Abstract

We propose that the strong modulation of a light wave at telecommunication wavelengths can be obtained by a combing graphene/Al2O3 multilayer stack (GAMS) with a one-dimensional electro-optic (EO) modulator based on a photonic crystal nanobeam (PCN). The amplitude of the light-graphene (LG) interaction in GAMS is enhanced significantly compared with it in monolayer graphene, thus through tuning the chemical potential of graphene via gate voltage, both the resonant wavelength as well as the absorption peak can be significantly adjusted. Simulation results show that the modulation depth of resonance is about 11.25nm/eV. Furthermore, we also design a two-defect-cavity EO modulator based on a pair of GAMSs, which reveals two tunable resonant wavelengths when different gate voltage is applied on each GAMS. As a novel alternative, our proposed device may provide potential applications in high-density integrated optical devices, photolectric transducers, and laser pulse limiters.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity

Ting Pan, Ciyuan Qiu, Jiayang Wu, Xinhong Jiang, Boyu Liu, Yuxing Yang, Huanying Zhou, Richard Soref, and Yikai Su
Opt. Express 23(18) 23357-23364 (2015)

Near-infrared electro-optic modulator based on plasmonic graphene

Susbhan Das, Alessandro Salandrino, Judy Z. Wu, and Rongqing Hui
Opt. Lett. 40(7) 1516-1519 (2015)

Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation

Joshua Hendrickson, Richard Soref, Julian Sweet, and Walter Buchwald
Opt. Express 22(3) 3271-3283 (2014)

References

  • View by:
  • |
  • |
  • |

  1. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Loncar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18(8), 8705–8712 (2010).
    [Crossref] [PubMed]
  2. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  3. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
    [Crossref]
  4. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuranochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
    [Crossref]
  5. J. Hendrickson, R. Soref, J. Sweet, and W. Buchwald, “Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation,” Opt. Express 22(3), 3271–3283 (2014).
    [Crossref] [PubMed]
  6. W. S. Fegadolli, J. E. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
    [Crossref] [PubMed]
  7. B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
    [Crossref]
  8. L. A. Bian, P. G. Liu, Z. Z. Han, G. S. Li, J. Mao, and Z. Lu, “Near-unity absorption in a graphene-embedded defective photonic crystals array,” Superlattices Microstruct. 104, 461–469 (2017).
    [Crossref]
  9. M. H. Liu, C. Gorini, and K. Richter, “Creating and steering highly directional and electron beams in graphene,” Phys. Rev. Lett. 118(6), 066801 (2017).
    [Crossref] [PubMed]
  10. P. Pasanen, M. Voutilainen, M. Helle, X. Song, and P. J. Hakonen, “Graphene for future electronics,” Appl. Phys. Lett. 95(1), 061101 (2016).
  11. W. Fan and X. Chen, “Polarization-insensitive tunable multiple electromagnetically induced transparencies analogue in terahertz graphene metamaterial,” Opt. Mater. Express 6(8), 2607–2615 (2016).
    [Crossref]
  12. C. Baeumer, S. P. Rogers, R. Xu, L. W. Martin, and M. Shim, “Tunable carrier type and density in graphene/PbZr0.2Ti0.8O3 hybrid structures through ferroelectric switching,” Nano Lett. 13(4), 1693–1698 (2013).
    [Crossref] [PubMed]
  13. T. Pan, C. Qiu, J. Wu, X. Jiang, B. Liu, Y. Yang, H. Zhou, R. Soref, and Y. Su, “Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity,” Opt. Express 23(18), 23357–23364 (2015).
    [Crossref] [PubMed]
  14. W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Chip-integrated nearly perfect absorber at telecom wavelengths by graphene coupled with nanobeam cavity,” Opt. Lett. 40(14), 3256–3259 (2015).
    [Crossref] [PubMed]
  15. X. Yin, T. Zhang, L. Chen, and X. Li, “Ultra-compact TE-pass polarizer with graphene multilayer embedded in a silicon slot waveguide,” Opt. Lett. 40(8), 1733–1736 (2015).
    [Crossref] [PubMed]
  16. A. B. Kuzmenko, L. Benfatto, E. Cappelluti, I. Crassee, D. van der Marel, P. Blake, K. S. Novoselov, and A. K. Geim, “Gate tunable infrared phonon anomalies in bilayer graphene,” Phys. Rev. Lett. 103(11), 116804 (2009).
    [Crossref] [PubMed]
  17. M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett. 101(21), 214102 (2012).
    [Crossref]
  18. J. S. Gomez-Diaz, C. Moldovan, S. Capdevila, J. Romeu, L. S. Bernard, A. Magrez, A. M. Ionescu, and J. Perruisseau-Carrier, “Self-biased reconfigurable graphene stacks for terahertz plasmonics,” Nat. Commun. 6(1), 6334 (2015).
    [Crossref] [PubMed]
  19. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
    [Crossref] [PubMed]
  20. S. Chugh, M. Man, Z. Chen, and K. J. Webb, “Ultra-dark graphene stack metamaterials,” Appl. Phys. Lett. 106(6), 061102 (2015).
    [Crossref]
  21. S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
    [Crossref] [PubMed]
  22. R. Hao, W. Du, H. S. Chen, X. F. Jin, L. Z. Yang, and E. Li, “Ultra-compact optical modulator by graphene induced electro-refraction effect,” Appl. Phys. Lett. 103(6), 061116 (2013).
    [Crossref]
  23. M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express 21(10), 12592–12603 (2013).
    [Crossref] [PubMed]
  24. J. A. Crosse, X. Xu, M. S. Sherwin, and R. B. Liu, “Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene,” Nat. Commun. 5(1), 4854 (2014).
    [Crossref] [PubMed]
  25. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref] [PubMed]
  26. G. Xing, H. Guo, X. Zhang, T. C. Sum, and C. H. Huan, “The Physics of ultrafast saturable absorption in graphene,” Opt. Express 18(5), 4564–4573 (2010).
    [Crossref] [PubMed]
  27. A. Yadav, M. Danesh, L. Zhong, G. J. Cheng, L. Jiang, and L. Chi, “Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals,” Nanotechnology 27(16), 165703 (2016).
    [Crossref] [PubMed]
  28. Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
    [Crossref] [PubMed]
  29. A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13(2), 515–518 (2013).
    [Crossref] [PubMed]
  30. W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Enhancement of near-infrared light graphene interaction by nanobeam resonator,” IEEE Photonics Technol. Lett. 27(19), 2023–2026 (2015).
    [Crossref]
  31. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [Crossref] [PubMed]
  32. J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
    [Crossref]
  33. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
    [Crossref] [PubMed]
  34. C. T. Phare, Y. H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 10, 1038 (2015).
  35. T. Babe, M. Shiga, K. Inoshita, and F. Koyama, “Carrier plasma shift in GaInAsP photonic crystal point defect cavity,” Electron. Lett. 39(21), 1516–1518 (2003).
    [Crossref]
  36. N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
    [Crossref] [PubMed]
  37. G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, “The application of graphene as electrodes in electrical and optical devices,” Nanotechnology 23(11), 112001 (2012).
    [Crossref] [PubMed]
  38. W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
    [Crossref] [PubMed]
  39. C. T. Phare, Y. H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 10, 1038 (2015).

