Abstract

A controlled, 3D selective inductively coupled plasma reactive ion etching process (ICP-RIE) was employed to fabricate high aspect ratio tiered resonant nanopillars (TR-NPs) made of two Bragg reflectors consisting of a stack of Si3N4/SiO2 alternate layers, a resonant SiO2 central cavity, and nickel caps. The 3D etching process led to a vertical full etching, and also to a horizontal highly selective etching that preserves SiO2 layers while the Si3N4 layers are slowly etched. Resulting TR-NPs periodic arrays were tested as optical sensors and highlighted a 28% increment in bulk sensitivity (379 nm RIU−1) comparing with conventional Si3N4/SiO2 resonant NPs without metal caps (296 nm RIU−1) considering the resonance feature located in the 580-630 nm wavelength range.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bulk sensing performance comparison between silicon dioxide and resonant high aspect ratio nanopillars arrays fabricated by means of interference lithography

I. Cornago, A. L. Hernández, R. Casquel, M. Holgado, M. F. Laguna, F. J. Sanza, and J. Bravo
Opt. Mater. Express 6(7) 2264-2272 (2016)

Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography

Kaiyu Wu, Tomas Rindzevicius, Michael Stenbæk Schmidt, Klaus Bo Mogensen, Sanshui Xiao, and Anja Boisen
Opt. Express 23(10) 12965-12978 (2015)

Silicon nanopillar arrays with SiO2 overlayer for biosensing application

B. Dev Choudhury, R. Casquel, M.J. Bañuls, F.J. Sanza, M.F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C.A. Barrios, and S. Anand
Opt. Mater. Express 4(7) 1345-1354 (2014)

References

  • View by:
  • |
  • |
  • |

  1. V. Kugel and H.-F. Ji, “Nanopillars for sensing,” J. Nanosci. Nanotechnol. 14(9), 6469–6477 (2014).
    [Crossref] [PubMed]
  2. Y. Suzuki and K. Yokoyama, “Construction of a more sensitive fluorescence sensing material for the detection of vascular endothelial growth factor, a biomarker for angiogenesis, prepared by combining a fluorescent peptide and a nanopillar substrate,” Biosens. Bioelectron. 26(8), 3696–3699 (2011).
    [Crossref] [PubMed]
  3. V. Anandan, Y. L. Rao, and G. Zhang, “Nanopillar array structures for enhancing biosensing performance,” Int. J. Nanomedicine 1(1), 73–80 (2006).
    [Crossref] [PubMed]
  4. M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
    [Crossref] [PubMed]
  5. F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors (Basel) 2(3), 291–304 (2012).
    [Crossref] [PubMed]
  6. F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron. 26(12), 4842–4847 (2011).
    [Crossref] [PubMed]
  7. L.-J. Bie, X.-N. Yan, J. Yin, Y.-Q. Duan, and Z.-H. Yuan, “Nanopillar ZnO gas sensor for hydrogen and ethanol,” Sens. Actuators B Chem. 126(2), 604–608 (2007).
    [Crossref]
  8. W. Li, M. Hu, P. Ge, J. Wang, and Y. Guo, “Humidity sensing properties of morphology-controlled ordered silicon nanopillar,” Appl. Surf. Sci. 317, 970–973 (2014).
    [Crossref]
  9. M.-C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Anal. Chim. Acta 806, 55–73 (2014).
    [Crossref] [PubMed]
  10. M. Saito, A. Kitamura, M. Murahashi, K. Yamanaka, Q. Hoa, Y. Yamaguchi, and E. Tamiya, “Novel Gold-Capped Nanopillars Imprinted on a Polymer Film for Highly Sensitive Plasmonic Biosensing,” Anal. Chem. 84(13), 5494–5500 (2012).
    [Crossref] [PubMed]
  11. M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved Biosensing Capability with Novel Suspended Nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
    [Crossref]
  12. A. H. Thilsted, J. Y. Pan, K. Wu, K. Zór, T. Rindzevicius, M. S. Schmidt, and A. Boisen, “Lithography-Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR-Based Sensing,” Small 12(48), 6745–6752 (2016).
    [Crossref] [PubMed]
  13. V. Canalejas-Tejero, A. López, R. Casquel, M. Holgado, and C. A. Barrios, “Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing,” Sens. Actuators B Chem. 226, 204–210 (2016).
    [Crossref]
  14. J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
    [Crossref] [PubMed]
  15. M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
    [PubMed]
  16. K. Wu, T. Li, M. S. Schmidt, T. Rindzevicius, A. Boisen, and S. Ndoni, “Gold Nanoparticles Sliding on Recyclable Nanohoodoos-Engineered for Surface-Enhanced Raman Spectroscopy,” Adv. Funct. Mater. 28(2), 1704818 (2018).
    [Crossref]
  17. A. L. Hernández, R. Casquel, M. Holgado, I. Cornago, F. J. Sanza, B. Santamaría, M. Maigler, F. Fernández, A. Lavín, and M. F. Laguna, “Arrays of resonant nanopillars for biochemical sensing,” Opt. Lett. 40(10), 2370–2372 (2015).
    [Crossref] [PubMed]
  18. I. Cornago, A. L. Hernández, R. Casquel, M. Holgado, M. F. Laguna, F. J. Sanza, and J. Bravo, “Bulk sensing performance comparison between silicon dioxide and resonant high aspect ratio nanopillars arrays fabricated by means of interference lithography,” Opt. Mater. Express 6(7), 2264 (2016).
    [Crossref]
  19. A. L. Hernández, R. Casquel, M. Holgado, I. Cornago, F. Fernández, P. Ciaurriz, F. J. Sanza, B. Santamaría, M. V. Maigler, and M. F. Laguna, “Resonant nanopillars arrays for label-free biosensing,” Opt. Lett. 41(23), 5430–5433 (2016).
    [Crossref] [PubMed]
  20. S. Naureen, N. Shahid, A. Dev, and S. Anand, “Generation of substrate-free III-V nanodisks from user-defined multilayer nanopillar arrays for integration on Si,” Nanotechnology 24(22), 225301 (2013).
    [Crossref] [PubMed]
  21. A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
    [Crossref]
  22. R. H. Siddique, S. Diewald, J. Leuthold, and H. Hölscher, “Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies,” Opt. Express 21(12), 14351–14361 (2013).
    [Crossref] [PubMed]
  23. R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
    [Crossref] [PubMed]
  24. C. A. Tippets, Y. Fu, A.-M. Jackson, E. U. Donev, and R. Lopez, “Reproduction and optical analysis of Morpho -inspired polymeric nanostructures,” J. Opt. 18(6), 065105 (2016).
    [Crossref]
  25. O. Poncelet, G. Tallier, S. R. Mouchet, A. Crahay, J. Rasson, R. Kotipalli, O. Deparis, and L. A. Francis, “Vapour sensitivity of an ALD hierarchical photonic structure inspired by Morpho,” Bioinspir. Biomim. 11(3), 036011 (2016).
    [Crossref] [PubMed]
  26. D. Rademacher, T. Zickenrott, and M. Vergöhl, “Sputtering of dielectric single layers by metallic mode reactive sputtering and conventional reactive sputtering from cylindrical cathodes in a sputter-up configuration,” Thin Solid Films 532, 98–105 (2013).
    [Crossref]
  27. M. Vergöhl, D. Rademacher, and A. Pflug, “Progress on optical coatings deposited with dual rotatable magnetrons in a sputter up system,” Surf. Coat. Tech. 241, 38–44 (2014).
    [Crossref]
  28. M. Vergöhl, S. Bruns, D. Rademacher, and G. Bräuer, “Industrial-scale deposition of highly uniform and precise optical interference filters by the use of an improved cylindrical magnetron sputtering system,” Surf. Coat. Tech. 267, 53–58 (2015).
    [Crossref]
  29. C.-W. Kuo, J.-Y. Shiu, and P. Chen, “Size- and Shape-Controlled Fabrication of Large-Area Periodic Nanopillar Arrays,” Chem. Mater. 15(15), 2917–2920 (2003).
    [Crossref]

