Abstract

In this work, we report on the growth of high yield small bandgap InAs and InAsSb inserts embedded in InAsP nanowires grown on an InP substrate by catalyst-free selective-area metal-organic chemical vapor deposition. It is observed that the growth of the inserts with high aspect ratios can be achieved by properly tuning the V/III ratio. Nanowire arrays with InAs(Sb) inserts exhibit strong photoluminescence at 77 K from interband transitions, spanning a wavelength range of 2.30–3.70 µm. In addition, the InAsP/InAs heterointerfaces are characterized by a scanning transmission electron microscope and an energy-dispersive X-ray spectroscopy. We believe that these results pave the way to engineering interband transitions and enabling hybrid integration for nanoscale optical devices at the mid-wavelength infrared.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared emission from In(Ga)Sb layers on InAs(Sb)

R. Liu, Y. Zhong, L. Yu, H. Kim, S. Law, J.-M. Zuo, and D. Wasserman
Opt. Express 22(20) 24466-24477 (2014)

Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm

Wei-Sheng Liu, Hsin-Lun Tseng, and Po-Chen Kuo
Opt. Express 22(16) 18860-18869 (2014)

Photoluminescence and photoresponse from InSb/InAs-based quantum dot structures

Oscar Gustafsson, Amir Karim, Jesper Berggren, Qin Wang, Carl Reuterskiöld-Hedlund, Christopher Ernerheim-Jokumsen, Markus Soldemo, Jonas Weissenrieder, Sirpa Persson, Susanne Almqvist, Ulf Ekenberg, Bertrand Noharet, Carl Asplund, Mats Göthelid, Jan Y. Andersson, and Mattias Hammar
Opt. Express 20(19) 21264-21271 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, “Distinction investivation of InGaAs photodetectors cutoff at 2.9 µm,” Infrared Phys. Technol. 53(3), 173–176 (2010).
    [Crossref]
  2. G. Hasnain, B. F. Levine, D. L. Sivco, and A. Y. Cho, “Mid-infrared detectors in the 3–5 μm band using bound to continuum state absorption in InGaAs/InAlAs multiquantum well structures,” Appl. Phys. Lett. 56(8), 770–772 (1990).
    [Crossref]
  3. B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetectors operating beyond 3µm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
    [Crossref]
  4. B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” ‎,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
    [Crossref]
  5. B. Chen and A. L. Holmes., “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013).
    [Crossref] [PubMed]
  6. B. Chen, “Active region design and gain characteristics of InP-based dilute bismide type-II quantum wells for mid-IR lasers,” IEEE Trans. Electron Dev. 64(4), 1606–1611 (2017).
    [Crossref]
  7. S. R. Kurtz, A. A. Allerman, and R. M. Biefeld, “Midinfrared lasers and light-emitting diodes with InAsSb/InAsP strained-layer superlattice active regions,” Appl. Phys. Lett. 70(24), 3188–3190 (1997).
    [Crossref]
  8. R. M. Biefeld, S. R. Kurtz, and A. A. Allerman, “The metal-organic chemical vapor deposition growth and properties of InAsSb mid-infrared (3–6-µm) lasers and LED’s,” IEEE J. Sel. Top. Quantum Electron. 3(3), 739–748 (1997).
    [Crossref]
  9. K. A. Dick and P. Caroff, “Metal-seeded growth of III-V semiconductor nanowires: towards gold-free synthesis,” Nanoscale 6(6), 3006–3021 (2014).
    [Crossref] [PubMed]
  10. D. Ren, A. C. Farrell, B. S. Williams, and D. L. Huffaker, “Seeding layer assisted selective-area growth of As-rich InAsP nanowires on InP substrates,” Nanoscale 9(24), 8220–8228 (2017).
    [Crossref] [PubMed]
  11. A. Behres, D. Püttjer, and K. Heime, “Low-pressure metal organic vapour-phase epitaxy and characterization of strained InAs(P)/InAsSb superlattices for infrared emitters,” J. Cryst. Growth 195(1–4), 373–377 (1998).
    [Crossref]
  12. B. Lane, Z. Wu, A. Stein, J. Diaz, and M. Razeghi, “InAsSb/InAsP strained-layer superlattice injection lasers operation at 4.0 µm grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 74(23), 3438–3440 (1999).
    [Crossref]
  13. P. Christol, M. El Gazouli, P. Bigenwald, and A. Joullié, “Performance simulation of 3.3 µm interband laser diodes grown on InAs substrate,” Physica E 14(4), 375–384 (2002).
    [Crossref]
  14. C. Thelander, M. R. Björk, M. W. Larsson, A. E. Hansen, L. R. Wallenberg, and L. Samuelson, “Electron transport in InAs nanowires and heterostructure nanowire devices,” Solid State Commun. 131(9–10), 573–579 (2004).
    [Crossref]
  15. G. Nylund, K. Storm, S. Lehmann, F. Capasso, and L. Samuelson, “Designed quasi-1D potential structures realized in compositionally graded InAs1-xPx nanowires,” Nano Lett. 16(2), 1017–1021 (2016).
    [Crossref] [PubMed]
  16. D. Ren, A. C. Farrell, and D. L. Huffaker, “Selective-area InAsSb nanowires on InP for 3–5 μm mid-wavelength infrared optoelectronics,” MRS Advances 2(58–59), 3565–3570 (2017).
    [Crossref]
  17. S. A. Dayeh, E. T. Yu, and D. Wang, “III-V nanowire growth mechanism: V/III ratio and temperature effects,” Nano Lett. 7(8), 2486–2490 (2007).
    [Crossref] [PubMed]
  18. A. I. Persson, L. E. Fröberg, S. Jeppesen, M. T. Björk, and L. Samuelson, “Surface diffusion effects on growth of nanowires by chemical bean epitaxy,” J. Appl. Phys. 101(3), 034313 (2007).
    [Crossref]
  19. S. Paiman, Q. Gao, H. J. Joyce, Y. Kim, H. H. Tan, C. Jagadish, X. Zhang, Y. Guo, and J. Zou, “Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires,” J. Phys. D Appl. Phys. 43(44), 445402 (2010).
    [Crossref]
  20. K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, “Control of InAs nanowire growth directions on Si,” Nano Lett. 8(10), 3475–3480 (2008).
    [Crossref] [PubMed]
  21. A. Lin, J. N. Shapiro, A. C. Scofield, B. L. Liang, and D. L. Huffaker, “Enhanced InAs nanopillar electrical transport by in-situ passivation,” Appl. Phys. Lett. 102(5), 053115 (2013).
    [Crossref]
  22. M. Mattila, T. Hakkarainen, H. Lipasanen, H. Jiang, and E. I. Kauppinen, “Catalyst-free growth of In(As)P nanowires on silicon,” Appl. Phys. Lett. 89(6), 063119 (2006).
    [Crossref]
  23. J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
    [Crossref] [PubMed]
  24. G. Landgren, P. Ojala, and O. Ekström, “Influence of the gas switching sequence on the optical properties of ultrathin InGaAs/InP quantum wells,” J. Cryst. Growth 107(1–4), 573–577 (1991).
    [Crossref]
  25. H. A. McKay, R. M. Feenstra, P. J. Poole, and G. C. Aers, “Cross-sectional scanning tunneling microscopy studies of lattice-matched InGaAs/InP quantum wells: variations in growth switching sequence,” J. Cryst. Growth 249(3–4), 437–444 (2003).
    [Crossref]
  26. A. C. Farrell, W. J. Lee, P. Senanayake, M. A. Haddad, S. V. Prikhodko, and D. L. Huffaker, “High-quality InAsSb nanowires grown by catalyst-free selective-area metal-organic chemical vapor deposition,” Nano Lett. 15(10), 6614–6619 (2015).
    [Crossref] [PubMed]