2017 (2)

L. A. Bian, P. G. Liu, Z. Z. Han, G. S. Li, J. Mao, and Z. Lu, “Near-unity absorption in a graphene-embedded defective photonic crystals array,” Superlattices Microstruct. 104, 461–469 (2017).
[Crossref]

M. H. Liu, C. Gorini, and K. Richter, “Creating and steering highly directional and electron beams in graphene,” Phys. Rev. Lett. 118(6), 066801 (2017).
[Crossref] [PubMed]

2016 (3)

P. Pasanen, M. Voutilainen, M. Helle, X. Song, and P. J. Hakonen, “Graphene for future electronics,” Appl. Phys. Lett. 95(1), 061101 (2016).

W. Fan and X. Chen, “Polarization-insensitive tunable multiple electromagnetically induced transparencies analogue in terahertz graphene metamaterial,” Opt. Mater. Express 6(8), 2607–2615 (2016).
[Crossref]

A. Yadav, M. Danesh, L. Zhong, G. J. Cheng, L. Jiang, and L. Chi, “Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals,” Nanotechnology 27(16), 165703 (2016).
[Crossref] [PubMed]

2015 (9)

Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
[Crossref] [PubMed]

S. Chugh, M. Man, Z. Chen, and K. J. Webb, “Ultra-dark graphene stack metamaterials,” Appl. Phys. Lett. 106(6), 061102 (2015).
[Crossref]

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Enhancement of near-infrared light graphene interaction by nanobeam resonator,” IEEE Photonics Technol. Lett. 27(19), 2023–2026 (2015).
[Crossref]

C. T. Phare, Y. H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 10, 1038 (2015).

T. Pan, C. Qiu, J. Wu, X. Jiang, B. Liu, Y. Yang, H. Zhou, R. Soref, and Y. Su, “Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity,” Opt. Express 23(18), 23357–23364 (2015).
[Crossref] [PubMed]

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Chip-integrated nearly perfect absorber at telecom wavelengths by graphene coupled with nanobeam cavity,” Opt. Lett. 40(14), 3256–3259 (2015).
[Crossref] [PubMed]

X. Yin, T. Zhang, L. Chen, and X. Li, “Ultra-compact TE-pass polarizer with graphene multilayer embedded in a silicon slot waveguide,” Opt. Lett. 40(8), 1733–1736 (2015).
[Crossref] [PubMed]

J. S. Gomez-Diaz, C. Moldovan, S. Capdevila, J. Romeu, L. S. Bernard, A. Magrez, A. M. Ionescu, and J. Perruisseau-Carrier, “Self-biased reconfigurable graphene stacks for terahertz plasmonics,” Nat. Commun. 6(1), 6334 (2015).
[Crossref] [PubMed]

C. T. Phare, Y. H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 10, 1038 (2015).

2014 (4)

J. Hendrickson, R. Soref, J. Sweet, and W. Buchwald, “Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation,” Opt. Express 22(3), 3271–3283 (2014).
[Crossref] [PubMed]

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

J. A. Crosse, X. Xu, M. S. Sherwin, and R. B. Liu, “Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene,” Nat. Commun. 5(1), 4854 (2014).
[Crossref] [PubMed]

2013 (7)

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref] [PubMed]

R. Hao, W. Du, H. S. Chen, X. F. Jin, L. Z. Yang, and E. Li, “Ultra-compact optical modulator by graphene induced electro-refraction effect,” Appl. Phys. Lett. 103(6), 061116 (2013).
[Crossref]

M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express 21(10), 12592–12603 (2013).
[Crossref] [PubMed]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

W. S. Fegadolli, J. E. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
[Crossref] [PubMed]

C. Baeumer, S. P. Rogers, R. Xu, L. W. Martin, and M. Shim, “Tunable carrier type and density in graphene/PbZr0.2Ti0.8O3 hybrid structures through ferroelectric switching,” Nano Lett. 13(4), 1693–1698 (2013).
[Crossref] [PubMed]