2018 (1)

K. Wu, T. Li, M. S. Schmidt, T. Rindzevicius, A. Boisen, and S. Ndoni, “Gold Nanoparticles Sliding on Recyclable Nanohoodoos-Engineered for Surface-Enhanced Raman Spectroscopy,” Adv. Funct. Mater. 28(2), 1704818 (2018).
[Crossref]

2016 (6)

C. A. Tippets, Y. Fu, A.-M. Jackson, E. U. Donev, and R. Lopez, “Reproduction and optical analysis of Morpho -inspired polymeric nanostructures,” J. Opt. 18(6), 065105 (2016).
[Crossref]

O. Poncelet, G. Tallier, S. R. Mouchet, A. Crahay, J. Rasson, R. Kotipalli, O. Deparis, and L. A. Francis, “Vapour sensitivity of an ALD hierarchical photonic structure inspired by Morpho,” Bioinspir. Biomim. 11(3), 036011 (2016).
[Crossref] [PubMed]

A. H. Thilsted, J. Y. Pan, K. Wu, K. Zór, T. Rindzevicius, M. S. Schmidt, and A. Boisen, “Lithography-Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR-Based Sensing,” Small 12(48), 6745–6752 (2016).
[Crossref] [PubMed]

V. Canalejas-Tejero, A. López, R. Casquel, M. Holgado, and C. A. Barrios, “Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing,” Sens. Actuators B Chem. 226, 204–210 (2016).
[Crossref]

I. Cornago, A. L. Hernández, R. Casquel, M. Holgado, M. F. Laguna, F. J. Sanza, and J. Bravo, “Bulk sensing performance comparison between silicon dioxide and resonant high aspect ratio nanopillars arrays fabricated by means of interference lithography,” Opt. Mater. Express 6(7), 2264 (2016).
[Crossref]

A. L. Hernández, R. Casquel, M. Holgado, I. Cornago, F. Fernández, P. Ciaurriz, F. J. Sanza, B. Santamaría, M. V. Maigler, and M. F. Laguna, “Resonant nanopillars arrays for label-free biosensing,” Opt. Lett. 41(23), 5430–5433 (2016).
[Crossref] [PubMed]

2015 (3)

M. Vergöhl, S. Bruns, D. Rademacher, and G. Bräuer, “Industrial-scale deposition of highly uniform and precise optical interference filters by the use of an improved cylindrical magnetron sputtering system,” Surf. Coat. Tech. 267, 53–58 (2015).
[Crossref]

A. L. Hernández, R. Casquel, M. Holgado, I. Cornago, F. J. Sanza, B. Santamaría, M. Maigler, F. Fernández, A. Lavín, and M. F. Laguna, “Arrays of resonant nanopillars for biochemical sensing,” Opt. Lett. 40(10), 2370–2372 (2015).
[Crossref] [PubMed]

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

2014 (4)

M. Vergöhl, D. Rademacher, and A. Pflug, “Progress on optical coatings deposited with dual rotatable magnetrons in a sputter up system,” Surf. Coat. Tech. 241, 38–44 (2014).
[Crossref]

V. Kugel and H.-F. Ji, “Nanopillars for sensing,” J. Nanosci. Nanotechnol. 14(9), 6469–6477 (2014).
[Crossref] [PubMed]

W. Li, M. Hu, P. Ge, J. Wang, and Y. Guo, “Humidity sensing properties of morphology-controlled ordered silicon nanopillar,” Appl. Surf. Sci. 317, 970–973 (2014).
[Crossref]

M.-C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

2013 (3)

S. Naureen, N. Shahid, A. Dev, and S. Anand, “Generation of substrate-free III-V nanodisks from user-defined multilayer nanopillar arrays for integration on Si,” Nanotechnology 24(22), 225301 (2013).
[Crossref] [PubMed]

R. H. Siddique, S. Diewald, J. Leuthold, and H. Hölscher, “Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies,” Opt. Express 21(12), 14351–14361 (2013).
[Crossref] [PubMed]

D. Rademacher, T. Zickenrott, and M. Vergöhl, “Sputtering of dielectric single layers by metallic mode reactive sputtering and conventional reactive sputtering from cylindrical cathodes in a sputter-up configuration,” Thin Solid Films 532, 98–105 (2013).
[Crossref]

2012 (4)

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[PubMed]

M. Saito, A. Kitamura, M. Murahashi, K. Yamanaka, Q. Hoa, Y. Yamaguchi, and E. Tamiya, “Novel Gold-Capped Nanopillars Imprinted on a Polymer Film for Highly Sensitive Plasmonic Biosensing,” Anal. Chem. 84(13), 5494–5500 (2012).
[Crossref] [PubMed]