2017 (3)

B. Chen, “Active region design and gain characteristics of InP-based dilute bismide type-II quantum wells for mid-IR lasers,” IEEE Trans. Electron Dev. 64(4), 1606–1611 (2017).
[Crossref]

D. Ren, A. C. Farrell, B. S. Williams, and D. L. Huffaker, “Seeding layer assisted selective-area growth of As-rich InAsP nanowires on InP substrates,” Nanoscale 9(24), 8220–8228 (2017).
[Crossref] [PubMed]

D. Ren, A. C. Farrell, and D. L. Huffaker, “Selective-area InAsSb nanowires on InP for 3–5 μm mid-wavelength infrared optoelectronics,” MRS Advances 2(58–59), 3565–3570 (2017).
[Crossref]

2016 (1)

G. Nylund, K. Storm, S. Lehmann, F. Capasso, and L. Samuelson, “Designed quasi-1D potential structures realized in compositionally graded InAs1-xPx nanowires,” Nano Lett. 16(2), 1017–1021 (2016).
[Crossref] [PubMed]

2015 (1)

A. C. Farrell, W. J. Lee, P. Senanayake, M. A. Haddad, S. V. Prikhodko, and D. L. Huffaker, “High-quality InAsSb nanowires grown by catalyst-free selective-area metal-organic chemical vapor deposition,” Nano Lett. 15(10), 6614–6619 (2015).
[Crossref] [PubMed]

2014 (1)

K. A. Dick and P. Caroff, “Metal-seeded growth of III-V semiconductor nanowires: towards gold-free synthesis,” Nanoscale 6(6), 3006–3021 (2014).
[Crossref] [PubMed]

2013 (3)

B. Chen and A. L. Holmes., “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013).
[Crossref] [PubMed]

J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
[Crossref] [PubMed]

A. Lin, J. N. Shapiro, A. C. Scofield, B. L. Liang, and D. L. Huffaker, “Enhanced InAs nanopillar electrical transport by in-situ passivation,” Appl. Phys. Lett. 102(5), 053115 (2013).
[Crossref]

2011 (2)

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetectors operating beyond 3µm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” ‎,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

2010 (2)

C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, “Distinction investivation of InGaAs photodetectors cutoff at 2.9 µm,” Infrared Phys. Technol. 53(3), 173–176 (2010).
[Crossref]

S. Paiman, Q. Gao, H. J. Joyce, Y. Kim, H. H. Tan, C. Jagadish, X. Zhang, Y. Guo, and J. Zou, “Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires,” J. Phys. D Appl. Phys. 43(44), 445402 (2010).
[Crossref]

2008 (1)

K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, “Control of InAs nanowire growth directions on Si,” Nano Lett. 8(10), 3475–3480 (2008).
[Crossref] [PubMed]

2007 (2)

S. A. Dayeh, E. T. Yu, and D. Wang, “III-V nanowire growth mechanism: V/III ratio and temperature effects,” Nano Lett. 7(8), 2486–2490 (2007).
[Crossref] [PubMed]

A. I. Persson, L. E. Fröberg, S. Jeppesen, M. T. Björk, and L. Samuelson, “Surface diffusion effects on growth of nanowires by chemical bean epitaxy,” J. Appl. Phys. 101(3), 034313 (2007).
[Crossref]

2006 (1)

M. Mattila, T. Hakkarainen, H. Lipasanen, H. Jiang, and E. I. Kauppinen, “Catalyst-free growth of In(As)P nanowires on silicon,” Appl. Phys. Lett. 89(6), 063119 (2006).
[Crossref]

2004 (1)

C. Thelander, M. R. Björk, M. W. Larsson, A. E. Hansen, L. R. Wallenberg, and L. Samuelson, “Electron transport in InAs nanowires and heterostructure nanowire devices,” Solid State Commun. 131(9–10), 573–579 (2004).
[Crossref]

2003 (1)

H. A. McKay, R. M. Feenstra, P. J. Poole, and G. C. Aers, “Cross-sectional scanning tunneling microscopy studies of lattice-matched InGaAs/InP quantum wells: variations in growth switching sequence,” J. Cryst. Growth 249(3–4), 437–444 (2003).
[Crossref]

2002 (1)

P. Christol, M. El Gazouli, P. Bigenwald, and A. Joullié, “Performance simulation of 3.3 µm interband laser diodes grown on InAs substrate,” Physica E 14(4), 375–384 (2002).
[Crossref]