W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
[Crossref] [PubMed]

2012 (5)

M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett. 101(21), 214102 (2012).
[Crossref]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, “The application of graphene as electrodes in electrical and optical devices,” Nanotechnology 23(11), 112001 (2012).
[Crossref] [PubMed]

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

2011 (2)

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

2010 (2)

2009 (2)

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

A. B. Kuzmenko, L. Benfatto, E. Cappelluti, I. Crassee, D. van der Marel, P. Blake, K. S. Novoselov, and A. K. Geim, “Gate tunable infrared phonon anomalies in bilayer graphene,” Phys. Rev. Lett. 103(11), 116804 (2009).
[Crossref] [PubMed]

2005 (1)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuranochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

2003 (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

T. Babe, M. Shiga, K. Inoshita, and F. Koyama, “Carrier plasma shift in GaInAsP photonic crystal point defect cavity,” Electron. Lett. 39(21), 1516–1518 (2003).
[Crossref]

Almeida, V. R.

Avouris, P.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Babe, T.

T. Babe, M. Shiga, K. Inoshita, and F. Koyama, “Carrier plasma shift in GaInAsP photonic crystal point defect cavity,” Electron. Lett. 39(21), 1516–1518 (2003).
[Crossref]

Baeumer, C.

C. Baeumer, S. P. Rogers, R. Xu, L. W. Martin, and M. Shim, “Tunable carrier type and density in graphene/PbZr0.2Ti0.8O3 hybrid structures through ferroelectric switching,” Nano Lett. 13(4), 1693–1698 (2013).
[Crossref] [PubMed]

Bagci, H.

Balandin, A. A.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Benfatto, L.

A. B. Kuzmenko, L. Benfatto, E. Cappelluti, I. Crassee, D. van der Marel, P. Blake, K. S. Novoselov, and A. K. Geim, “Gate tunable infrared phonon anomalies in bilayer graphene,” Phys. Rev. Lett. 103(11), 116804 (2009).
[Crossref] [PubMed]

Bernard, L. S.

J. S. Gomez-Diaz, C. Moldovan, S. Capdevila, J. Romeu, L. S. Bernard, A. Magrez, A. M. Ionescu, and J. Perruisseau-Carrier, “Self-biased reconfigurable graphene stacks for terahertz plasmonics,” Nat. Commun. 6(1), 6334 (2015).
[Crossref] [PubMed]

Bian, L. A.

L. A. Bian, P. G. Liu, Z. Z. Han, G. S. Li, J. Mao, and Z. Lu, “Near-unity absorption in a graphene-embedded defective photonic crystals array,” Superlattices Microstruct. 104, 461–469 (2017).
[Crossref]

Blake, P.

A. B. Kuzmenko, L. Benfatto, E. Cappelluti, I. Crassee, D. van der Marel, P. Blake, K. S. Novoselov, and A. K. Geim, “Gate tunable infrared phonon anomalies in bilayer graphene,” Phys. Rev. Lett. 103(11), 116804 (2009).
[Crossref] [PubMed]

Boltasseva, A.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Buchwald, W.

Cai, W.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Capdevila, S.

J. S. Gomez-Diaz, C. Moldovan, S. Capdevila, J. Romeu, L. S. Bernard, A. Magrez, A. M. Ionescu, and J. Perruisseau-Carrier, “Self-biased reconfigurable graphene stacks for terahertz plasmonics,” Nat. Commun. 6(1), 6334 (2015).
[Crossref] [PubMed]

Capolino, F.

Cappelluti, E.

A. B. Kuzmenko, L. Benfatto, E. Cappelluti, I. Crassee, D. van der Marel, P. Blake, K. S. Novoselov, and A. K. Geim, “Gate tunable infrared phonon anomalies in bilayer graphene,” Phys. Rev. Lett. 103(11), 116804 (2009).
[Crossref] [PubMed]

Cardenas, J.

C. T. Phare, Y. H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 10, 1038 (2015).

C. T. Phare, Y. H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 10, 1038 (2015).

Chandra, B.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Chen, H. S.

R. Hao, W. Du, H. S. Chen, X. F. Jin, L. Z. Yang, and E. Li, “Ultra-compact optical modulator by graphene induced electro-refraction effect,” Appl. Phys. Lett. 103(6), 061116 (2013).
[Crossref]

Chen, L.

Chen, S.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Chen, X.

Chen, Y. P.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Chen, Z.

S. Chugh, M. Man, Z. Chen, and K. J. Webb, “Ultra-dark graphene stack metamaterials,” Appl. Phys. Lett. 106(6), 061102 (2015).
[Crossref]

Cheng, G. J.

A. Yadav, M. Danesh, L. Zhong, G. J. Cheng, L. Jiang, and L. Chi, “Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals,” Nanotechnology 27(16), 165703 (2016).
[Crossref] [PubMed]

Chi, L.

A. Yadav, M. Danesh, L. Zhong, G. J. Cheng, L. Jiang, and L. Chi, “Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals,” Nanotechnology 27(16), 165703 (2016).
[Crossref] [PubMed]

Cho, K.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Choe, M.

G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, “The application of graphene as electrodes in electrical and optical devices,” Nanotechnology 23(11), 112001 (2012).
[Crossref] [PubMed]

Chugh, S.