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors (Basel) 2(3), 291–304 (2012).
[Crossref] [PubMed]

2011 (4)

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron. 26(12), 4842–4847 (2011).
[Crossref] [PubMed]

Y. Suzuki and K. Yokoyama, “Construction of a more sensitive fluorescence sensing material for the detection of vascular endothelial growth factor, a biomarker for angiogenesis, prepared by combining a fluorescent peptide and a nanopillar substrate,” Biosens. Bioelectron. 26(8), 3696–3699 (2011).
[Crossref] [PubMed]

M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved Biosensing Capability with Novel Suspended Nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

2010 (1)

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

2007 (1)

L.-J. Bie, X.-N. Yan, J. Yin, Y.-Q. Duan, and Z.-H. Yuan, “Nanopillar ZnO gas sensor for hydrogen and ethanol,” Sens. Actuators B Chem. 126(2), 604–608 (2007).
[Crossref]

2006 (1)

V. Anandan, Y. L. Rao, and G. Zhang, “Nanopillar array structures for enhancing biosensing performance,” Int. J. Nanomedicine 1(1), 73–80 (2006).
[Crossref] [PubMed]

2003 (1)

C.-W. Kuo, J.-Y. Shiu, and P. Chen, “Size- and Shape-Controlled Fabrication of Large-Area Periodic Nanopillar Arrays,” Chem. Mater. 15(15), 2917–2920 (2003).
[Crossref]

Anand, S.

S. Naureen, N. Shahid, A. Dev, and S. Anand, “Generation of substrate-free III-V nanodisks from user-defined multilayer nanopillar arrays for integration on Si,” Nanotechnology 24(22), 225301 (2013).
[Crossref] [PubMed]

Anandan, V.

V. Anandan, Y. L. Rao, and G. Zhang, “Nanopillar array structures for enhancing biosensing performance,” Int. J. Nanomedicine 1(1), 73–80 (2006).
[Crossref] [PubMed]

Bañuls, M. J.

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors (Basel) 2(3), 291–304 (2012).
[Crossref] [PubMed]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron. 26(12), 4842–4847 (2011).
[Crossref] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Barrios, C. A.

V. Canalejas-Tejero, A. López, R. Casquel, M. Holgado, and C. A. Barrios, “Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing,” Sens. Actuators B Chem. 226, 204–210 (2016).
[Crossref]

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors (Basel) 2(3), 291–304 (2012).
[Crossref] [PubMed]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron. 26(12), 4842–4847 (2011).
[Crossref] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Bassim, N. D.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Bezares, F. J.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Bie, L.-J.

L.-J. Bie, X.-N. Yan, J. Yin, Y.-Q. Duan, and Z.-H. Yuan, “Nanopillar ZnO gas sensor for hydrogen and ethanol,” Sens. Actuators B Chem. 126(2), 604–608 (2007).
[Crossref]

Boisen, A.

K. Wu, T. Li, M. S. Schmidt, T. Rindzevicius, A. Boisen, and S. Ndoni, “Gold Nanoparticles Sliding on Recyclable Nanohoodoos-Engineered for Surface-Enhanced Raman Spectroscopy,” Adv. Funct. Mater. 28(2), 1704818 (2018).
[Crossref]

A. H. Thilsted, J. Y. Pan, K. Wu, K. Zór, T. Rindzevicius, M. S. Schmidt, and A. Boisen, “Lithography-Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR-Based Sensing,” Small 12(48), 6745–6752 (2016).
[Crossref] [PubMed]

M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[PubMed]

Bonam, R. K.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Bräuer, G.

M. Vergöhl, S. Bruns, D. Rademacher, and G. Bräuer, “Industrial-scale deposition of highly uniform and precise optical interference filters by the use of an improved cylindrical magnetron sputtering system,” Surf. Coat. Tech. 267, 53–58 (2015).
[Crossref]

Bravo, J.

Bruns, S.

M. Vergöhl, S. Bruns, D. Rademacher, and G. Bräuer, “Industrial-scale deposition of highly uniform and precise optical interference filters by the use of an improved cylindrical magnetron sputtering system,” Surf. Coat. Tech. 267, 53–58 (2015).
[Crossref]

Bunning, T.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Caldwell, J. D.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Canalejas-Tejero, V.

V. Canalejas-Tejero, A. López, R. Casquel, M. Holgado, and C. A. Barrios, “Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing,” Sens. Actuators B Chem. 226, 204–210 (2016).
[Crossref]

Carrascosa, L. G.

M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved Biosensing Capability with Novel Suspended Nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

Casquel, R.

V. Canalejas-Tejero, A. López, R. Casquel, M. Holgado, and C. A. Barrios, “Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing,” Sens. Actuators B Chem. 226, 204–210 (2016).
[Crossref]

A. L. Hernández, R. Casquel, M. Holgado, I. Cornago, F. Fernández, P. Ciaurriz, F. J. Sanza, B. Santamaría, M. V. Maigler, and M. F. Laguna, “Resonant nanopillars arrays for label-free biosensing,” Opt. Lett. 41(23), 5430–5433 (2016).
[Crossref] [PubMed]

I. Cornago, A. L. Hernández, R. Casquel, M. Holgado, M. F. Laguna, F. J. Sanza, and J. Bravo, “Bulk sensing performance comparison between silicon dioxide and resonant high aspect ratio nanopillars arrays fabricated by means of interference lithography,” Opt. Mater. Express 6(7), 2264 (2016).
[Crossref]

A. L. Hernández, R. Casquel, M. Holgado, I. Cornago, F. J. Sanza, B. Santamaría, M. Maigler, F. Fernández, A. Lavín, and M. F. Laguna, “Arrays of resonant nanopillars for biochemical sensing,” Opt. Lett. 40(10), 2370–2372 (2015).
[Crossref] [PubMed]

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors (Basel) 2(3), 291–304 (2012).
[Crossref] [PubMed]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron. 26(12), 4842–4847 (2011).
[Crossref] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Chen, P.