1999 (1)

B. Lane, Z. Wu, A. Stein, J. Diaz, and M. Razeghi, “InAsSb/InAsP strained-layer superlattice injection lasers operation at 4.0 µm grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 74(23), 3438–3440 (1999).
[Crossref]

1998 (1)

A. Behres, D. Püttjer, and K. Heime, “Low-pressure metal organic vapour-phase epitaxy and characterization of strained InAs(P)/InAsSb superlattices for infrared emitters,” J. Cryst. Growth 195(1–4), 373–377 (1998).
[Crossref]

1997 (2)

S. R. Kurtz, A. A. Allerman, and R. M. Biefeld, “Midinfrared lasers and light-emitting diodes with InAsSb/InAsP strained-layer superlattice active regions,” Appl. Phys. Lett. 70(24), 3188–3190 (1997).
[Crossref]

R. M. Biefeld, S. R. Kurtz, and A. A. Allerman, “The metal-organic chemical vapor deposition growth and properties of InAsSb mid-infrared (3–6-µm) lasers and LED’s,” IEEE J. Sel. Top. Quantum Electron. 3(3), 739–748 (1997).
[Crossref]

1991 (1)

G. Landgren, P. Ojala, and O. Ekström, “Influence of the gas switching sequence on the optical properties of ultrathin InGaAs/InP quantum wells,” J. Cryst. Growth 107(1–4), 573–577 (1991).
[Crossref]

1990 (1)

G. Hasnain, B. F. Levine, D. L. Sivco, and A. Y. Cho, “Mid-infrared detectors in the 3–5 μm band using bound to continuum state absorption in InGaAs/InAlAs multiquantum well structures,” Appl. Phys. Lett. 56(8), 770–772 (1990).
[Crossref]

Abstreiter, G.

J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
[Crossref] [PubMed]

Aers, G. C.

H. A. McKay, R. M. Feenstra, P. J. Poole, and G. C. Aers, “Cross-sectional scanning tunneling microscopy studies of lattice-matched InGaAs/InP quantum wells: variations in growth switching sequence,” J. Cryst. Growth 249(3–4), 437–444 (2003).
[Crossref]

Allerman, A. A.

S. R. Kurtz, A. A. Allerman, and R. M. Biefeld, “Midinfrared lasers and light-emitting diodes with InAsSb/InAsP strained-layer superlattice active regions,” Appl. Phys. Lett. 70(24), 3188–3190 (1997).
[Crossref]

R. M. Biefeld, S. R. Kurtz, and A. A. Allerman, “The metal-organic chemical vapor deposition growth and properties of InAsSb mid-infrared (3–6-µm) lasers and LED’s,” IEEE J. Sel. Top. Quantum Electron. 3(3), 739–748 (1997).
[Crossref]

Amann, M. C.

J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
[Crossref] [PubMed]

Behres, A.

A. Behres, D. Püttjer, and K. Heime, “Low-pressure metal organic vapour-phase epitaxy and characterization of strained InAs(P)/InAsSb superlattices for infrared emitters,” J. Cryst. Growth 195(1–4), 373–377 (1998).
[Crossref]

Bichler, M.

J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
[Crossref] [PubMed]

Biefeld, R. M.

S. R. Kurtz, A. A. Allerman, and R. M. Biefeld, “Midinfrared lasers and light-emitting diodes with InAsSb/InAsP strained-layer superlattice active regions,” Appl. Phys. Lett. 70(24), 3188–3190 (1997).
[Crossref]

R. M. Biefeld, S. R. Kurtz, and A. A. Allerman, “The metal-organic chemical vapor deposition growth and properties of InAsSb mid-infrared (3–6-µm) lasers and LED’s,” IEEE J. Sel. Top. Quantum Electron. 3(3), 739–748 (1997).
[Crossref]

Bigenwald, P.

P. Christol, M. El Gazouli, P. Bigenwald, and A. Joullié, “Performance simulation of 3.3 µm interband laser diodes grown on InAs substrate,” Physica E 14(4), 375–384 (2002).
[Crossref]

Björk, M. R.

C. Thelander, M. R. Björk, M. W. Larsson, A. E. Hansen, L. R. Wallenberg, and L. Samuelson, “Electron transport in InAs nanowires and heterostructure nanowire devices,” Solid State Commun. 131(9–10), 573–579 (2004).
[Crossref]

Björk, M. T.

A. I. Persson, L. E. Fröberg, S. Jeppesen, M. T. Björk, and L. Samuelson, “Surface diffusion effects on growth of nanowires by chemical bean epitaxy,” J. Appl. Phys. 101(3), 034313 (2007).
[Crossref]

Bormann, M.

J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
[Crossref] [PubMed]

Capasso, F.

G. Nylund, K. Storm, S. Lehmann, F. Capasso, and L. Samuelson, “Designed quasi-1D potential structures realized in compositionally graded InAs1-xPx nanowires,” Nano Lett. 16(2), 1017–1021 (2016).
[Crossref] [PubMed]

Caroff, P.

K. A. Dick and P. Caroff, “Metal-seeded growth of III-V semiconductor nanowires: towards gold-free synthesis,” Nanoscale 6(6), 3006–3021 (2014).
[Crossref] [PubMed]

Chen, B.

B. Chen, “Active region design and gain characteristics of InP-based dilute bismide type-II quantum wells for mid-IR lasers,” IEEE Trans. Electron Dev. 64(4), 1606–1611 (2017).
[Crossref]

B. Chen and A. L. Holmes., “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013).
[Crossref] [PubMed]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” ‎,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetectors operating beyond 3µm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

Cho, A. Y.

G. Hasnain, B. F. Levine, D. L. Sivco, and A. Y. Cho, “Mid-infrared detectors in the 3–5 μm band using bound to continuum state absorption in InGaAs/InAlAs multiquantum well structures,” Appl. Phys. Lett. 56(8), 770–772 (1990).
[Crossref]

Christol, P.

P. Christol, M. El Gazouli, P. Bigenwald, and A. Joullié, “Performance simulation of 3.3 µm interband laser diodes grown on InAs substrate,” Physica E 14(4), 375–384 (2002).
[Crossref]

Dayeh, S. A.