S. Chugh, M. Man, Z. Chen, and K. J. Webb, “Ultra-dark graphene stack metamaterials,” Appl. Phys. Lett. 106(6), 061102 (2015).
[Crossref]

Chung, T. F.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Crassee, I.

A. B. Kuzmenko, L. Benfatto, E. Cappelluti, I. Crassee, D. van der Marel, P. Blake, K. S. Novoselov, and A. K. Geim, “Gate tunable infrared phonon anomalies in bilayer graphene,” Phys. Rev. Lett. 103(11), 116804 (2009).
[Crossref] [PubMed]

Crosse, J. A.

J. A. Crosse, X. Xu, M. S. Sherwin, and R. B. Liu, “Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene,” Nat. Commun. 5(1), 4854 (2014).
[Crossref] [PubMed]

Danesh, M.

A. Yadav, M. Danesh, L. Zhong, G. J. Cheng, L. Jiang, and L. Chi, “Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals,” Nanotechnology 27(16), 165703 (2016).
[Crossref] [PubMed]

Deotare, P. B.

Du, W.

R. Hao, W. Du, H. S. Chen, X. F. Jin, L. Z. Yang, and E. Li, “Ultra-compact optical modulator by graphene induced electro-refraction effect,” Appl. Phys. Lett. 103(6), 061116 (2013).
[Crossref]

Emani, N. K.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Fan, S. H.

J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Fan, W.

Farhat, M.

Fegadolli, W. S.

Frank, I. W.

Freitag, M.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Geim, A. K.

A. B. Kuzmenko, L. Benfatto, E. Cappelluti, I. Crassee, D. van der Marel, P. Blake, K. S. Novoselov, and A. K. Geim, “Gate tunable infrared phonon anomalies in bilayer graphene,” Phys. Rev. Lett. 103(11), 116804 (2009).
[Crossref] [PubMed]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Gomez-Diaz, J. S.

J. S. Gomez-Diaz, C. Moldovan, S. Capdevila, J. Romeu, L. S. Bernard, A. Magrez, A. M. Ionescu, and J. Perruisseau-Carrier, “Self-biased reconfigurable graphene stacks for terahertz plasmonics,” Nat. Commun. 6(1), 6334 (2015).
[Crossref] [PubMed]

M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett. 101(21), 214102 (2012).
[Crossref]

Gorini, C.

M. H. Liu, C. Gorini, and K. Richter, “Creating and steering highly directional and electron beams in graphene,” Phys. Rev. Lett. 118(6), 066801 (2017).
[Crossref] [PubMed]

Guclu, C.

Guo, H.

Hakonen, P. J.

P. Pasanen, M. Voutilainen, M. Helle, X. Song, and P. J. Hakonen, “Graphene for future electronics,” Appl. Phys. Lett. 95(1), 061101 (2016).

Han, Z. Z.

L. A. Bian, P. G. Liu, Z. Z. Han, G. S. Li, J. Mao, and Z. Lu, “Near-unity absorption in a graphene-embedded defective photonic crystals array,” Superlattices Microstruct. 104, 461–469 (2017).
[Crossref]

Hao, R.

R. Hao, W. Du, H. S. Chen, X. F. Jin, L. Z. Yang, and E. Li, “Ultra-compact optical modulator by graphene induced electro-refraction effect,” Appl. Phys. Lett. 103(6), 061116 (2013).
[Crossref]

Helle, M.

P. Pasanen, M. Voutilainen, M. Helle, X. Song, and P. J. Hakonen, “Graphene for future electronics,” Appl. Phys. Lett. 95(1), 061101 (2016).

Hendrickson, J.

Huan, C. H.

Inoshita, K.

T. Babe, M. Shiga, K. Inoshita, and F. Koyama, “Carrier plasma shift in GaInAsP photonic crystal point defect cavity,” Electron. Lett. 39(21), 1516–1518 (2003).
[Crossref]

Ionescu, A. M.

J. S. Gomez-Diaz, C. Moldovan, S. Capdevila, J. Romeu, L. S. Bernard, A. Magrez, A. M. Ionescu, and J. Perruisseau-Carrier, “Self-biased reconfigurable graphene stacks for terahertz plasmonics,” Nat. Commun. 6(1), 6334 (2015).
[Crossref] [PubMed]

Jiang, L.

A. Yadav, M. Danesh, L. Zhong, G. J. Cheng, L. Jiang, and L. Chi, “Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals,” Nanotechnology 27(16), 165703 (2016).
[Crossref] [PubMed]

Jiang, X.

T. Pan, C. Qiu, J. Wu, X. Jiang, B. Liu, Y. Yang, H. Zhou, R. Soref, and Y. Su, “Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity,” Opt. Express 23(18), 23357–23364 (2015).
[Crossref] [PubMed]

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Jin, X. F.

R. Hao, W. Du, H. S. Chen, X. F. Jin, L. Z. Yang, and E. Li, “Ultra-compact optical modulator by graphene induced electro-refraction effect,” Appl. Phys. Lett. 103(6), 061116 (2013).
[Crossref]

Jo, G.

G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, “The application of graphene as electrodes in electrical and optical devices,” Nanotechnology 23(11), 112001 (2012).
[Crossref] [PubMed]

Kahng, Y. H.

G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, “The application of graphene as electrodes in electrical and optical devices,” Nanotechnology 23(11), 112001 (2012).
[Crossref] [PubMed]

Kang, J.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Kildishev, A. V.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Kim, J.

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref] [PubMed]

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Koyama, F.