C.-W. Kuo, J.-Y. Shiu, and P. Chen, “Size- and Shape-Controlled Fabrication of Large-Area Periodic Nanopillar Arrays,” Chem. Mater. 15(15), 2917–2920 (2003).
[Crossref]

Ciaurriz, P.

Cornago, I.

Crahay, A.

O. Poncelet, G. Tallier, S. R. Mouchet, A. Crahay, J. Rasson, R. Kotipalli, O. Deparis, and L. A. Francis, “Vapour sensitivity of an ALD hierarchical photonic structure inspired by Morpho,” Bioinspir. Biomim. 11(3), 036011 (2016).
[Crossref] [PubMed]

Deng, T.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Deparis, O.

O. Poncelet, G. Tallier, S. R. Mouchet, A. Crahay, J. Rasson, R. Kotipalli, O. Deparis, and L. A. Francis, “Vapour sensitivity of an ALD hierarchical photonic structure inspired by Morpho,” Bioinspir. Biomim. 11(3), 036011 (2016).
[Crossref] [PubMed]

Dev, A.

S. Naureen, N. Shahid, A. Dev, and S. Anand, “Generation of substrate-free III-V nanodisks from user-defined multilayer nanopillar arrays for integration on Si,” Nanotechnology 24(22), 225301 (2013).
[Crossref] [PubMed]

Diewald, S.

Donev, E. U.

C. A. Tippets, Y. Fu, A.-M. Jackson, E. U. Donev, and R. Lopez, “Reproduction and optical analysis of Morpho -inspired polymeric nanostructures,” J. Opt. 18(6), 065105 (2016).
[Crossref]

Duan, Y.-Q.

L.-J. Bie, X.-N. Yan, J. Yin, Y.-Q. Duan, and Z.-H. Yuan, “Nanopillar ZnO gas sensor for hydrogen and ethanol,” Sens. Actuators B Chem. 126(2), 604–608 (2007).
[Crossref]

Estevez, M.-C.

M.-C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

Estévez, M.-C.

M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved Biosensing Capability with Novel Suspended Nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

Fernández, F.

Feygelson, M.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Francis, L. A.

O. Poncelet, G. Tallier, S. R. Mouchet, A. Crahay, J. Rasson, R. Kotipalli, O. Deparis, and L. A. Francis, “Vapour sensitivity of an ALD hierarchical photonic structure inspired by Morpho,” Bioinspir. Biomim. 11(3), 036011 (2016).
[Crossref] [PubMed]

Fu, Y.

C. A. Tippets, Y. Fu, A.-M. Jackson, E. U. Donev, and R. Lopez, “Reproduction and optical analysis of Morpho -inspired polymeric nanostructures,” J. Opt. 18(6), 065105 (2016).
[Crossref]

Ge, P.

W. Li, M. Hu, P. Ge, J. Wang, and Y. Guo, “Humidity sensing properties of morphology-controlled ordered silicon nanopillar,” Appl. Surf. Sci. 317, 970–973 (2014).
[Crossref]

Ghiradella, H. T.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Glembocki, O.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

González-Guerrero, A. B.

M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved Biosensing Capability with Novel Suspended Nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

Grande, J. C.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Guo, Y.

W. Li, M. Hu, P. Ge, J. Wang, and Y. Guo, “Humidity sensing properties of morphology-controlled ordered silicon nanopillar,” Appl. Surf. Sci. 317, 970–973 (2014).
[Crossref]

Hartley, J. G.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Hernández, A. L.

Hoa, Q.

M. Saito, A. Kitamura, M. Murahashi, K. Yamanaka, Q. Hoa, Y. Yamaguchi, and E. Tamiya, “Novel Gold-Capped Nanopillars Imprinted on a Polymer Film for Highly Sensitive Plasmonic Biosensing,” Anal. Chem. 84(13), 5494–5500 (2012).
[Crossref] [PubMed]

Holgado, M.

V. Canalejas-Tejero, A. López, R. Casquel, M. Holgado, and C. A. Barrios, “Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing,” Sens. Actuators B Chem. 226, 204–210 (2016).
[Crossref]

I. Cornago, A. L. Hernández, R. Casquel, M. Holgado, M. F. Laguna, F. J. Sanza, and J. Bravo, “Bulk sensing performance comparison between silicon dioxide and resonant high aspect ratio nanopillars arrays fabricated by means of interference lithography,” Opt. Mater. Express 6(7), 2264 (2016).
[Crossref]

A. L. Hernández, R. Casquel, M. Holgado, I. Cornago, F. Fernández, P. Ciaurriz, F. J. Sanza, B. Santamaría, M. V. Maigler, and M. F. Laguna, “Resonant nanopillars arrays for label-free biosensing,” Opt. Lett. 41(23), 5430–5433 (2016).
[Crossref] [PubMed]

A. L. Hernández, R. Casquel, M. Holgado, I. Cornago, F. J. Sanza, B. Santamaría, M. Maigler, F. Fernández, A. Lavín, and M. F. Laguna, “Arrays of resonant nanopillars for biochemical sensing,” Opt. Lett. 40(10), 2370–2372 (2015).
[Crossref] [PubMed]

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors (Basel) 2(3), 291–304 (2012).
[Crossref] [PubMed]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron. 26(12), 4842–4847 (2011).
[Crossref] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Hölscher, H.

Hosten, C.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Hu, M.

W. Li, M. Hu, P. Ge, J. Wang, and Y. Guo, “Humidity sensing properties of morphology-controlled ordered silicon nanopillar,” Appl. Surf. Sci. 317, 970–973 (2014).
[Crossref]

Hübner, J.

M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[PubMed]

Jackson, A.-M.

C. A. Tippets, Y. Fu, A.-M. Jackson, E. U. Donev, and R. Lopez, “Reproduction and optical analysis of Morpho -inspired polymeric nanostructures,” J. Opt. 18(6), 065105 (2016).
[Crossref]

Ji, H.-F.

V. Kugel and H.-F. Ji, “Nanopillars for sensing,” J. Nanosci. Nanotechnol. 14(9), 6469–6477 (2014).
[Crossref] [PubMed]

Kasica, R.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Kitamura, A.

M. Saito, A. Kitamura, M. Murahashi, K. Yamanaka, Q. Hoa, Y. Yamaguchi, and E. Tamiya, “Novel Gold-Capped Nanopillars Imprinted on a Polymer Film for Highly Sensitive Plasmonic Biosensing,” Anal. Chem. 84(13), 5494–5500 (2012).
[Crossref] [PubMed]

Kotipalli, R.

