003).
[Crossref]

Shluger, A. L.

A.-M. El-Sayed, M. B. Watkins, T. Grasser, V. V. Afanas’ev, and A. L. Shluger, “Hydrogen-induced rupture of strained Si─O bonds in amorphous silicon dioxide,” Phys. Rev. Lett. 114(11), 115503 (2015).
[Crossref] [PubMed]

P. V. Sushko, S. Mukhopadhyay, A. S. Mysovsky, V. B. Sulimov, A. Taga, and A. L. Shluger, “Structure and properties of defects in amorphous silica: new insights from embedded cluster calculations,” J. Phys. Condens. Matter 17(21), S2115–S2140 (2005).
[Crossref]

Skuja, L.

L. Skuja, K. Kajihara, J. Grube, and H. Hosono, “Luminescence of non-bridging oxygen hole centers in crystalline SiO2,” AIP Conf. Proc. 1624, 130–134 (2014).
[Crossref]

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2,” Phys. Rev. B 84(20), 205206 (2011).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “In situ observation of the formation, diffusion, and reactions of hydrogenous species in F2-laser-irradiated SiO2 glass using a pump-and-probe technique,” Phys. Rev. B 74(9), 094202 (2006).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of mobile interstitial oxygen atoms in defect processes in oxides: interconversion between oxygen-associated defects in SiO2 glass,” Phys. Rev. Lett. 92(1), 015504 (2004).
[Crossref] [PubMed]

L. Skuja, H. Hosono, M. Hirano, and K. Kajihara, “Advances in silica-based glasses for UV and vacuum-UV laser optics,” Proc. SPIE 5122, 1–14 (2003).

H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Diffusion and reactions of hydrogen in F2-laser-irradiated SiO2 glass,” Phys. Rev. Lett. 89(13), 135507 (2002).
[Crossref] [PubMed]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: In situ observation using a pump and probe technique,” Appl. Phys. Lett. 79(12), 1757–1759 (2001).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

Sohr, O.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2004).
[Crossref]

Spinolo, G.

M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, “SiO2:Ge photoluminescence: detailed mapping of the excitation-emission UV pattern,” Phys. Rev. B 57(7), 3718–3721 (1998).
[Crossref]

Sulimov, V. B.

P. V. Sushko, S. Mukhopadhyay, A. S. Mysovsky, V. B. Sulimov, A. Taga, and A. L. Shluger, “Structure and properties of defects in amorphous silica: new insights from embedded cluster calculations,” J. Phys. Condens. Matter 17(21), S2115–S2140 (2005).
[Crossref]

Sushko, P. V.

P. V. Sushko, S. Mukhopadhyay, A. S. Mysovsky, V. B. Sulimov, A. Taga, and A. L. Shluger, “Structure and properties of defects in amorphous silica: new insights from embedded cluster calculations,” J. Phys. Condens. Matter 17(21), S2115–S2140 (2005).
[Crossref]

Suzuki, T.

H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
[Crossref]

Swinehart, D. F.

D. F. Swinehart, “The Beer-Lambert law,” J. Chem. Educ. 39(7), 333–335 (1962).
[Crossref]

Taga, A.

P. V. Sushko, S. Mukhopadhyay, A. S. Mysovsky, V. B. Sulimov, A. Taga, and A. L. Shluger, “Structure and properties of defects in amorphous silica: new insights from embedded cluster calculations,” J. Phys. Condens. Matter 17(21), S2115–S2140 (2005).
[Crossref]

Taylor, R. S.

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66(9), 4035–4040 (1989).
[Crossref]

Tomozawa, M.

K. M. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, “Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass,” J. Non-Cryst. Solids 203, 27–36 (1996).
[Crossref]

Triebel, W.

C. Mühlig, W. Triebel, and S. Kufert, “Rapid lifetime testing of fused silica for DUV laser applications,” J. Non-Cryst. Solids 357(8-9), 1981–1984 (2011).
[Crossref]

Trukhin, A. N.

A. N. Trukhin, “Luminescence of α-quartz crystal and silica glass under excitation of excimer lasers ArF (193 nm), KrF (248 nm),” J. Lumin. 188, 524–528 (2017).
[Crossref]

Vaccaro, L.

L. Vaccaro, A. Morana, V. Radzig, and M. Cannas, “Bright visible luminescence in silica nanoparticles,” J. Phys. Chem. C 115(40), 19476–19481 (2011).
[Crossref]

Vedda, A.

M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, “SiO2:Ge photoluminescence: detailed mapping of the excitation-emission UV pattern,” Phys. Rev. B 57(7), 3718–3721 (1998).
[Crossref]

Watkins, M. B.

A.-M. El-Sayed, M. B. Watkins, T. Grasser, V. V. Afanas’ev, and A. L. Shluger, “Hydrogen-induced rupture of strained Si─O bonds in amorphous silicon dioxide,” Phys. Rev. Lett. 114(11), 115503 (2015).
[Crossref] [PubMed]

Zhou, J.