T. Babe, M. Shiga, K. Inoshita, and F. Koyama, “Carrier plasma shift in GaInAsP photonic crystal point defect cavity,” Electron. Lett. 39(21), 1516–1518 (2003).
[Crossref]

Kuranochi, E.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuranochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Kuzmenko, A. B.

A. B. Kuzmenko, L. Benfatto, E. Cappelluti, I. Crassee, D. van der Marel, P. Blake, K. S. Novoselov, and A. K. Geim, “Gate tunable infrared phonon anomalies in bilayer graphene,” Phys. Rev. Lett. 103(11), 116804 (2009).
[Crossref] [PubMed]

Lee, S.

G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, “The application of graphene as electrodes in electrical and optical devices,” Nanotechnology 23(11), 112001 (2012).
[Crossref] [PubMed]

Lee, T.

G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, “The application of graphene as electrodes in electrical and optical devices,” Nanotechnology 23(11), 112001 (2012).
[Crossref] [PubMed]

Lee, Y. H. D.

C. T. Phare, Y. H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 10, 1038 (2015).

C. T. Phare, Y. H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 10, 1038 (2015).

Li, E.

R. Hao, W. Du, H. S. Chen, X. F. Jin, L. Z. Yang, and E. Li, “Ultra-compact optical modulator by graphene induced electro-refraction effect,” Appl. Phys. Lett. 103(6), 061116 (2013).
[Crossref]

Li, G. S.

L. A. Bian, P. G. Liu, Z. Z. Han, G. S. Li, J. Mao, and Z. Lu, “Near-unity absorption in a graphene-embedded defective photonic crystals array,” Superlattices Microstruct. 104, 461–469 (2017).
[Crossref]

Li, X.

X. Yin, T. Zhang, L. Chen, and X. Li, “Ultra-compact TE-pass polarizer with graphene multilayer embedded in a silicon slot waveguide,” Opt. Lett. 40(8), 1733–1736 (2015).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Li, Y.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Lipson, M.

C. T. Phare, Y. H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 10, 1038 (2015).

C. T. Phare, Y. H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 10, 1038 (2015).

Liu, B.

Liu, K.

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Chip-integrated nearly perfect absorber at telecom wavelengths by graphene coupled with nanobeam cavity,” Opt. Lett. 40(14), 3256–3259 (2015).
[Crossref] [PubMed]

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Enhancement of near-infrared light graphene interaction by nanobeam resonator,” IEEE Photonics Technol. Lett. 27(19), 2023–2026 (2015).
[Crossref]

Liu, M. H.

M. H. Liu, C. Gorini, and K. Richter, “Creating and steering highly directional and electron beams in graphene,” Phys. Rev. Lett. 118(6), 066801 (2017).
[Crossref] [PubMed]

Liu, P. G.

L. A. Bian, P. G. Liu, Z. Z. Han, G. S. Li, J. Mao, and Z. Lu, “Near-unity absorption in a graphene-embedded defective photonic crystals array,” Superlattices Microstruct. 104, 461–469 (2017).
[Crossref]

Liu, R. B.

J. A. Crosse, X. Xu, M. S. Sherwin, and R. B. Liu, “Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene,” Nat. Commun. 5(1), 4854 (2014).
[Crossref] [PubMed]

Loncar, M.

Lu, Q. S.

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Chip-integrated nearly perfect absorber at telecom wavelengths by graphene coupled with nanobeam cavity,” Opt. Lett. 40(14), 3256–3259 (2015).
[Crossref] [PubMed]

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Enhancement of near-infrared light graphene interaction by nanobeam resonator,” IEEE Photonics Technol. Lett. 27(19), 2023–2026 (2015).
[Crossref]

Lu, Z.

L. A. Bian, P. G. Liu, Z. Z. Han, G. S. Li, J. Mao, and Z. Lu, “Near-unity absorption in a graphene-embedded defective photonic crystals array,” Superlattices Microstruct. 104, 461–469 (2017).
[Crossref]

Magrez, A.

J. S. Gomez-Diaz, C. Moldovan, S. Capdevila, J. Romeu, L. S. Bernard, A. Magrez, A. M. Ionescu, and J. Perruisseau-Carrier, “Self-biased reconfigurable graphene stacks for terahertz plasmonics,” Nat. Commun. 6(1), 6334 (2015).
[Crossref] [PubMed]

Majumdar, A.

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref] [PubMed]

Man, M.

S. Chugh, M. Man, Z. Chen, and K. J. Webb, “Ultra-dark graphene stack metamaterials,” Appl. Phys. Lett. 106(6), 061102 (2015).
[Crossref]

Mao, J.

L. A. Bian, P. G. Liu, Z. Z. Han, G. S. Li, J. Mao, and Z. Lu, “Near-unity absorption in a graphene-embedded defective photonic crystals array,” Superlattices Microstruct. 104, 461–469 (2017).
[Crossref]

Martin, L. W.

C. Baeumer, S. P. Rogers, R. Xu, L. W. Martin, and M. Shim, “Tunable carrier type and density in graphene/PbZr0.2Ti0.8O3 hybrid structures through ferroelectric switching,” Nano Lett. 13(4), 1693–1698 (2013).
[Crossref] [PubMed]

McCutcheon, M. W.

Mishra, C.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuranochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Moldovan, C.

J. S. Gomez-Diaz, C. Moldovan, S. Capdevila, J. Romeu, L. S. Bernard, A. Magrez, A. M. Ionescu, and J. Perruisseau-Carrier, “Self-biased reconfigurable graphene stacks for terahertz plasmonics,” Nat. Commun. 6(1), 6334 (2015).
[Crossref] [PubMed]

Mosig, J. R.