O. Poncelet, G. Tallier, S. R. Mouchet, A. Crahay, J. Rasson, R. Kotipalli, O. Deparis, and L. A. Francis, “Vapour sensitivity of an ALD hierarchical photonic structure inspired by Morpho,” Bioinspir. Biomim. 11(3), 036011 (2016).
[Crossref] [PubMed]

Kugel, V.

V. Kugel and H.-F. Ji, “Nanopillars for sensing,” J. Nanosci. Nanotechnol. 14(9), 6469–6477 (2014).
[Crossref] [PubMed]

Kuo, C.-W.

C.-W. Kuo, J.-Y. Shiu, and P. Chen, “Size- and Shape-Controlled Fabrication of Large-Area Periodic Nanopillar Arrays,” Chem. Mater. 15(15), 2917–2920 (2003).
[Crossref]

Laguna, M. F.

I. Cornago, A. L. Hernández, R. Casquel, M. Holgado, M. F. Laguna, F. J. Sanza, and J. Bravo, “Bulk sensing performance comparison between silicon dioxide and resonant high aspect ratio nanopillars arrays fabricated by means of interference lithography,” Opt. Mater. Express 6(7), 2264 (2016).
[Crossref]

A. L. Hernández, R. Casquel, M. Holgado, I. Cornago, F. Fernández, P. Ciaurriz, F. J. Sanza, B. Santamaría, M. V. Maigler, and M. F. Laguna, “Resonant nanopillars arrays for label-free biosensing,” Opt. Lett. 41(23), 5430–5433 (2016).
[Crossref] [PubMed]

A. L. Hernández, R. Casquel, M. Holgado, I. Cornago, F. J. Sanza, B. Santamaría, M. Maigler, F. Fernández, A. Lavín, and M. F. Laguna, “Arrays of resonant nanopillars for biochemical sensing,” Opt. Lett. 40(10), 2370–2372 (2015).
[Crossref] [PubMed]

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors (Basel) 2(3), 291–304 (2012).
[Crossref] [PubMed]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron. 26(12), 4842–4847 (2011).
[Crossref] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Larsen, M.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Lavín, A.

Le Tarte, L. A.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Lechuga, L. M.

M.-C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved Biosensing Capability with Novel Suspended Nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

Leuthold, J.

Li, T.

K. Wu, T. Li, M. S. Schmidt, T. Rindzevicius, A. Boisen, and S. Ndoni, “Gold Nanoparticles Sliding on Recyclable Nanohoodoos-Engineered for Surface-Enhanced Raman Spectroscopy,” Adv. Funct. Mater. 28(2), 1704818 (2018).
[Crossref]

Li, W.

W. Li, M. Hu, P. Ge, J. Wang, and Y. Guo, “Humidity sensing properties of morphology-controlled ordered silicon nanopillar,” Appl. Surf. Sci. 317, 970–973 (2014).
[Crossref]

Lopez, R.

C. A. Tippets, Y. Fu, A.-M. Jackson, E. U. Donev, and R. Lopez, “Reproduction and optical analysis of Morpho -inspired polymeric nanostructures,” J. Opt. 18(6), 065105 (2016).
[Crossref]

López, A.

V. Canalejas-Tejero, A. López, R. Casquel, M. Holgado, and C. A. Barrios, “Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing,” Sens. Actuators B Chem. 226, 204–210 (2016).
[Crossref]

López-Romero, D.

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors (Basel) 2(3), 291–304 (2012).
[Crossref] [PubMed]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron. 26(12), 4842–4847 (2011).
[Crossref] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Maigler, M.

Maigler, M. V.

Maquieira, A.

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron. 26(12), 4842–4847 (2011).
[Crossref] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Maquieira, Á.

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors (Basel) 2(3), 291–304 (2012).
[Crossref] [PubMed]

Morris, W. G.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Mouchet, S. R.

O. Poncelet, G. Tallier, S. R. Mouchet, A. Crahay, J. Rasson, R. Kotipalli, O. Deparis, and L. A. Francis, “Vapour sensitivity of an ALD hierarchical photonic structure inspired by Morpho,” Bioinspir. Biomim. 11(3), 036011 (2016).
[Crossref] [PubMed]

Murahashi, M.

M. Saito, A. Kitamura, M. Murahashi, K. Yamanaka, Q. Hoa, Y. Yamaguchi, and E. Tamiya, “Novel Gold-Capped Nanopillars Imprinted on a Polymer Film for Highly Sensitive Plasmonic Biosensing,” Anal. Chem. 84(13), 5494–5500 (2012).
[Crossref] [PubMed]

Naik, R. R.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Naureen, S.

S. Naureen, N. Shahid, A. Dev, and S. Anand, “Generation of substrate-free III-V nanodisks from user-defined multilayer nanopillar arrays for integration on Si,” Nanotechnology 24(22), 225301 (2013).
[Crossref] [PubMed]

Ndoni, S.

K. Wu, T. Li, M. S. Schmidt, T. Rindzevicius, A. Boisen, and S. Ndoni, “Gold Nanoparticles Sliding on Recyclable Nanohoodoos-Engineered for Surface-Enhanced Raman Spectroscopy,” Adv. Funct. Mater. 28(2), 1704818 (2018).
[Crossref]

Ortega, F. J.

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors (Basel) 2(3), 291–304 (2012).
[Crossref] [PubMed]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron. 26(12), 4842–4847 (2011).
[Crossref] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Otte, M. A.

M.-C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved Biosensing Capability with Novel Suspended Nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

Palacios, M. A.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Pan, J. Y.

A. H. Thilsted, J. Y. Pan, K. Wu, K. Zór, T. Rindzevicius, M. S. Schmidt, and A. Boisen, “Lithography-Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR-Based Sensing,” Small 12(48), 6745–6752 (2016).
[Crossref] [PubMed]

Pflug, A.

M. Vergöhl, D. Rademacher, and A. Pflug, “Progress on optical coatings deposited with dual rotatable magnetrons in a sputter up system,” Surf. Coat. Tech. 241, 38–44 (2014).
[Crossref]

Poncelet, O.