S. A. Dayeh, E. T. Yu, and D. Wang, “III-V nanowire growth mechanism: V/III ratio and temperature effects,” Nano Lett. 7(8), 2486–2490 (2007).
[Crossref] [PubMed]

Diaz, J.

B. Lane, Z. Wu, A. Stein, J. Diaz, and M. Razeghi, “InAsSb/InAsP strained-layer superlattice injection lasers operation at 4.0 µm grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 74(23), 3438–3440 (1999).
[Crossref]

Dick, K. A.

K. A. Dick and P. Caroff, “Metal-seeded growth of III-V semiconductor nanowires: towards gold-free synthesis,” Nanoscale 6(6), 3006–3021 (2014).
[Crossref] [PubMed]

Döblinger, M.

J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
[Crossref] [PubMed]

Ekström, O.

G. Landgren, P. Ojala, and O. Ekström, “Influence of the gas switching sequence on the optical properties of ultrathin InGaAs/InP quantum wells,” J. Cryst. Growth 107(1–4), 573–577 (1991).
[Crossref]

El Gazouli, M.

P. Christol, M. El Gazouli, P. Bigenwald, and A. Joullié, “Performance simulation of 3.3 µm interband laser diodes grown on InAs substrate,” Physica E 14(4), 375–384 (2002).
[Crossref]

Farrell, A. C.

D. Ren, A. C. Farrell, B. S. Williams, and D. L. Huffaker, “Seeding layer assisted selective-area growth of As-rich InAsP nanowires on InP substrates,” Nanoscale 9(24), 8220–8228 (2017).
[Crossref] [PubMed]

D. Ren, A. C. Farrell, and D. L. Huffaker, “Selective-area InAsSb nanowires on InP for 3–5 μm mid-wavelength infrared optoelectronics,” MRS Advances 2(58–59), 3565–3570 (2017).
[Crossref]

A. C. Farrell, W. J. Lee, P. Senanayake, M. A. Haddad, S. V. Prikhodko, and D. L. Huffaker, “High-quality InAsSb nanowires grown by catalyst-free selective-area metal-organic chemical vapor deposition,” Nano Lett. 15(10), 6614–6619 (2015).
[Crossref] [PubMed]

Feenstra, R. M.

H. A. McKay, R. M. Feenstra, P. J. Poole, and G. C. Aers, “Cross-sectional scanning tunneling microscopy studies of lattice-matched InGaAs/InP quantum wells: variations in growth switching sequence,” J. Cryst. Growth 249(3–4), 437–444 (2003).
[Crossref]

Finley, J. J.

J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
[Crossref] [PubMed]

Fröberg, L. E.

A. I. Persson, L. E. Fröberg, S. Jeppesen, M. T. Björk, and L. Samuelson, “Surface diffusion effects on growth of nanowires by chemical bean epitaxy,” J. Appl. Phys. 101(3), 034313 (2007).
[Crossref]

Fukui, T.

K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, “Control of InAs nanowire growth directions on Si,” Nano Lett. 8(10), 3475–3480 (2008).
[Crossref] [PubMed]

Gao, Q.

S. Paiman, Q. Gao, H. J. Joyce, Y. Kim, H. H. Tan, C. Jagadish, X. Zhang, Y. Guo, and J. Zou, “Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires,” J. Phys. D Appl. Phys. 43(44), 445402 (2010).
[Crossref]

Gu, Y.

C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, “Distinction investivation of InGaAs photodetectors cutoff at 2.9 µm,” Infrared Phys. Technol. 53(3), 173–176 (2010).
[Crossref]

Guo, Y.

S. Paiman, Q. Gao, H. J. Joyce, Y. Kim, H. H. Tan, C. Jagadish, X. Zhang, Y. Guo, and J. Zou, “Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires,” J. Phys. D Appl. Phys. 43(44), 445402 (2010).
[Crossref]

Haddad, M. A.

A. C. Farrell, W. J. Lee, P. Senanayake, M. A. Haddad, S. V. Prikhodko, and D. L. Huffaker, “High-quality InAsSb nanowires grown by catalyst-free selective-area metal-organic chemical vapor deposition,” Nano Lett. 15(10), 6614–6619 (2015).
[Crossref] [PubMed]

Hakkarainen, T.

M. Mattila, T. Hakkarainen, H. Lipasanen, H. Jiang, and E. I. Kauppinen, “Catalyst-free growth of In(As)P nanowires on silicon,” Appl. Phys. Lett. 89(6), 063119 (2006).
[Crossref]

Hansen, A. E.

C. Thelander, M. R. Björk, M. W. Larsson, A. E. Hansen, L. R. Wallenberg, and L. Samuelson, “Electron transport in InAs nanowires and heterostructure nanowire devices,” Solid State Commun. 131(9–10), 573–579 (2004).
[Crossref]

Hara, S.

K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, “Control of InAs nanowire growth directions on Si,” Nano Lett. 8(10), 3475–3480 (2008).
[Crossref] [PubMed]

Hasnain, G.

G. Hasnain, B. F. Levine, D. L. Sivco, and A. Y. Cho, “Mid-infrared detectors in the 3–5 μm band using bound to continuum state absorption in InGaAs/InAlAs multiquantum well structures,” Appl. Phys. Lett. 56(8), 770–772 (1990).
[Crossref]

Heime, K.

A. Behres, D. Püttjer, and K. Heime, “Low-pressure metal organic vapour-phase epitaxy and characterization of strained InAs(P)/InAsSb superlattices for infrared emitters,” J. Cryst. Growth 195(1–4), 373–377 (1998).
[Crossref]

Holmes, A. L.

B. Chen and A. L. Holmes., “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013).
[Crossref] [PubMed]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” ‎,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetectors operating beyond 3µm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

Huffaker, D. L.