M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett. 101(21), 214102 (2012).
[Crossref]

Notomi, M.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuranochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

A. B. Kuzmenko, L. Benfatto, E. Cappelluti, I. Crassee, D. van der Marel, P. Blake, K. S. Novoselov, and A. K. Geim, “Gate tunable infrared phonon anomalies in bilayer graphene,” Phys. Rev. Lett. 103(11), 116804 (2009).
[Crossref] [PubMed]

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Oliveira, J. E.

Oliveira, J. E. B.

Othman, M. A. K.

Pan, T.

Park, W.

G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, “The application of graphene as electrodes in electrical and optical devices,” Nanotechnology 23(11), 112001 (2012).
[Crossref] [PubMed]

Pasanen, P.

P. Pasanen, M. Voutilainen, M. Helle, X. Song, and P. J. Hakonen, “Graphene for future electronics,” Appl. Phys. Lett. 95(1), 061101 (2016).

Perruisseau-Carrier, J.

J. S. Gomez-Diaz, C. Moldovan, S. Capdevila, J. Romeu, L. S. Bernard, A. Magrez, A. M. Ionescu, and J. Perruisseau-Carrier, “Self-biased reconfigurable graphene stacks for terahertz plasmonics,” Nat. Commun. 6(1), 6334 (2015).
[Crossref] [PubMed]

M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett. 101(21), 214102 (2012).
[Crossref]

Phare, C. T.

C. T. Phare, Y. H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 10, 1038 (2015).

C. T. Phare, Y. H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 10, 1038 (2015).

Piper, J. R.

J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Qi, B.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Qin, S. Q.

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Enhancement of near-infrared light graphene interaction by nanobeam resonator,” IEEE Photonics Technol. Lett. 27(19), 2023–2026 (2015).
[Crossref]

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Chip-integrated nearly perfect absorber at telecom wavelengths by graphene coupled with nanobeam cavity,” Opt. Lett. 40(14), 3256–3259 (2015).
[Crossref] [PubMed]

Qiu, C.

Quan, Q.

Richter, K.

M. H. Liu, C. Gorini, and K. Richter, “Creating and steering highly directional and electron beams in graphene,” Phys. Rev. Lett. 118(6), 066801 (2017).
[Crossref] [PubMed]

Rockstuhl, C.

Rogers, S. P.

C. Baeumer, S. P. Rogers, R. Xu, L. W. Martin, and M. Shim, “Tunable carrier type and density in graphene/PbZr0.2Ti0.8O3 hybrid structures through ferroelectric switching,” Nano Lett. 13(4), 1693–1698 (2013).
[Crossref] [PubMed]

Romeu, J.

J. S. Gomez-Diaz, C. Moldovan, S. Capdevila, J. Romeu, L. S. Bernard, A. Magrez, A. M. Ionescu, and J. Perruisseau-Carrier, “Self-biased reconfigurable graphene stacks for terahertz plasmonics,” Nat. Commun. 6(1), 6334 (2015).
[Crossref] [PubMed]

Ruoff, R. S.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Scherer, A.

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Shalaev, V. M.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Sherwin, M. S.

J. A. Crosse, X. Xu, M. S. Sherwin, and R. B. Liu, “Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene,” Nat. Commun. 5(1), 4854 (2014).
[Crossref] [PubMed]

Shiga, M.

T. Babe, M. Shiga, K. Inoshita, and F. Koyama, “Carrier plasma shift in GaInAsP photonic crystal point defect cavity,” Electron. Lett. 39(21), 1516–1518 (2003).
[Crossref]

Shim, M.

C. Baeumer, S. P. Rogers, R. Xu, L. W. Martin, and M. Shim, “Tunable carrier type and density in graphene/PbZr0.2Ti0.8O3 hybrid structures through ferroelectric switching,” Nano Lett. 13(4), 1693–1698 (2013).
[Crossref] [PubMed]

Shinya, A.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuranochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Song, X.

P. Pasanen, M. Voutilainen, M. Helle, X. Song, and P. J. Hakonen, “Graphene for future electronics,” Appl. Phys. Lett. 95(1), 061101 (2016).

Soref, R.

Su, Y.

Su, Z.

Sum, T. C.

Sweet, J.

Tamagnone, M.

M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett. 101(21), 214102 (2012).
[Crossref]

Tanabe, T.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuranochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

Tulevski, G.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

van der Marel, D.

A. B. Kuzmenko, L. Benfatto, E. Cappelluti, I. Crassee, D. van der Marel, P. Blake, K. S. Novoselov, and A. K. Geim, “Gate tunable infrared phonon anomalies in bilayer graphene,” Phys. Rev. Lett. 103(11), 116804 (2009).
[Crossref] [PubMed]

Voutilainen, M.

P. Pasanen, M. Voutilainen, M. Helle, X. Song, and P. J. Hakonen, “Graphene for future electronics,” Appl. Phys. Lett. 95(1), 061101 (2016).

Vuckovic, J.

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref] [PubMed]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Wang, F.

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref] [PubMed]

Webb, K. J.

S. Chugh, M. Man, Z. Chen, and K. J. Webb, “Ultra-dark graphene stack metamaterials,” Appl. Phys. Lett. 106(6), 061102 (2015).
[Crossref]

Wu, J.

Wu, Q.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Wu, Y.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Xia, F.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Xing, G.

Xu, R.