O. Poncelet, G. Tallier, S. R. Mouchet, A. Crahay, J. Rasson, R. Kotipalli, O. Deparis, and L. A. Francis, “Vapour sensitivity of an ALD hierarchical photonic structure inspired by Morpho,” Bioinspir. Biomim. 11(3), 036011 (2016).
[Crossref] [PubMed]

Potyrailo, R. A.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Pris, A. D.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Puchades, R.

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors (Basel) 2(3), 291–304 (2012).
[Crossref] [PubMed]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron. 26(12), 4842–4847 (2011).
[Crossref] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Rademacher, D.

M. Vergöhl, S. Bruns, D. Rademacher, and G. Bräuer, “Industrial-scale deposition of highly uniform and precise optical interference filters by the use of an improved cylindrical magnetron sputtering system,” Surf. Coat. Tech. 267, 53–58 (2015).
[Crossref]

M. Vergöhl, D. Rademacher, and A. Pflug, “Progress on optical coatings deposited with dual rotatable magnetrons in a sputter up system,” Surf. Coat. Tech. 241, 38–44 (2014).
[Crossref]

D. Rademacher, T. Zickenrott, and M. Vergöhl, “Sputtering of dielectric single layers by metallic mode reactive sputtering and conventional reactive sputtering from cylindrical cathodes in a sputter-up configuration,” Thin Solid Films 532, 98–105 (2013).
[Crossref]

Rao, Y. L.

V. Anandan, Y. L. Rao, and G. Zhang, “Nanopillar array structures for enhancing biosensing performance,” Int. J. Nanomedicine 1(1), 73–80 (2006).
[Crossref] [PubMed]

Rasson, J.

O. Poncelet, G. Tallier, S. R. Mouchet, A. Crahay, J. Rasson, R. Kotipalli, O. Deparis, and L. A. Francis, “Vapour sensitivity of an ALD hierarchical photonic structure inspired by Morpho,” Bioinspir. Biomim. 11(3), 036011 (2016).
[Crossref] [PubMed]

Rendell, R. W.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Rindzevicius, T.

K. Wu, T. Li, M. S. Schmidt, T. Rindzevicius, A. Boisen, and S. Ndoni, “Gold Nanoparticles Sliding on Recyclable Nanohoodoos-Engineered for Surface-Enhanced Raman Spectroscopy,” Adv. Funct. Mater. 28(2), 1704818 (2018).
[Crossref]

A. H. Thilsted, J. Y. Pan, K. Wu, K. Zór, T. Rindzevicius, M. S. Schmidt, and A. Boisen, “Lithography-Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR-Based Sensing,” Small 12(48), 6745–6752 (2016).
[Crossref] [PubMed]

Saito, M.

M. Saito, A. Kitamura, M. Murahashi, K. Yamanaka, Q. Hoa, Y. Yamaguchi, and E. Tamiya, “Novel Gold-Capped Nanopillars Imprinted on a Polymer Film for Highly Sensitive Plasmonic Biosensing,” Anal. Chem. 84(13), 5494–5500 (2012).
[Crossref] [PubMed]

Santamaría, B.

Sanza, F. J.

I. Cornago, A. L. Hernández, R. Casquel, M. Holgado, M. F. Laguna, F. J. Sanza, and J. Bravo, “Bulk sensing performance comparison between silicon dioxide and resonant high aspect ratio nanopillars arrays fabricated by means of interference lithography,” Opt. Mater. Express 6(7), 2264 (2016).
[Crossref]

A. L. Hernández, R. Casquel, M. Holgado, I. Cornago, F. Fernández, P. Ciaurriz, F. J. Sanza, B. Santamaría, M. V. Maigler, and M. F. Laguna, “Resonant nanopillars arrays for label-free biosensing,” Opt. Lett. 41(23), 5430–5433 (2016).
[Crossref] [PubMed]

A. L. Hernández, R. Casquel, M. Holgado, I. Cornago, F. J. Sanza, B. Santamaría, M. Maigler, F. Fernández, A. Lavín, and M. F. Laguna, “Arrays of resonant nanopillars for biochemical sensing,” Opt. Lett. 40(10), 2370–2372 (2015).
[Crossref] [PubMed]

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors (Basel) 2(3), 291–304 (2012).
[Crossref] [PubMed]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron. 26(12), 4842–4847 (2011).
[Crossref] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Schmidt, M. S.

K. Wu, T. Li, M. S. Schmidt, T. Rindzevicius, A. Boisen, and S. Ndoni, “Gold Nanoparticles Sliding on Recyclable Nanohoodoos-Engineered for Surface-Enhanced Raman Spectroscopy,” Adv. Funct. Mater. 28(2), 1704818 (2018).
[Crossref]

A. H. Thilsted, J. Y. Pan, K. Wu, K. Zór, T. Rindzevicius, M. S. Schmidt, and A. Boisen, “Lithography-Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR-Based Sensing,” Small 12(48), 6745–6752 (2016).
[Crossref] [PubMed]

M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[PubMed]

Sepulveda, B.

M.-C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

Sepúlveda, B.

M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved Biosensing Capability with Novel Suspended Nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

Shahid, N.

S. Naureen, N. Shahid, A. Dev, and S. Anand, “Generation of substrate-free III-V nanodisks from user-defined multilayer nanopillar arrays for integration on Si,” Nanotechnology 24(22), 225301 (2013).
[Crossref] [PubMed]

Shirey, L.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Shiu, J.-Y.

C.-W. Kuo, J.-Y. Shiu, and P. Chen, “Size- and Shape-Controlled Fabrication of Large-Area Periodic Nanopillar Arrays,” Chem. Mater. 15(15), 2917–2920 (2003).
[Crossref]

Siddique, R. H.

Starkey, T. A.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Surman, C.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Suzuki, Y.

Y. Suzuki and K. Yokoyama, “Construction of a more sensitive fluorescence sensing material for the detection of vascular endothelial growth factor, a biomarker for angiogenesis, prepared by combining a fluorescent peptide and a nanopillar substrate,” Biosens. Bioelectron. 26(8), 3696–3699 (2011).
[Crossref] [PubMed]

Tallier, G.

O. Poncelet, G. Tallier, S. R. Mouchet, A. Crahay, J. Rasson, R. Kotipalli, O. Deparis, and L. A. Francis, “Vapour sensitivity of an ALD hierarchical photonic structure inspired by Morpho,” Bioinspir. Biomim. 11(3), 036011 (2016).
[Crossref] [PubMed]

Tamiya, E.