AIP Conf. Proc. (1)

L. Skuja, K. Kajihara, J. Grube, and H. Hosono, “Luminescence of non-bridging oxygen hole centers in crystalline SiO2,” AIP Conf. Proc. 1624, 130–134 (2014).
[Crossref]

Appl. Phys. Lett. (1)

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: In situ observation using a pump and probe technique,” Appl. Phys. Lett. 79(12), 1757–1759 (2001).
[Crossref]

Chin. Opt. Lett. (1)

J. Appl. Phys. (3)

S. R. George, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica: II. Neutral atom and molecule emission,” J. Appl. Phys. 107(3), 033108 (2010).
[Crossref]

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66(9), 4035–4040 (1989).
[Crossref]

Y. Sakurai and K. Nagasawa, “Correlation between the green photoluminescence band and the peroxy radical in γ-irradiated silica glass,” J. Appl. Phys. 88(1), 168–171 (2000).
[Crossref]

J. Chem. Educ. (1)

D. F. Swinehart, “The Beer-Lambert law,” J. Chem. Educ. 39(7), 333–335 (1962).
[Crossref]

J. Lumin. (1)

A. N. Trukhin, “Luminescence of α-quartz crystal and silica glass under excitation of excimer lasers ArF (193 nm), KrF (248 nm),” J. Lumin. 188, 524–528 (2017).
[Crossref]

J. Non-Cryst. Solids (6)

Y. Sakurai, “Photoluminescence band near 2.2 eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids 342(1-3), 54–58 (2004).
[Crossref]

C. Mühlig, W. Triebel, and S. Kufert, “Rapid lifetime testing of fused silica for DUV laser applications,” J. Non-Cryst. Solids 357(8-9), 1981–1984 (2011).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

C. Mühlig, S. Bublitz, and H. Bernitzki, “193 nm absorption behavior in medium-to-high OH containing fused silica — The role of the initial ODC, OH and H2 contents,” J. Non-Cryst. Solids 366, 42–47 (2013).
[Crossref]

K. M. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, “Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass,” J. Non-Cryst. Solids 203, 27–36 (1996).
[Crossref]

R. L. DeRosa, P. A. Schader, and J. E. Shelby, “Hydrophilic nature of silicate glass surfaces as a function of exposure condition,” J. Non-Cryst. Solids 331(1-3), 32–40 (2003).
[Crossref]

J. Phys. Chem. C (2)

L. Vaccaro, A. Morana, V. Radzig, and M. Cannas, “Bright visible luminescence in silica nanoparticles,” J. Phys. Chem. C 115(40), 19476–19481 (2011).
[Crossref]

F. Messina and M. Cannas, “Character of the reaction between molecular hydrogen and a silicon dangling bond in amorphous SiO2,” J. Phys. Chem. C 111(18), 6663–6667 (2007).
[Crossref]

J. Phys. Condens. Matter (1)

P. V. Sushko, S. Mukhopadhyay, A. S. Mysovsky, V. B. Sulimov, A. Taga, and A. L. Shluger, “Structure and properties of defects in amorphous silica: new insights from embedded cluster calculations,” J. Phys. Condens. Matter 17(21), S2115–S2140 (2005).
[Crossref]

Mater. Chem. Phys. (1)

H. Ikeda, T. Murata, and S. Fujino, “Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO2-PVA nanocomposite,” Mater. Chem. Phys. 162, 431–435 (2015).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (4)

M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, “SiO2:Ge photoluminescence: detailed mapping of the excitation-emission UV pattern,” Phys. Rev. B 57(7), 3718–3721 (1998).
[Crossref]

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2,” Phys. Rev. B 84(20), 205206 (2011).
[Crossref]

M. Cannas and F. M. Gelardi, “Vacuum ultraviolet excitation of the 1.9-eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B 69(15), 153201 (2004).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “In situ observation of the formation, diffusion, and reactions of hydrogenous species in F2-laser-irradiated SiO2 glass using a pump-and-probe technique,” Phys. Rev. B 74(9), 094202 (2006).
[Crossref]

Phys. Rev. Lett. (4)

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of mobile interstitial oxygen atoms in defect processes in oxides: interconversion between oxygen-associated defects in SiO2 glass,” Phys. Rev. Lett. 92(1), 015504 (2004).
[Crossref] [PubMed]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Diffusion and reactions of hydrogen in F2-laser-irradiated SiO2 glass,” Phys. Rev. Lett. 89(13), 135507 (2002).
[Crossref] [PubMed]