C. Baeumer, S. P. Rogers, R. Xu, L. W. Martin, and M. Shim, “Tunable carrier type and density in graphene/PbZr0.2Ti0.8O3 hybrid structures through ferroelectric switching,” Nano Lett. 13(4), 1693–1698 (2013).
[Crossref] [PubMed]

Xu, W.

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Enhancement of near-infrared light graphene interaction by nanobeam resonator,” IEEE Photonics Technol. Lett. 27(19), 2023–2026 (2015).
[Crossref]

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Chip-integrated nearly perfect absorber at telecom wavelengths by graphene coupled with nanobeam cavity,” Opt. Lett. 40(14), 3256–3259 (2015).
[Crossref] [PubMed]

Xu, X.

J. A. Crosse, X. Xu, M. S. Sherwin, and R. B. Liu, “Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene,” Nat. Commun. 5(1), 4854 (2014).
[Crossref] [PubMed]

Yadav, A.

A. Yadav, M. Danesh, L. Zhong, G. J. Cheng, L. Jiang, and L. Chi, “Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals,” Nanotechnology 27(16), 165703 (2016).
[Crossref] [PubMed]

Yan, H.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Yang, J.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Yang, L. Z.

R. Hao, W. Du, H. S. Chen, X. F. Jin, L. Z. Yang, and E. Li, “Ultra-compact optical modulator by graphene induced electro-refraction effect,” Appl. Phys. Lett. 103(6), 061116 (2013).
[Crossref]

Yang, M.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Yang, Y.

Yin, J.

Yin, X.

Yu, P.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Yuan, X. D.

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Enhancement of near-infrared light graphene interaction by nanobeam resonator,” IEEE Photonics Technol. Lett. 27(19), 2023–2026 (2015).
[Crossref]

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Chip-integrated nearly perfect absorber at telecom wavelengths by graphene coupled with nanobeam cavity,” Opt. Lett. 40(14), 3256–3259 (2015).
[Crossref] [PubMed]

Zhang, H.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Zhang, J. F.

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Enhancement of near-infrared light graphene interaction by nanobeam resonator,” IEEE Photonics Technol. Lett. 27(19), 2023–2026 (2015).
[Crossref]

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Chip-integrated nearly perfect absorber at telecom wavelengths by graphene coupled with nanobeam cavity,” Opt. Lett. 40(14), 3256–3259 (2015).
[Crossref] [PubMed]

Zhang, T.

Zhang, X.

Zhao, X.

Zhong, L.

A. Yadav, M. Danesh, L. Zhong, G. J. Cheng, L. Jiang, and L. Chi, “Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals,” Nanotechnology 27(16), 165703 (2016).
[Crossref] [PubMed]

Zhou, H.

Zhu, W.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Zhu, Z. H.

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Enhancement of near-infrared light graphene interaction by nanobeam resonator,” IEEE Photonics Technol. Lett. 27(19), 2023–2026 (2015).
[Crossref]

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Chip-integrated nearly perfect absorber at telecom wavelengths by graphene coupled with nanobeam cavity,” Opt. Lett. 40(14), 3256–3259 (2015).
[Crossref] [PubMed]

ACS Photonics (1)

J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Appl. Phys. Lett. (5)

S. Chugh, M. Man, Z. Chen, and K. J. Webb, “Ultra-dark graphene stack metamaterials,” Appl. Phys. Lett. 106(6), 061102 (2015).
[Crossref]

R. Hao, W. Du, H. S. Chen, X. F. Jin, L. Z. Yang, and E. Li, “Ultra-compact optical modulator by graphene induced electro-refraction effect,” Appl. Phys. Lett. 103(6), 061116 (2013).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuranochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[Crossref]

P. Pasanen, M. Voutilainen, M. Helle, X. Song, and P. J. Hakonen, “Graphene for future electronics,” Appl. Phys. Lett. 95(1), 061101 (2016).

M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett. 101(21), 214102 (2012).
[Crossref]

Electron. Lett. (1)

T. Babe, M. Shiga, K. Inoshita, and F. Koyama, “Carrier plasma shift in GaInAsP photonic crystal point defect cavity,” Electron. Lett. 39(21), 1516–1518 (2003).
[Crossref]

IEEE Photonics Technol. Lett. (2)

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Enhancement of near-infrared light graphene interaction by nanobeam resonator,” IEEE Photonics Technol. Lett. 27(19), 2023–2026 (2015).
[Crossref]

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Nano Lett. (3)

C. Baeumer, S. P. Rogers, R. Xu, L. W. Martin, and M. Shim, “Tunable carrier type and density in graphene/PbZr0.2Ti0.8O3 hybrid structures through ferroelectric switching,” Nano Lett. 13(4), 1693–1698 (2013).
[Crossref] [PubMed]

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref] [PubMed]

Nanotechnology (2)

G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, “The application of graphene as electrodes in electrical and optical devices,” Nanotechnology 23(11), 112001 (2012).
[Crossref] [PubMed]

A. Yadav, M. Danesh, L. Zhong, G. J. Cheng, L. Jiang, and L. Chi, “Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals,” Nanotechnology 27(16), 165703 (2016).
[Crossref] [PubMed]

Nat. Commun. (2)

J. A. Crosse, X. Xu, M. S. Sherwin, and R. B. Liu, “Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene,” Nat. Commun. 5(1), 4854 (2014).
[Crossref] [PubMed]

J. S. Gomez-Diaz, C. Moldovan, S. Capdevila, J. Romeu, L. S. Bernard, A. Magrez, A. M. Ionescu, and J. Perruisseau-Carrier, “Self-biased reconfigurable graphene stacks for terahertz plasmonics,” Nat. Commun. 6(1), 6334 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Nat. Photonics (3)