M. Saito, A. Kitamura, M. Murahashi, K. Yamanaka, Q. Hoa, Y. Yamaguchi, and E. Tamiya, “Novel Gold-Capped Nanopillars Imprinted on a Polymer Film for Highly Sensitive Plasmonic Biosensing,” Anal. Chem. 84(13), 5494–5500 (2012).
[Crossref] [PubMed]

Tang, Z.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Thilsted, A. H.

A. H. Thilsted, J. Y. Pan, K. Wu, K. Zór, T. Rindzevicius, M. S. Schmidt, and A. Boisen, “Lithography-Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR-Based Sensing,” Small 12(48), 6745–6752 (2016).
[Crossref] [PubMed]

Tippets, C. A.

C. A. Tippets, Y. Fu, A.-M. Jackson, E. U. Donev, and R. Lopez, “Reproduction and optical analysis of Morpho -inspired polymeric nanostructures,” J. Opt. 18(6), 065105 (2016).
[Crossref]

Ukaegbu, M.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Utturkar, Y.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Vasudev, M.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Vergöhl, M.

M. Vergöhl, S. Bruns, D. Rademacher, and G. Bräuer, “Industrial-scale deposition of highly uniform and precise optical interference filters by the use of an improved cylindrical magnetron sputtering system,” Surf. Coat. Tech. 267, 53–58 (2015).
[Crossref]

M. Vergöhl, D. Rademacher, and A. Pflug, “Progress on optical coatings deposited with dual rotatable magnetrons in a sputter up system,” Surf. Coat. Tech. 241, 38–44 (2014).
[Crossref]

D. Rademacher, T. Zickenrott, and M. Vergöhl, “Sputtering of dielectric single layers by metallic mode reactive sputtering and conventional reactive sputtering from cylindrical cathodes in a sputter-up configuration,” Thin Solid Films 532, 98–105 (2013).
[Crossref]

Vert, A.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Vukusic, P.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Wang, J.

W. Li, M. Hu, P. Ge, J. Wang, and Y. Guo, “Humidity sensing properties of morphology-controlled ordered silicon nanopillar,” Appl. Surf. Sci. 317, 970–973 (2014).
[Crossref]

Wu, K.

K. Wu, T. Li, M. S. Schmidt, T. Rindzevicius, A. Boisen, and S. Ndoni, “Gold Nanoparticles Sliding on Recyclable Nanohoodoos-Engineered for Surface-Enhanced Raman Spectroscopy,” Adv. Funct. Mater. 28(2), 1704818 (2018).
[Crossref]

A. H. Thilsted, J. Y. Pan, K. Wu, K. Zór, T. Rindzevicius, M. S. Schmidt, and A. Boisen, “Lithography-Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR-Based Sensing,” Small 12(48), 6745–6752 (2016).
[Crossref] [PubMed]

Yamaguchi, Y.

M. Saito, A. Kitamura, M. Murahashi, K. Yamanaka, Q. Hoa, Y. Yamaguchi, and E. Tamiya, “Novel Gold-Capped Nanopillars Imprinted on a Polymer Film for Highly Sensitive Plasmonic Biosensing,” Anal. Chem. 84(13), 5494–5500 (2012).
[Crossref] [PubMed]

Yamanaka, K.

M. Saito, A. Kitamura, M. Murahashi, K. Yamanaka, Q. Hoa, Y. Yamaguchi, and E. Tamiya, “Novel Gold-Capped Nanopillars Imprinted on a Polymer Film for Highly Sensitive Plasmonic Biosensing,” Anal. Chem. 84(13), 5494–5500 (2012).
[Crossref] [PubMed]

Yan, X.-N.

L.-J. Bie, X.-N. Yan, J. Yin, Y.-Q. Duan, and Z.-H. Yuan, “Nanopillar ZnO gas sensor for hydrogen and ethanol,” Sens. Actuators B Chem. 126(2), 604–608 (2007).
[Crossref]

Yin, J.

L.-J. Bie, X.-N. Yan, J. Yin, Y.-Q. Duan, and Z.-H. Yuan, “Nanopillar ZnO gas sensor for hydrogen and ethanol,” Sens. Actuators B Chem. 126(2), 604–608 (2007).
[Crossref]

Yokoyama, K.

Y. Suzuki and K. Yokoyama, “Construction of a more sensitive fluorescence sensing material for the detection of vascular endothelial growth factor, a biomarker for angiogenesis, prepared by combining a fluorescent peptide and a nanopillar substrate,” Biosens. Bioelectron. 26(8), 3696–3699 (2011).
[Crossref] [PubMed]

Yuan, Z.-H.

L.-J. Bie, X.-N. Yan, J. Yin, Y.-Q. Duan, and Z.-H. Yuan, “Nanopillar ZnO gas sensor for hydrogen and ethanol,” Sens. Actuators B Chem. 126(2), 604–608 (2007).
[Crossref]

Zalyubovskiy, S.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Zhang, G.

V. Anandan, Y. L. Rao, and G. Zhang, “Nanopillar array structures for enhancing biosensing performance,” Int. J. Nanomedicine 1(1), 73–80 (2006).
[Crossref] [PubMed]

Zhong, S.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Zickenrott, T.

D. Rademacher, T. Zickenrott, and M. Vergöhl, “Sputtering of dielectric single layers by metallic mode reactive sputtering and conventional reactive sputtering from cylindrical cathodes in a sputter-up configuration,” Thin Solid Films 532, 98–105 (2013).
[Crossref]

Zór, K.