D. Ren, A. C. Farrell, B. S. Williams, and D. L. Huffaker, “Seeding layer assisted selective-area growth of As-rich InAsP nanowires on InP substrates,” Nanoscale 9(24), 8220–8228 (2017).
[Crossref] [PubMed]

D. Ren, A. C. Farrell, and D. L. Huffaker, “Selective-area InAsSb nanowires on InP for 3–5 μm mid-wavelength infrared optoelectronics,” MRS Advances 2(58–59), 3565–3570 (2017).
[Crossref]

A. C. Farrell, W. J. Lee, P. Senanayake, M. A. Haddad, S. V. Prikhodko, and D. L. Huffaker, “High-quality InAsSb nanowires grown by catalyst-free selective-area metal-organic chemical vapor deposition,” Nano Lett. 15(10), 6614–6619 (2015).
[Crossref] [PubMed]

A. Lin, J. N. Shapiro, A. C. Scofield, B. L. Liang, and D. L. Huffaker, “Enhanced InAs nanopillar electrical transport by in-situ passivation,” Appl. Phys. Lett. 102(5), 053115 (2013).
[Crossref]

Jagadish, C.

S. Paiman, Q. Gao, H. J. Joyce, Y. Kim, H. H. Tan, C. Jagadish, X. Zhang, Y. Guo, and J. Zou, “Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires,” J. Phys. D Appl. Phys. 43(44), 445402 (2010).
[Crossref]

Jeppesen, S.

A. I. Persson, L. E. Fröberg, S. Jeppesen, M. T. Björk, and L. Samuelson, “Surface diffusion effects on growth of nanowires by chemical bean epitaxy,” J. Appl. Phys. 101(3), 034313 (2007).
[Crossref]

Jiang, H.

M. Mattila, T. Hakkarainen, H. Lipasanen, H. Jiang, and E. I. Kauppinen, “Catalyst-free growth of In(As)P nanowires on silicon,” Appl. Phys. Lett. 89(6), 063119 (2006).
[Crossref]

Jiang, W.

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” ‎,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

Jiang, W. Y.

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetectors operating beyond 3µm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

Joullié, A.

P. Christol, M. El Gazouli, P. Bigenwald, and A. Joullié, “Performance simulation of 3.3 µm interband laser diodes grown on InAs substrate,” Physica E 14(4), 375–384 (2002).
[Crossref]

Joyce, H. J.

S. Paiman, Q. Gao, H. J. Joyce, Y. Kim, H. H. Tan, C. Jagadish, X. Zhang, Y. Guo, and J. Zou, “Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires,” J. Phys. D Appl. Phys. 43(44), 445402 (2010).
[Crossref]

Kauppinen, E. I.

M. Mattila, T. Hakkarainen, H. Lipasanen, H. Jiang, and E. I. Kauppinen, “Catalyst-free growth of In(As)P nanowires on silicon,” Appl. Phys. Lett. 89(6), 063119 (2006).
[Crossref]

Kim, Y.

S. Paiman, Q. Gao, H. J. Joyce, Y. Kim, H. H. Tan, C. Jagadish, X. Zhang, Y. Guo, and J. Zou, “Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires,” J. Phys. D Appl. Phys. 43(44), 445402 (2010).
[Crossref]

Koblmüller, G.

J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
[Crossref] [PubMed]

Kurtz, S. R.

S. R. Kurtz, A. A. Allerman, and R. M. Biefeld, “Midinfrared lasers and light-emitting diodes with InAsSb/InAsP strained-layer superlattice active regions,” Appl. Phys. Lett. 70(24), 3188–3190 (1997).
[Crossref]

R. M. Biefeld, S. R. Kurtz, and A. A. Allerman, “The metal-organic chemical vapor deposition growth and properties of InAsSb mid-infrared (3–6-µm) lasers and LED’s,” IEEE J. Sel. Top. Quantum Electron. 3(3), 739–748 (1997).
[Crossref]

Landgren, G.

G. Landgren, P. Ojala, and O. Ekström, “Influence of the gas switching sequence on the optical properties of ultrathin InGaAs/InP quantum wells,” J. Cryst. Growth 107(1–4), 573–577 (1991).
[Crossref]

Lane, B.

B. Lane, Z. Wu, A. Stein, J. Diaz, and M. Razeghi, “InAsSb/InAsP strained-layer superlattice injection lasers operation at 4.0 µm grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 74(23), 3438–3440 (1999).
[Crossref]

Larsson, M. W.

C. Thelander, M. R. Björk, M. W. Larsson, A. E. Hansen, L. R. Wallenberg, and L. Samuelson, “Electron transport in InAs nanowires and heterostructure nanowire devices,” Solid State Commun. 131(9–10), 573–579 (2004).
[Crossref]

Lee, W. J.

A. C. Farrell, W. J. Lee, P. Senanayake, M. A. Haddad, S. V. Prikhodko, and D. L. Huffaker, “High-quality InAsSb nanowires grown by catalyst-free selective-area metal-organic chemical vapor deposition,” Nano Lett. 15(10), 6614–6619 (2015).
[Crossref] [PubMed]

Lehmann, S.

G. Nylund, K. Storm, S. Lehmann, F. Capasso, and L. Samuelson, “Designed quasi-1D potential structures realized in compositionally graded InAs1-xPx nanowires,” Nano Lett. 16(2), 1017–1021 (2016).
[Crossref] [PubMed]

Levine, B. F.

G. Hasnain, B. F. Levine, D. L. Sivco, and A. Y. Cho, “Mid-infrared detectors in the 3–5 μm band using bound to continuum state absorption in InGaAs/InAlAs multiquantum well structures,” Appl. Phys. Lett. 56(8), 770–772 (1990).
[Crossref]

Li, C.

C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, “Distinction investivation of InGaAs photodetectors cutoff at 2.9 µm,” Infrared Phys. Technol. 53(3), 173–176 (2010).
[Crossref]

Li, H.

C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, “Distinction investivation of InGaAs photodetectors cutoff at 2.9 µm,” Infrared Phys. Technol. 53(3), 173–176 (2010).
[Crossref]

Li, Y.

C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, “Distinction investivation of InGaAs photodetectors cutoff at 2.9 µm,” Infrared Phys. Technol. 53(3), 173–176 (2010).
[Crossref]

Liang, B. L.