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

C. T. Phare, Y. H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 10, 1038 (2015).

C. T. Phare, Y. H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 10, 1038 (2015).

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Opt. Express (10)

G. Xing, H. Guo, X. Zhang, T. C. Sum, and C. H. Huan, “The Physics of ultrafast saturable absorption in graphene,” Opt. Express 18(5), 4564–4573 (2010).
[Crossref] [PubMed]

Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
[Crossref] [PubMed]

M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express 21(10), 12592–12603 (2013).
[Crossref] [PubMed]

W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
[Crossref] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Loncar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18(8), 8705–8712 (2010).
[Crossref] [PubMed]

J. Hendrickson, R. Soref, J. Sweet, and W. Buchwald, “Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation,” Opt. Express 22(3), 3271–3283 (2014).
[Crossref] [PubMed]

W. S. Fegadolli, J. E. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
[Crossref] [PubMed]

T. Pan, C. Qiu, J. Wu, X. Jiang, B. Liu, Y. Yang, H. Zhou, R. Soref, and Y. Su, “Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity,” Opt. Express 23(18), 23357–23364 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. Lett. (2)

A. B. Kuzmenko, L. Benfatto, E. Cappelluti, I. Crassee, D. van der Marel, P. Blake, K. S. Novoselov, and A. K. Geim, “Gate tunable infrared phonon anomalies in bilayer graphene,” Phys. Rev. Lett. 103(11), 116804 (2009).
[Crossref] [PubMed]

M. H. Liu, C. Gorini, and K. Richter, “Creating and steering highly directional and electron beams in graphene,” Phys. Rev. Lett. 118(6), 066801 (2017).
[Crossref] [PubMed]

Superlattices Microstruct. (1)

L. A. Bian, P. G. Liu, Z. Z. Han, G. S. Li, J. Mao, and Z. Lu, “Near-unity absorption in a graphene-embedded defective photonic crystals array,” Superlattices Microstruct. 104, 461–469 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Fabrication process of graphene/Al2O3 multilayer stack (GAMS); (b) Side view.
Fig. 2
Fig. 2 (a) Schematic illustration of the proposed EO modulator side-coupled with PCN loaded GAMS; (b) Top view of PCN; (c) Cross-section view of the proposed EO modulator.
Fig. 3
Fig. 3 In the case of chemical potential varies from 0.1eV to 1.1eV: (a) The real part and imaginary part of the conductivity of monolyer graphene; (b) The real part and imaginary part of the permittivity ε || of GAMS with different layers number (the wavelength is fixed at 1650nm).
Fig. 4
Fig. 4 The model of PCN cavity as a single-mode optical resonator coupled with bus waveguide.
Fig. 5
Fig. 5 (a) Transmission and (b) absorption of our proposed modulator in the case of different value of τ 1 / τ a and τ 2 / τ a .
Fig. 6
Fig. 6 (a) Transmission and (b) absorption spectra of the proposed EO modulator based on GAMS in the case of different chemical potentials.
Fig. 7
Fig. 7 Power flow distribution of the proposed EO modulator based on GAMS when μ c =0.4eVat (a) 1665.0nm and (b) 1654.1nm.
Fig. 8
Fig. 8 The relationship between the value of absorption peak of our proposed EO modulator and the chemical potential of GAMS (different color represents different layers number of graphene in GAMS); the illustration is the variation trend of modulation depth A mod with the layers number increasing from three to seven.
Fig. 9
Fig. 9 The relationship between chemical potential of graphene and the required voltage applied on the GAMS in the case of different thickness of Al2O3 layer.
Fig. 10
Fig. 10 (a) Schematic illustration of the proposed EO modulator side-coupled with two-defect-cavity PCN loaded GAMSs; In the case of μ c1 =0.4eVand μ c2 =0.8eV: Power flow distribution at (b) 1654.7nm and (c) 1661.9nm.
Fig. 11
Fig. 11 (a) Transmission and (b) absorption spectra of the proposed EO modulator side-coupled with a double-defect-cavity PCN in the case of different chemical potentials.

Tables (1)

Tables Icon

Table 1 Designed structural parameters of GAMS

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

σ intra ( ω )=j q 2 π( ω+j Γ c ) [ μ c +2 k B Tln( e μ c / k B T +1 ) ],
σ inter ( ω )=j q 2 4π ln[ 2| μ c |( ω+j Γ c ) 2| μ c |+( ω+j Γ c ) ],
ε || = ε d + i σ g ( ω ) ω ε 0 h d , ε = ε d ,
μ c = ν F π( n S + C| V | q ) ,
-iωA=i ω 0 AA τ 1 A τ 2 A τ r A τ a + 2 τ 1 S 1+ ,
S 1 = S 1+ + 2 τ 1 A
S 2 = 2 τ 2 A,
T( ω )= | S 2 S 1+ | 2 = 4 τ 1 τ 2 ( ω ω 0 ) 2 + ( τ 1 + τ 2 + τ a + τ r ) 2 ,
A( ω )=1T( ω )R( ω )= 4 τ 1 τ a ( ω ω 0 ) 2 + ( τ 1 + τ 2 + τ a + τ r ) 2 .
T mod = λ max * λ min * μ cmax μ cmin ,
λ 0 -λ λ 0 V ( Δε | E 0 | 2 +Δμ | H 0 | 2 )dV V ( ε | E 0 | 2 +μ | H 0 | 2 )dV ,
n S = ε 0 ε d q h d ( V g + V 0 ),

Metrics