A. H. Thilsted, J. Y. Pan, K. Wu, K. Zór, T. Rindzevicius, M. S. Schmidt, and A. Boisen, “Lithography-Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR-Based Sensing,” Small 12(48), 6745–6752 (2016).
[Crossref] [PubMed]

ACS Nano (1)

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

K. Wu, T. Li, M. S. Schmidt, T. Rindzevicius, A. Boisen, and S. Ndoni, “Gold Nanoparticles Sliding on Recyclable Nanohoodoos-Engineered for Surface-Enhanced Raman Spectroscopy,” Adv. Funct. Mater. 28(2), 1704818 (2018).
[Crossref]

Adv. Mater. (1)

M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[PubMed]

Anal. Chem. (1)

M. Saito, A. Kitamura, M. Murahashi, K. Yamanaka, Q. Hoa, Y. Yamaguchi, and E. Tamiya, “Novel Gold-Capped Nanopillars Imprinted on a Polymer Film for Highly Sensitive Plasmonic Biosensing,” Anal. Chem. 84(13), 5494–5500 (2012).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

M.-C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

Appl. Surf. Sci. (1)

W. Li, M. Hu, P. Ge, J. Wang, and Y. Guo, “Humidity sensing properties of morphology-controlled ordered silicon nanopillar,” Appl. Surf. Sci. 317, 970–973 (2014).
[Crossref]

Bioinspir. Biomim. (1)

O. Poncelet, G. Tallier, S. R. Mouchet, A. Crahay, J. Rasson, R. Kotipalli, O. Deparis, and L. A. Francis, “Vapour sensitivity of an ALD hierarchical photonic structure inspired by Morpho,” Bioinspir. Biomim. 11(3), 036011 (2016).
[Crossref] [PubMed]

Biosens. Bioelectron. (3)

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron. 26(12), 4842–4847 (2011).
[Crossref] [PubMed]

Y. Suzuki and K. Yokoyama, “Construction of a more sensitive fluorescence sensing material for the detection of vascular endothelial growth factor, a biomarker for angiogenesis, prepared by combining a fluorescent peptide and a nanopillar substrate,” Biosens. Bioelectron. 26(8), 3696–3699 (2011).
[Crossref] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Biosensors (Basel) (1)

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors (Basel) 2(3), 291–304 (2012).
[Crossref] [PubMed]

Chem. Mater. (1)

C.-W. Kuo, J.-Y. Shiu, and P. Chen, “Size- and Shape-Controlled Fabrication of Large-Area Periodic Nanopillar Arrays,” Chem. Mater. 15(15), 2917–2920 (2003).
[Crossref]

Int. J. Nanomedicine (1)

V. Anandan, Y. L. Rao, and G. Zhang, “Nanopillar array structures for enhancing biosensing performance,” Int. J. Nanomedicine 1(1), 73–80 (2006).
[Crossref] [PubMed]

J. Nanosci. Nanotechnol. (1)

V. Kugel and H.-F. Ji, “Nanopillars for sensing,” J. Nanosci. Nanotechnol. 14(9), 6469–6477 (2014).
[Crossref] [PubMed]

J. Opt. (1)

C. A. Tippets, Y. Fu, A.-M. Jackson, E. U. Donev, and R. Lopez, “Reproduction and optical analysis of Morpho -inspired polymeric nanostructures,” J. Opt. 18(6), 065105 (2016).
[Crossref]

J. Phys. Chem. C (1)

M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved Biosensing Capability with Novel Suspended Nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

Nanotechnology (1)

S. Naureen, N. Shahid, A. Dev, and S. Anand, “Generation of substrate-free III-V nanodisks from user-defined multilayer nanopillar arrays for integration on Si,” Nanotechnology 24(22), 225301 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Sens. Actuators B Chem. (2)

V. Canalejas-Tejero, A. López, R. Casquel, M. Holgado, and C. A. Barrios, “Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing,” Sens. Actuators B Chem. 226, 204–210 (2016).
[Crossref]

L.-J. Bie, X.-N. Yan, J. Yin, Y.-Q. Duan, and Z.-H. Yuan, “Nanopillar ZnO gas sensor for hydrogen and ethanol,” Sens. Actuators B Chem. 126(2), 604–608 (2007).
[Crossref]

Small (1)

A. H. Thilsted, J. Y. Pan, K. Wu, K. Zór, T. Rindzevicius, M. S. Schmidt, and A. Boisen, “Lithography-Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR-Based Sensing,” Small 12(48), 6745–6752 (2016).
[Crossref] [PubMed]

Surf. Coat. Tech. (2)

M. Vergöhl, D. Rademacher, and A. Pflug, “Progress on optical coatings deposited with dual rotatable magnetrons in a sputter up system,” Surf. Coat. Tech. 241, 38–44 (2014).
[Crossref]

M. Vergöhl, S. Bruns, D. Rademacher, and G. Bräuer, “Industrial-scale deposition of highly uniform and precise optical interference filters by the use of an improved cylindrical magnetron sputtering system,” Surf. Coat. Tech. 267, 53–58 (2015).
[Crossref]

Thin Solid Films (1)

D. Rademacher, T. Zickenrott, and M. Vergöhl, “Sputtering of dielectric single layers by metallic mode reactive sputtering and conventional reactive sputtering from cylindrical cathodes in a sputter-up configuration,” Thin Solid Films 532, 98–105 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the steps involved in the TR-NPs fabrication. The process involves EBL to make arrays of nanoholes, metal deposition, lift-off step, and CHF3/O2 plasma etch.
Fig. 2
Fig. 2 Sketch of the optical measuring setup for liquids. The sample with NPs is placed downside on a cell filled with liquid. Optical interrogation is performed through the transparent quartz substrate using an optical fiber, and reflected light is collected with another optical fiber adjacent to the first one.
Fig. 3
Fig. 3 SEM images of different TR-NPs. (a) Isolated, tiered nanopillar of 600 nm in diameter. (b) TR-NPs are 350 nm wide, pitch 875 nm. (c) TR-NPs are 250 nm wide, pitch 500 nm. (d) Top view of a large uniform area of the same TR-NPs shown in (c). Scale bars equal 500 nm for (a-c) and 10 µm for (d). (a-c) are 85° tilted views.
Fig. 4
Fig. 4 Spectra acquired with a visible spectrometer considering different solvents in contact with a conventional R-NPs array (a) and a TR-NPs with nickel cap array (b). In both cases, there is a resonant minimum peak in the 580-630 nm wavelength range. Minimum peaks regions are enlarged to improve clarity.
Fig. 5
Fig. 5 Linear fitting of the resonant minimum peak position for a conventional R-NPs array (solid line) and a TR-NPs array (dashed line), square lattice and pitch 500 nm in both cases. Bulk sensing tests with different solvents gave values of SB (R-NPs) ~296 nm RIU−1 and SB (TR-NPs) ~379 nm RIU−1, showing a 28% sensitivity increment approximately.

Metrics