A.-M. El-Sayed, M. B. Watkins, T. Grasser, V. V. Afanas’ev, and A. L. Shluger, “Hydrogen-induced rupture of strained Si─O bonds in amorphous silicon dioxide,” Phys. Rev. Lett. 114(11), 115503 (2015).
[Crossref] [PubMed]

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

Proc. SPIE (5)

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2004).
[Crossref]

K. Mann, O. Apel, G. Eckert, C. Görling, U. Leinhos, and B. Schäfer, “Testing of optical components for microlithography at 193nm and 157nm,” Proc. SPIE 4346, 1340–1348 (2001).
[Crossref]

C. Mühlig, S. Bublitz, and H. Bernitzki, “Comparative study of fused silica materials for ArF laser applications,” Proc. SPIE 8190, 81901Q (2011).
[Crossref]

U. Natura, R. Martin, G. Goenna, M. Kahlke, and G. Fasold, “Kinetics of laser induced changes of characteristic optical properties in lithosil with 193nm excimer laser exposure,” Proc. SPIE 5754, 1312–1319 (2005).
[Crossref]

L. Skuja, H. Hosono, M. Hirano, and K. Kajihara, “Advances in silica-based glasses for UV and vacuum-UV laser optics,” Proc. SPIE 5122, 1–14 (2003).

Solid State Commun. (1)

H. Hosono, K. Kajihara, T. Suzuki, Y. Ikuta, L. Skuja, and M. Hirano, “Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass,” Solid State Commun. 122(3-4), 117–120 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 IR transmittance spectra of fused silica samples (a) and quartz sample (b) from 3000cm−1 to 5000cm−1 wavenumber.
Fig. 2
Fig. 2 1.5~5.0mJ/cm2 fluence dependence of 193nm absorptance for FS 1 and Q1 measured at 400Hz repetition rate. Dotted lines are linear fit to data points for each sample.
Fig. 3
Fig. 3 PL spectra (delay 0.0μs, detector gate width 100.0μs) of fused silica samples (a) and quartz sample (b) excited by 193nm laser at 400Hz repetition rate and 5.0mJ/cm2 fluence. Dotted and full lines are PL spectra before and after pre-irradiation process (400Hz repetition rate, 10.0mJ/cm2 fluence, and ~3.6kJ/cm2 dose), respectively. Resolved PL band intensity spectra of FS4 and Q1 resolved via lifetime spectrum method are shown in (c) and (d), respectively.
Fig. 4
Fig. 4 Fluence dependence of common PL band intensities for FS 4 (a) and Q1 (b) samples excited by 193nm laser at 400Hz repetition rate. The dotted lines represent quadratic fits to measured data.
Fig. 5
Fig. 5 Peak intensities of 311nm PL band versus 363nm PL band at 193nm laser irradiation with 400Hz repetition rate and 5.0mJ/cm2 fluence.
Fig. 6
Fig. 6 (a) Transmittance spectra in the spectral range of 160nm to 300nm for the 5 fused silica samples; (b) 160nm absorption coefficient versus SiOH content. The dotted line is a linear fit.
Fig. 7
Fig. 7 (a) 550nm PL peak intensity versus 193nm apparent linear absorption coefficient α193nm. (b) 650nm PL peak intensity versus 193nm apparent nonlinear absorption coefficient β193nm. Dotted lines represent corresponding linear fits. The measurements are performed at 400Hz repetition rate and 5.0mJ/cm2 fluence.
Fig. 8
Fig. 8 Peak intensity changes of 550nm (green) and 650nm (red) PL bands for FS 3 (a) and FS 4 (b) samples following fluence change (c). Black dotted lines represent fits of intensity change of 650nm PL band. The measurements are performed at 400Hz repetition rate.
Fig. 9
Fig. 9 SiOH content dependences of 650nm PL intensity (a) and generation rate (b).

Tables (2)

Tables Icon

Table 1 H2 content, SiOH content, and apparent linear α193nm and nonlinear absorption coefficients β193nm at 193nm of all SiO2 samples.

Tables Icon

Table 2 1. Peak position, FWHM (full width at half maximum) and lifetime of common resolved PL bands in fused silica and quartz samples excited at 193nm (400Hz repetition rate, 10.0mJ/cm2 fluence).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α 193nm =a/d; β 193nm =bτ/d;
d C N B O ( t ) t = k 1 ( H ) k H 2 [ ( C N B O ( t ) + a ( t ) ) / 2 + ( C H 2 a ( t ) ) ] C N B O ( t ) ; k 1 ( H ) H n ;
I H ( H ) = S H ( H ) [ 1 c exp ( k H 2 C H 2 t ) ] ; S H ( H ) k 1 ( H ) / ( k H 2 C H 2 ) ;
I L ( H ) = S L ( H ) [ 1 2 S L ( H ) / ( exp ( 2 S L ( H ) k H 2 t ) 1 ) ] ; S L ( H ) k 1 ( H ) / k H 2 ;

Metrics