A. Lin, J. N. Shapiro, A. C. Scofield, B. L. Liang, and D. L. Huffaker, “Enhanced InAs nanopillar electrical transport by in-situ passivation,” Appl. Phys. Lett. 102(5), 053115 (2013).
[Crossref]

Lin, A.

A. Lin, J. N. Shapiro, A. C. Scofield, B. L. Liang, and D. L. Huffaker, “Enhanced InAs nanopillar electrical transport by in-situ passivation,” Appl. Phys. Lett. 102(5), 053115 (2013).
[Crossref]

Lipasanen, H.

M. Mattila, T. Hakkarainen, H. Lipasanen, H. Jiang, and E. I. Kauppinen, “Catalyst-free growth of In(As)P nanowires on silicon,” Appl. Phys. Lett. 89(6), 063119 (2006).
[Crossref]

Matich, S.

J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
[Crossref] [PubMed]

Mattila, M.

M. Mattila, T. Hakkarainen, H. Lipasanen, H. Jiang, and E. I. Kauppinen, “Catalyst-free growth of In(As)P nanowires on silicon,” Appl. Phys. Lett. 89(6), 063119 (2006).
[Crossref]

Mayer, B.

J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
[Crossref] [PubMed]

McKay, H. A.

H. A. McKay, R. M. Feenstra, P. J. Poole, and G. C. Aers, “Cross-sectional scanning tunneling microscopy studies of lattice-matched InGaAs/InP quantum wells: variations in growth switching sequence,” J. Cryst. Growth 249(3–4), 437–444 (2003).
[Crossref]

Morkötter, S.

J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
[Crossref] [PubMed]

Motohisa, J.

K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, “Control of InAs nanowire growth directions on Si,” Nano Lett. 8(10), 3475–3480 (2008).
[Crossref] [PubMed]

Nylund, G.

G. Nylund, K. Storm, S. Lehmann, F. Capasso, and L. Samuelson, “Designed quasi-1D potential structures realized in compositionally graded InAs1-xPx nanowires,” Nano Lett. 16(2), 1017–1021 (2016).
[Crossref] [PubMed]

Ojala, P.

G. Landgren, P. Ojala, and O. Ekström, “Influence of the gas switching sequence on the optical properties of ultrathin InGaAs/InP quantum wells,” J. Cryst. Growth 107(1–4), 573–577 (1991).
[Crossref]

Onat, B. M.

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetectors operating beyond 3µm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” ‎,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

Paiman, S.

S. Paiman, Q. Gao, H. J. Joyce, Y. Kim, H. H. Tan, C. Jagadish, X. Zhang, Y. Guo, and J. Zou, “Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires,” J. Phys. D Appl. Phys. 43(44), 445402 (2010).
[Crossref]

Persson, A. I.

A. I. Persson, L. E. Fröberg, S. Jeppesen, M. T. Björk, and L. Samuelson, “Surface diffusion effects on growth of nanowires by chemical bean epitaxy,” J. Appl. Phys. 101(3), 034313 (2007).
[Crossref]

Poole, P. J.

H. A. McKay, R. M. Feenstra, P. J. Poole, and G. C. Aers, “Cross-sectional scanning tunneling microscopy studies of lattice-matched InGaAs/InP quantum wells: variations in growth switching sequence,” J. Cryst. Growth 249(3–4), 437–444 (2003).
[Crossref]

Prikhodko, S. V.

A. C. Farrell, W. J. Lee, P. Senanayake, M. A. Haddad, S. V. Prikhodko, and D. L. Huffaker, “High-quality InAsSb nanowires grown by catalyst-free selective-area metal-organic chemical vapor deposition,” Nano Lett. 15(10), 6614–6619 (2015).
[Crossref] [PubMed]

Püttjer, D.

A. Behres, D. Püttjer, and K. Heime, “Low-pressure metal organic vapour-phase epitaxy and characterization of strained InAs(P)/InAsSb superlattices for infrared emitters,” J. Cryst. Growth 195(1–4), 373–377 (1998).
[Crossref]

Razeghi, M.

B. Lane, Z. Wu, A. Stein, J. Diaz, and M. Razeghi, “InAsSb/InAsP strained-layer superlattice injection lasers operation at 4.0 µm grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 74(23), 3438–3440 (1999).
[Crossref]

Ren, D.

D. Ren, A. C. Farrell, B. S. Williams, and D. L. Huffaker, “Seeding layer assisted selective-area growth of As-rich InAsP nanowires on InP substrates,” Nanoscale 9(24), 8220–8228 (2017).
[Crossref] [PubMed]

D. Ren, A. C. Farrell, and D. L. Huffaker, “Selective-area InAsSb nanowires on InP for 3–5 μm mid-wavelength infrared optoelectronics,” MRS Advances 2(58–59), 3565–3570 (2017).
[Crossref]

Saller, K.

J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
[Crossref] [PubMed]

Samuelson, L.

G. Nylund, K. Storm, S. Lehmann, F. Capasso, and L. Samuelson, “Designed quasi-1D potential structures realized in compositionally graded InAs1-xPx nanowires,” Nano Lett. 16(2), 1017–1021 (2016).
[Crossref] [PubMed]

A. I. Persson, L. E. Fröberg, S. Jeppesen, M. T. Björk, and L. Samuelson, “Surface diffusion effects on growth of nanowires by chemical bean epitaxy,” J. Appl. Phys. 101(3), 034313 (2007).
[Crossref]

C. Thelander, M. R. Björk, M. W. Larsson, A. E. Hansen, L. R. Wallenberg, and L. Samuelson, “Electron transport in InAs nanowires and heterostructure nanowire devices,” Solid State Commun. 131(9–10), 573–579 (2004).
[Crossref]

Schmeiduch, H.

J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
[Crossref] [PubMed]

Scofield, A. C.

A. Lin, J. N. Shapiro, A. C. Scofield, B. L. Liang, and D. L. Huffaker, “Enhanced InAs nanopillar electrical transport by in-situ passivation,” Appl. Phys. Lett. 102(5), 053115 (2013).
[Crossref]

Senanayake, P.

A. C. Farrell, W. J. Lee, P. Senanayake, M. A. Haddad, S. V. Prikhodko, and D. L. Huffaker, “High-quality InAsSb nanowires grown by catalyst-free selective-area metal-organic chemical vapor deposition,” Nano Lett. 15(10), 6614–6619 (2015).
[Crossref] [PubMed]

Shapiro, J. N.

A. Lin, J. N. Shapiro, A. C. Scofield, B. L. Liang, and D. L. Huffaker, “Enhanced InAs nanopillar electrical transport by in-situ passivation,” Appl. Phys. Lett. 102(5), 053115 (2013).
[Crossref]

Sivco, D. L.

G. Hasnain, B. F. Levine, D. L. Sivco, and A. Y. Cho, “Mid-infrared detectors in the 3–5 μm band using bound to continuum state absorption in InGaAs/InAlAs multiquantum well structures,” Appl. Phys. Lett. 56(8), 770–772 (1990).
[Crossref]

Stein, A.

B. Lane, Z. Wu, A. Stein, J. Diaz, and M. Razeghi, “InAsSb/InAsP strained-layer superlattice injection lasers operation at 4.0 µm grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 74(23), 3438–3440 (1999).
[Crossref]

Storm, K.

G. Nylund, K. Storm, S. Lehmann, F. Capasso, and L. Samuelson, “Designed quasi-1D potential structures realized in compositionally graded InAs1-xPx nanowires,” Nano Lett. 16(2), 1017–1021 (2016).
[Crossref] [PubMed]

Tan, H. H.

S. Paiman, Q. Gao, H. J. Joyce, Y. Kim, H. H. Tan, C. Jagadish, X. Zhang, Y. Guo, and J. Zou, “Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires,” J. Phys. D Appl. Phys. 43(44), 445402 (2010).
[Crossref]

Thelander, C.

C. Thelander, M. R. Björk, M. W. Larsson, A. E. Hansen, L. R. Wallenberg, and L. Samuelson, “Electron transport in InAs nanowires and heterostructure nanowire devices,” Solid State Commun. 131(9–10), 573–579 (2004).
[Crossref]

Tomioka, K.

K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, “Control of InAs nanowire growth directions on Si,” Nano Lett. 8(10), 3475–3480 (2008).
[Crossref] [PubMed]

Treu, J.

J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
[Crossref] [PubMed]

Wallenberg, L. R.

C. Thelander, M. R. Björk, M. W. Larsson, A. E. Hansen, L. R. Wallenberg, and L. Samuelson, “Electron transport in InAs nanowires and heterostructure nanowire devices,” Solid State Commun. 131(9–10), 573–579 (2004).
[Crossref]

Wang, D.

S. A. Dayeh, E. T. Yu, and D. Wang, “III-V nanowire growth mechanism: V/III ratio and temperature effects,” Nano Lett. 7(8), 2486–2490 (2007).
[Crossref] [PubMed]

Wang, K.

C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, “Distinction investivation of InGaAs photodetectors cutoff at 2.9 µm,” Infrared Phys. Technol. 53(3), 173–176 (2010).
[Crossref]

Wiecha, P.

J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
[Crossref] [PubMed]

Williams, B. S.

D. Ren, A. C. Farrell, B. S. Williams, and D. L. Huffaker, “Seeding layer assisted selective-area growth of As-rich InAsP nanowires on InP substrates,” Nanoscale 9(24), 8220–8228 (2017).
[Crossref] [PubMed]

Wu, Z.

B. Lane, Z. Wu, A. Stein, J. Diaz, and M. Razeghi, “InAsSb/InAsP strained-layer superlattice injection lasers operation at 4.0 µm grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 74(23), 3438–3440 (1999).
[Crossref]

Yu, E. T.

S. A. Dayeh, E. T. Yu, and D. Wang, “III-V nanowire growth mechanism: V/III ratio and temperature effects,” Nano Lett. 7(8), 2486–2490 (2007).
[Crossref] [PubMed]

Yuan, J.

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetectors operating beyond 3µm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” ‎,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

Zhang, X.

S. Paiman, Q. Gao, H. J. Joyce, Y. Kim, H. H. Tan, C. Jagadish, X. Zhang, Y. Guo, and J. Zou, “Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires,” J. Phys. D Appl. Phys. 43(44), 445402 (2010).
[Crossref]

Zhang, Y.

C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, “Distinction investivation of InGaAs photodetectors cutoff at 2.9 µm,” Infrared Phys. Technol. 53(3), 173–176 (2010).
[Crossref]

Zou, J.

S. Paiman, Q. Gao, H. J. Joyce, Y. Kim, H. H. Tan, C. Jagadish, X. Zhang, Y. Guo, and J. Zou, “Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires,” J. Phys. D Appl. Phys. 43(44), 445402 (2010).
[Crossref]

Appl. Phys. Lett. (5)

G. Hasnain, B. F. Levine, D. L. Sivco, and A. Y. Cho, “Mid-infrared detectors in the 3–5 μm band using bound to continuum state absorption in InGaAs/InAlAs multiquantum well structures,” Appl. Phys. Lett. 56(8), 770–772 (1990).
[Crossref]

S. R. Kurtz, A. A. Allerman, and R. M. Biefeld, “Midinfrared lasers and light-emitting diodes with InAsSb/InAsP strained-layer superlattice active regions,” Appl. Phys. Lett. 70(24), 3188–3190 (1997).
[Crossref]

B. Lane, Z. Wu, A. Stein, J. Diaz, and M. Razeghi, “InAsSb/InAsP strained-layer superlattice injection lasers operation at 4.0 µm grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 74(23), 3438–3440 (1999).
[Crossref]

A. Lin, J. N. Shapiro, A. C. Scofield, B. L. Liang, and D. L. Huffaker, “Enhanced InAs nanopillar electrical transport by in-situ passivation,” Appl. Phys. Lett. 102(5), 053115 (2013).
[Crossref]

M. Mattila, T. Hakkarainen, H. Lipasanen, H. Jiang, and E. I. Kauppinen, “Catalyst-free growth of In(As)P nanowires on silicon,” Appl. Phys. Lett. 89(6), 063119 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” ‎,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. M. Biefeld, S. R. Kurtz, and A. A. Allerman, “The metal-organic chemical vapor deposition growth and properties of InAsSb mid-infrared (3–6-µm) lasers and LED’s,” IEEE J. Sel. Top. Quantum Electron. 3(3), 739–748 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetectors operating beyond 3µm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

IEEE Trans. Electron Dev. (1)

B. Chen, “Active region design and gain characteristics of InP-based dilute bismide type-II quantum wells for mid-IR lasers,” IEEE Trans. Electron Dev. 64(4), 1606–1611 (2017).
[Crossref]

Infrared Phys. Technol. (1)

C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, “Distinction investivation of InGaAs photodetectors cutoff at 2.9 µm,” Infrared Phys. Technol. 53(3), 173–176 (2010).
[Crossref]

J. Appl. Phys. (1)

A. I. Persson, L. E. Fröberg, S. Jeppesen, M. T. Björk, and L. Samuelson, “Surface diffusion effects on growth of nanowires by chemical bean epitaxy,” J. Appl. Phys. 101(3), 034313 (2007).
[Crossref]

J. Cryst. Growth (3)

G. Landgren, P. Ojala, and O. Ekström, “Influence of the gas switching sequence on the optical properties of ultrathin InGaAs/InP quantum wells,” J. Cryst. Growth 107(1–4), 573–577 (1991).
[Crossref]

H. A. McKay, R. M. Feenstra, P. J. Poole, and G. C. Aers, “Cross-sectional scanning tunneling microscopy studies of lattice-matched InGaAs/InP quantum wells: variations in growth switching sequence,” J. Cryst. Growth 249(3–4), 437–444 (2003).
[Crossref]

A. Behres, D. Püttjer, and K. Heime, “Low-pressure metal organic vapour-phase epitaxy and characterization of strained InAs(P)/InAsSb superlattices for infrared emitters,” J. Cryst. Growth 195(1–4), 373–377 (1998).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. Paiman, Q. Gao, H. J. Joyce, Y. Kim, H. H. Tan, C. Jagadish, X. Zhang, Y. Guo, and J. Zou, “Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires,” J. Phys. D Appl. Phys. 43(44), 445402 (2010).
[Crossref]

MRS Advances (1)

D. Ren, A. C. Farrell, and D. L. Huffaker, “Selective-area InAsSb nanowires on InP for 3–5 μm mid-wavelength infrared optoelectronics,” MRS Advances 2(58–59), 3565–3570 (2017).
[Crossref]

Nano Lett. (5)

S. A. Dayeh, E. T. Yu, and D. Wang, “III-V nanowire growth mechanism: V/III ratio and temperature effects,” Nano Lett. 7(8), 2486–2490 (2007).
[Crossref] [PubMed]

G. Nylund, K. Storm, S. Lehmann, F. Capasso, and L. Samuelson, “Designed quasi-1D potential structures realized in compositionally graded InAs1-xPx nanowires,” Nano Lett. 16(2), 1017–1021 (2016).
[Crossref] [PubMed]

K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, “Control of InAs nanowire growth directions on Si,” Nano Lett. 8(10), 3475–3480 (2008).
[Crossref] [PubMed]

J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires,” Nano Lett. 13(12), 6070–6077 (2013).
[Crossref] [PubMed]

A. C. Farrell, W. J. Lee, P. Senanayake, M. A. Haddad, S. V. Prikhodko, and D. L. Huffaker, “High-quality InAsSb nanowires grown by catalyst-free selective-area metal-organic chemical vapor deposition,” Nano Lett. 15(10), 6614–6619 (2015).
[Crossref] [PubMed]

Nanoscale (2)

K. A. Dick and P. Caroff, “Metal-seeded growth of III-V semiconductor nanowires: towards gold-free synthesis,” Nanoscale 6(6), 3006–3021 (2014).
[Crossref] [PubMed]

D. Ren, A. C. Farrell, B. S. Williams, and D. L. Huffaker, “Seeding layer assisted selective-area growth of As-rich InAsP nanowires on InP substrates,” Nanoscale 9(24), 8220–8228 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

Physica E (1)

P. Christol, M. El Gazouli, P. Bigenwald, and A. Joullié, “Performance simulation of 3.3 µm interband laser diodes grown on InAs substrate,” Physica E 14(4), 375–384 (2002).
[Crossref]

Solid State Commun. (1)

C. Thelander, M. R. Björk, M. W. Larsson, A. E. Hansen, L. R. Wallenberg, and L. Samuelson, “Electron transport in InAs nanowires and heterostructure nanowire devices,” Solid State Commun. 131(9–10), 573–579 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematics of InAs(Sb) inserts in InAsP nanowires grown on InP (111)B. (b) A close-up look of nanowire array with InAs inserts. The scale bar is 1 µm.
Fig. 2
Fig. 2 (a) SEM images of InAs segments grown on InAsP bottom segments using different V/III ratios of 16, 32, and 48. The scale bar is 1 µm. (b) The average change of nanowire height ∆H as a function of the average change of nanowire diameter ∆D after the growth of InAs inserts. The inset shows the aspect ratio of InAs growth as a function of V/III ratio.
Fig. 3
Fig. 3 (a) PL characterization (77 K) of nanowire arrays with InAs inserts. The growth time of inserts is varied from 5 to 30 seconds. The dashed lines are drawn to guide the eye for the emission peaks of InAs and InAsP segments. (b) A summary of peak energy as a function of growth time of InAs inserts. (c) Optical emission of nanowire arrays where the InAsP top segments are grown for 30 and 60 seconds, respectively. The growth time of InAs inserts is kept fixed at 30 seconds.
Fig. 4
Fig. 4 STEM and EDX line-scan of a single nanowire with a 60-sec InAs insert.
Fig. 5
Fig. 5 (a) SEM images of growth process of InAsSb inserts. (b) PL characterization (77 K) of InAsP/InAsSb and InAsP/InAsSb/InAsP heterostructures, respectively. The inset shows a close-up look of emission from InAsSb inserts.

Metrics